中科大半导体器件原理考试重点

合集下载

半导体器件物理复习纲要word精品文档5页

半导体器件物理复习纲要word精品文档5页

第一章 半导体物理基础能带:1-1什么叫本征激发?温度越高,本征激发的载流子越多,为什么?1-2试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。

1-3、试指出空穴的主要特征及引入空穴的意义。

1-4、设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E v (k)分别为:2222100()()3C k k k E k m m -=+和22221003()6v k k E k m m =-;m 0为电子惯性质量,1k a π=;a =0.314nm ,341.05410J s -=⨯⋅,3109.110m Kg -=⨯,191.610q C -=⨯。

试求:①禁带宽度;②导带底电子有效质量;③价带顶电子有效质量。

题解:1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。

其结果是在半导体中出现成对的电子-空穴对。

如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。

温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。

反之,温度降低,将导致禁带变宽。

因此,Ge 、Si 的禁带宽度具有负温度系数。

1-3、准粒子、荷正电:+q ; 、空穴浓度表示为p (电子浓度表示为n ); 、E P =-E n (能量方向相反)、m P *=-m n *。

空穴的意义:引入空穴后,可以把价带中大量电子对电流的贡献用少量空穴来描述,使问题简化。

1-4、①禁带宽度Eg 根据dk k dEc )(=2023k m +2102()k k m -=0;可求出对应导带能量极小值E min 的k 值: k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m ;由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =22106k m ;∴Eg =E min -E max =221012k m =222012m a π =23423110219(1.05410)129.110(3.1410) 1.610π----⨯⨯⨯⨯⨯⨯⨯=0.64eV②导带底电子有效质量m n2222200022833C d E dk m m m =+=;∴ 22023/8C n d E m m dk == ③价带顶电子有效质量m ’ 22206V d E dk m =-,∴2'2021/6V n d E m m dk ==- 掺杂:2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?2-3、什么叫受主?什么叫受主电离?2-4、何谓杂质补偿?杂质补偿的意义何在?题解:2-1、解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。

中国科学院半导体物理考研复习总结..docx

中国科学院半导体物理考研复习总结..docx

中国科学院半导体物理考研复习总结..docx第一章晶体结构晶格§1晶格相关的基本概念1. 晶体:原子周期排列,有周期性的物质。

2. 晶体结构:原子排列的具体形式。

3. 晶格:典型单元重复^列构成晶格。

4. 晶胞:重复性的周期单元。

5. 晶体学晶胞:反映晶格对称性质的最小单元。

6. 晶格常数:晶体学晶胞各个边的实际长度。

7. 简单晶格&复式晶格:原胞中包含一个原子的为简单晶格,两个或者两个以上的称为复式晶格。

8. 布拉伐格子:体现晶体周期性的格子称为布拉伐格子。

(布拉伐格子的每个格点对应一个原胞,简单晶格的晶格本身和布拉伐格子完全相同;复式晶格每种等价原子都构成^布拉伐格子相同的格子。

)9. 基失:以原胞共顶点三个边做成三个矢虽,(XI ,?2 并以其中一个格点为原点,则布拉伐格子的格点可以表示为aL=Liai +I_2<X2 +L3CX3。

把ai , <12 , <X3 称为基矢。

10. 平移歸性:整个晶体按9中定义的矢量at平移,晶格与自身重合,这种特性称为平移对称性。

(在晶体中,一般的物理量者頃有平移对称性)11. 晶向&晶向扌讖:参考教材。

(要理解)12. 晶面&晶面扌談:参考教林(要理解)立方晶系中,若晶向扌讖和晶面扌讖相同则互相垂直。

§2金刚石结构,类金刚石结构(闪锌矿结构)金刚石结构:金刚石结构是一种由相同原子构成的复式晶格,它是由两个面心立方晶格沿立方对称晶胞的体对角线错开1/4长度套构而成。

常见的半导体中Ge , Si , a-Sn (灰锡)者B属于这种晶格。

金刚石结构的特点:每个原子都有四个最邻近原子,它们总是处在i 正四面体的顶点上。

(每个原子所具有的最邻近原子的数目称为配位数)每两个邻近原子都沿一个<U1>方向,处于四面体顶点的两个原子连线沿一个<1丄0>方向,四面体不共顶点两个棱中点连线沿f 00>方向。

四血体结构示总图金刚石结构的密排面:{1,1,1}晶面的原子都按六方形的方式排列。

半导体物理复习试题及答案复习资料

半导体物理复习试题及答案复习资料

半导体物理复习试题及答案复习资料一、引言半导体物理是现代电子学中至关重要的一门学科,其涉及电子行为、半导体器件工作原理等内容。

为了帮助大家更好地复习半导体物理,本文整理了一些常见的复习试题及答案,以供大家参考和学习。

二、基础知识题1. 请简述半导体材料相对于导体和绝缘体的特点。

答案:半导体材料具有介于导体和绝缘体之间的导电特性。

与导体相比,半导体的电导率较低,并且在无外界作用下几乎不带电荷。

与绝缘体相比,半导体的电导率较高,但不会随温度显著增加。

2. 什么是本征半导体?请举例说明。

答案:本征半导体是指不掺杂任何杂质的半导体材料。

例如,纯净的硅(Si)和锗(Ge)就是本征半导体。

3. 简述P型半导体和N型半导体的形成原理。

答案:P型半导体形成的原理是在纯净的半导体材料中掺入少量三价元素,如硼(B),使其成为施主原子。

施主原子进入晶格后,会失去一个电子,并在晶格中留下一个空位。

这样就使得电子在晶格中存在的空位,形成了称为“空穴”的正电荷载流子,因此形成了P型半导体。

N型半导体形成的原理是在纯净的半导体材料中掺入少量五价元素,如磷(P)或砷(As),使其成为受主原子。

受主原子进入晶格后,会多出一个电子,并在晶格中留下一个可移动的带负电荷的离子。

这样就使得半导体中存在了大量的自由电子,形成了N型半导体。

4. 简述PN结的形成原理及特性。

答案:PN结是由P型半导体和N型半导体的结合所形成。

P型半导体和N型半导体在接触处发生扩散,形成电子从N区流向P区的过程。

PN结具有单向导电性,即在正向偏置时,电流可以顺利通过;而在反向偏置时,电流几乎无法通过。

三、摩尔斯电子学题1. 使用摩尔斯电子学符号,画出“半导体”的符号。

答案:半导体的摩尔斯电子学符号为“--..-.-.-...-.”2. 根据摩尔斯电子学符号“--.-.--.-.-.-.--.--”,翻译为英文是什么?答案:根据翻译表,该符号翻译为“TRANSISTOR”。

半导体物理基础与器件原理考核试卷

半导体物理基础与器件原理考核试卷
答案:
4. 二极管的主要参数包括正向电压和________。
答案:
5. 晶体管的工作状态包括________、饱和和截止。
答案:
6. 场效应晶体管(FET)的输入阻抗比双极型晶体管(BJT)的输入阻抗________。
答案:
7. LED的发光颜色取决于其材料的________。
答案:
8. 太阳能电池的转换效率受到________、材料类型和环境温度等因素的影响。
3. BJT基于电子和空穴的复合与扩散,FET基于电场控制载流子流动。BJT适用于模拟放大,FET适用于数字开关和模拟放大,FET输入阻抗高,开关速度快。
4. 太阳能电池通过光生伏特效应将光能转换为电能。效率受材料类型、表面纹理、环境温度影响。提高效率可通过优化材料、设计表面纹理、使用太阳能跟踪系统等。
11. BD
12. ABCD
13. ABC
14. ABC
15. ABCD
16. ABCD
17. ABC
18. ABCD
19. ABC
20. ABCD
三、填空题
1. 本征
2. 掺杂浓度、温度
3. 反向;正向
4. 反向饱和电流
5. 放大
6. 高
7. 禁带宽度
8. 材料类型、结构设计
9. 光刻胶
10. 与
A. FET有一个栅极,BJT没有
B. BJT有一个基极,FET没有
C. FET的源极和漏极可以互换,BJT不行
D. BJT使用PN结,FET使用金属-半导体结
13. 在MOSFET中,当栅极电压低于阈值电压时,器件处于( )状态。
A. 导通
B. 截止
C. 饱和
D. 反向导通

半导体器件物理考试重点

半导体器件物理考试重点

一、选择题
1.半导体材料中最常用的元素是:
A.硅(正确答案)
B.铜
C.铁
D.铝
2.在半导体中,载流子主要包括:
A.电子和质子
B.电子和空穴(正确答案)
C.空穴和离子
D.质子和中子
3.PN结的正向偏置是指:
A.P区接高电位,N区接低电位(正确答案)
B.N区接高电位,P区接低电位
C.P区和N区都接高电位
D.P区和N区都接低电位
4.二极管的正向特性是指:
A.正向电压下,电流随电压指数增长(正确答案)
B.正向电压下,电流随电压线性增长
C.反向电压下,电流随电压指数增长
D.反向电压下,电流保持不变
5.MOSFET(金属-氧化物-半导体场效应晶体管)的栅极电压主要控制:
A.源极和漏极之间的电阻(正确答案)
B.源极和栅极之间的电阻
C.漏极和栅极之间的电阻
D.源极、栅极和漏极之间的总电阻
6.在CMOS(互补金属氧化物半导体)逻辑电路中,主要利用的是:
A.二极管的单向导电性
B.MOSFET的开关特性(正确答案)
C.双极型晶体管的放大特性
D.JFET(结型场效应晶体管)的电压控制特性
7.半导体器件中的“阈值电压”是指:
A.使器件开始导电的最小电压(正确答案)
B.使器件达到最大导电能力的电压
C.器件正常工作时的电压范围
D.器件击穿时的电压
8.在半导体存储器中,DRAM(动态随机存取存储器)需要定期刷新是因为:
A.DRAM中的电容会漏电(正确答案)
B.DRAM的访问速度较慢
C.DRAM的存储容量较小
D.DRAM的制造成本较高。

半导体器件物理-复习重点

半导体器件物理-复习重点

半导体器件物理-复习重点第一章 PN结1.1 PN结是怎么形成的?耗尽区:正因为空间电荷区内不存在任何可动的电荷,所以该区也称为耗尽区。

空间电荷边缘存在多子浓度梯度,多数载流子便受到了一个扩散力。

在热平衡状态下,电场力与扩散力相互平衡。

p型半导体和n型半导体接触面形成pn结,p区中有大量空穴流向n区并留下负离子,n区中有大量电子流向p区并留下正离子(这部分叫做载流子的扩散),正负离子形成的电场叫做空间电荷区,正离子阻碍电子流走,负离子阻碍空穴流走(这部分叫做载流子的漂移),载流子的扩散与漂移达到动态平衡,所以pn 结不加电压下呈电中性。

1.2 PN结的能带图(平衡和偏压)无外加偏压,处于热平衡状态下,费米能级处处相等且恒定不变。

1.3 内建电势差计算N区导带电子试图进入p区导带时遇到了一个势垒,这个势垒称为内建电势差。

⎪⎪⎭⎫⎝⎛=+=2ln i d a FnFp bi n N N e kT V φφ 1.4 空间电荷区的宽度计算2/1)(2⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++=d a da R bi s N N N N e V V W εn d p a x N x N =1.5 PN 结电容的计算WN N V V N N e C sd a R bida s εε=⎥⎦⎤⎢⎣⎡++=2/1))((2'第二章 PN 结二极管2.1理想PN 结电流模型是什么? 势垒维持了热平衡。

反偏:n 区相对于p 区电势为正,所以n 区内的费米能级低于p 区内的费米能级,势垒变得更高,阻止了电子与空穴的流动,因此pn 结上基本没有电流流动。

正偏:p 区相对于n 区电势为正,所以p 区内的费米能级低于n 区内的费米能级,势垒变得更低,电场变低了,所以电子与空穴不能分别滞留在n 区与p 区,所以pn 结内就形成了一股由n 区到p 区的电子和p第三章 双极晶体管3.1 双极晶体管的工作原理是什么?3.2 双极晶体管有几种工作模式,哪种是放大模式? 正向有源,反向有源,截止,饱和。

半导体物理知识点及重点习题总结

半导体物理知识点及重点习题总结

半导体物理知识点及重点习题总结半导体物理是现代电子学中的重要领域,涉及到半导体材料的电学、热学和光学等性质,以及半导体器件的工作原理和应用。

本文将对半导体物理的一些重要知识点进行总结,并附带相应的重点习题,以帮助读者更好地理解和掌握相关知识。

一、半导体材料的基本性质1. 半导体材料的能带结构半导体材料的能带结构决定了其电学性质。

一般而言,半导体材料具有禁带宽度,可以分为导带(能量较高)和价带(能量较低)。

能量在禁带内的电子处于被限制的状态,称为束缚态,能量在导带中的电子可以自由移动,称为自由态。

2. 掺杂和杂质掺杂是将少量的杂质原子引入纯净的半导体材料中,以改变其导电性质。

掺入价带原子的称为施主杂质,掺入导带原子的称为受主杂质。

施主杂质会增加导电子数,受主杂质会增加载流子数。

3. P型和N型半导体掺入施主杂质的半导体为P型半导体,施主杂质的电子可轻易地跳出束缚态进入导带,形成载流子。

掺入受主杂质的半导体为N型半导体,受主杂质的空穴可轻易地跳出束缚态进入价带,形成载流子。

二、PN结和二极管1. PN结的形成和特性PN结是P型和N型半导体的结合部分,形成的原因是P型半导体中的空穴与N型半导体中的电子发生复合。

PN结具有整流作用,使得电流在正向偏置时能够通过,而在反向偏置时被阻止。

2. 二极管的工作原理二极管是基于PN结的器件,正向偏置时,在PN结处形成正电压,使得电子流能够通过。

反向偏置时,PN结处形成反电压,使得电流无法通过。

3. 二极管的应用二极管广泛用于整流电路、电压稳压器、振荡器和开关等领域。

三、晶体管和放大器1. 晶体管的结构和工作原理晶体管是一种三端器件,由三个掺杂不同的半导体构成。

其中,NPN型晶体管由N型掺杂的基区夹在两个P型掺杂的发射极和集电极之间构成。

PNP型晶体管的结构与之类似。

晶体管的工作原理基于控制发射极和集电极之间电流的能力。

2. 放大器和放大倍数晶体管可以作为放大器来放大电信号。

(完整版)半导体器件物理试题库

(完整版)半导体器件物理试题库

半导体器件试题库常用单位:在室温(T = 300K)时,硅本征载流子的浓度为n i = 1.5×1010/cm3电荷的电量q= 1.6×10-19C µn=1350 cm2/V ⋅s µp=500 cm2/V ⋅sε0=8.854×10-12 F/m一、半导体物理基础部分(一)名词解释题杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消的作用,通常称为杂质的补偿作用。

非平衡载流子:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。

迁移率:载流子在单位外电场作用下运动能力的强弱标志,即单位电场下的漂移速度。

晶向:晶面:(二)填空题1.根据半导体材料内部原子排列的有序程度,可将固体材料分为、多晶和三种。

2.根据杂质原子在半导体晶格中所处位置,可分为杂质和杂质两种。

3.点缺陷主要分为、和反肖特基缺陷。

4.线缺陷,也称位错,包括、两种。

5.根据能带理论,当半导体获得电子时,能带向弯曲,获得空穴时,能带向弯曲。

6.能向半导体基体提供电子的杂质称为杂质;能向半导体基体提供空穴的杂质称为杂质。

7.对于N 型半导体,根据导带低E C和E F的相对位置,半导体可分为、弱简并和三种。

8.载流子产生定向运动形成电流的两大动力是、。

9.在Si-SiO2系统中,存在、固定电荷、和辐射电离缺陷4 种基本形式的电荷或能态。

10.对于N 型半导体,当掺杂浓度提高时,费米能级分别向移动;对于P 型半导体,当温度升高时,费米能级向移动。

(三)简答题1.什么是有效质量,引入有效质量的意义何在?有效质量与惯性质量的区别是什么?2.说明元素半导体 Si、Ge 中主要掺杂杂质及其作用?3.说明费米分布函数和玻耳兹曼分布函数的实用范围?4.什么是杂质的补偿,补偿的意义是什么?(四)问答题1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最高工作温度各不相同?要获得在较高温度下能够正常工作的半导体器件的主要途径是什么?(五)计算题1.金刚石结构晶胞的晶格常数为a,计算晶面(100)、(110)的面间距和原子面密度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《半导体器件原理》课程复习提纲
2017.12
基础:半导体物理、半导体器件的基本概念、物理效应。

重点:PN结、金半结、双极型晶体管、JFET、MESFET、MOSFET。

根据物理效应、物理方程、实验修正等,理解半导体器件的工作原理和特性曲线,掌握器件的工作方程和各种修正效应,了解器件的参数意义,能够进行器件设计、优化、应用、仿真与建模等。

第一章:半导体物理基础
主要内容包括半导体材料、半导体能带、本征载流子浓度、非本征载流子、本征与掺杂半导体、施主与受主、漂移扩散模型、载流子输运现象、平衡与非平衡载流子。

半导体物理有关的基本概念,质量作用定律,热平衡与非平衡、漂移、扩散,载流子的注入、产生和复合过程,描述载流子输
运现象的连续性方程和泊松方程。

(不作考试要求)
第二章:p-n结
主要内容包括热平衡下的p-n结,空间电荷区、耗尽区(耗尽层)、内建电场等概念,p-n结的瞬态特性,结击穿,异质结与高低结。

耗尽近似条件,空间电荷区、耗尽区(耗尽层)、内建电势等概念,讨论pn结主要以突变结(包括单边突变结)和线性缓变结为例,电荷分布和电场分布,耗尽区宽度,势垒电容和扩散电容的概念、定义,直流特性:理想二极管IV方程的推导;
对于考虑产生复合效应、大注入效应、温度效应对直流伏安特性的简单修正。

PN的瞬态特性,利用电荷控制模型近似计算瞬变时间。

结击穿机制主要包括热电击穿、隧道击穿和雪崩击穿。

要求掌握隧道效应和碰撞电离雪崩倍增的概念,雪崩击穿条件,雪崩击穿电压、临界击穿电场及穿通电压的概念,异质结的结构及概念,异质结的输运电流模型。

高低结的特性。

第三章:双极型晶体管
主要内容包括基本原理,直流特性,频率响应,开关特性,异质结晶体管。

晶体管放大原理,端电流的组成,电流增益的概念以及提高电流增益的原则和方法。

理性晶体管的伏安特性,工作状态的判定,输入输出特性曲线分析,对理想特性的简单修正,缓变基区的少子分布计算,基区扩展电阻和发射极电流集边效应,基区宽度调制,基区展宽效应,雪崩倍增效应,基区穿通效应,产生复合电流和大注入效应,晶体管的物理模型E-M模型和电路模型G-P 模型。

跨导和输入电导参数,低频小信号等效电路和高频等效电路,频率参数,包括共基极截止频率fα和共射极截止频率fβ的定义,特征频率f T的定义,频率功率的限制,其中少子渡越基区时间,提高频率特性的主要措施。

开关特性的参数定义,开关时间的定义和开关过程的描述,利用电荷控制方程简单计算开关时间。

开关晶体管中最重要的参数是少子寿命。

异质结双极型晶体管的结构及优点。

第四章:单极型器件
主要内容包括金半接触,肖特基势垒二极管,结型场效应晶体管,肖特基栅场效应晶体管,异质结MESFET。

金半接触包括肖特基势垒接触和欧姆接触,肖特基势垒高度,及它与内建电势的关系,可以把它看成单边突变结进行计算,肖特基效应,肖特基势垒二极管SBD的伏安特性。

欧姆接触以及影响接触电阻的因素。

结型场效应晶体管(JFET)的工作原理,伏安特性,使用缓变沟道近似模型等理想条件,伏安特性分为线性区和饱和区,分别定义了沟道电导(漏电导)和跨导。

输出特性和转移特性曲线,直流参数,包括夹断电压V P,饱和漏极电流I DSS,沟道电阻,漏源击穿电压BV DS的定义及计算。

简单理论的修正,利用电荷控制法分析沟道杂质任意分布对器件伏安特性的影响,高场迁移率对器件伏安特性的影响。

交流小信号等效电路和高频等效电路,频率参数,特征(截止)频率f T的定义及计算,最高振荡频率f m的定义。

肖特基栅场效应晶体管(MESFET)的工作原理与JFET相同,只不过用肖特基势垒代替pn结,MESFET的分类,伏安特性,沟道电导(漏电导)和跨导的概念,夹断电压和阈值电压的概念和计算。

交流小信号等效电路,特征截止频率的定义,提高MESFET输出功率的一些主要措施,MESFET的建模,包括I-V、C-V、SPICE模型。

异质结MESFET。

第五章:MOS器件
主要内容包括MOS结构,MOS二极管,MOS场效应晶体管,MOS 器件与双极晶体管的比较。

MOS结构基本理论,平带电压V FB,表面势,费米势的定义,表面状态出现平带、积累、耗尽反型情况。

MOS器件表面强反型的判定条件。

MOSFET的基本结构和工作原理,分类。

阈值电压的定义及计算。

直流伏安特性方程,弱反型(亚阈值)区的伏安特性,输出特性和转移特性曲线,直流参数,包括饱和漏源电流I DSS,截止漏电流,导通电阻,导电因子。

交流小信号等效电路和高频等效电路,低频小信号参数,包括栅跨导的定义,以及栅源电压、漏源电压和串联电阻R S、R D对跨导的影响,提高跨导(增大β因子)的方法;衬底跨导,非饱和区漏电导,饱和区漏电导不为零主要由于沟道长度调制效应和漏感应源势垒降低效应(DIBL效应)。

频率特性主要掌握跨导截止频率ωgm和特征截止频率f T的定义,以及提高频率特性的途径。

了解MOSFET的功率特性(高频功率增益、输出功率和耗散功率)和功率结构,以及击穿特性的主要击穿机理:漏源击穿(漏衬底雪崩击穿、沟道雪崩击穿和势垒穿通)和栅绝缘层击穿。

开关特性,主要以增强型P型MOSFET 倒相器为例,定义了开关时间,包括截止关闭时间和导通开启时间,引入MOSFET对地等效电容C GND,通过对C GND的充放电时间进行开关时间的简单计算。

讨论了CMOS结构(CMOS器件)的基本工作原理和优点,简单介绍了CMOS工艺,分析了CMOS
结构的VTC曲线、上升下降时间和闩锁效应(寄生双极型晶体管效应),温度特性主要掌握迁移率和阈值电压与温度的关系。

MOS器件的短沟道效应(SCE)的物理起因和具体表现现象,包括阈值电压漂移、速度饱和效应、热电子效应(热载流子效应HCE)、寄生双极型晶体管效应等,造成器件的性能退化、可靠性下降问题。

最后讨论了MOS器件小型化的规则,对于短沟道MOSFET保持长沟道特性的两个判定标准,恒定电场/恒定电压按比例缩小原则及存在一定的限制,更多的使用具有长沟道特性的最小沟道长度的经验公式进行设计。

第六章:新型半导体器件简介
主要内容包括现代MOS器件,CCD器件、存储器、纳米器件,功率器件,微波器件,光电子器件,量子器件等。

(不作考试要求)
复习思考题
1.基本概念
空间电荷区、耗尽近似条件、隧道效应、雪崩倍增效应、电流增益、特征截止频率、基区渡越时间、沟道渡越时间、厄尔利效应,开关时间、夹断电压、跨导、亚阈值电流、长沟道器件、缓变沟道近似模型、短沟道效应
2.理想PN结的IV特性、CV特性、瞬态特性、击穿特性
3.实际PN结与理想PN结相比有哪些修正效应
4.利用PN结特性制作的一些典型应用器件
5.肖特基势垒二极管与PN结二极管的异同之处
6.双极型晶体管放大作用工作原理及四种工作状态
7.推导双极晶体管缓变基区自建电场和基区少子分布
8.双极晶体管的修正效应:基区扩展电阻效应(发射极电流集边效应),Early效应(基区宽度调制效应)、Kirk效应(基区展宽效应),产生复合效应,大注入效应
9.双极晶体管的频率参数及频率响应的基本限制
10.开关晶体管的开关时间定义及描述
11.金属半导体接触类型与特点,具体用途
12.利用缓变沟道近似模型计算JFET(MESFET)I-V特性
13.计算实际MOS器件阈值电压
14.MOSFET的IV特性方程及其修正效应
15.饱和夹断、截止夹断、穿通夹断的区别
16.CMOS电路结构和特点
17.短沟道效应中速度饱和效应、DIBL效应、热载流子效应等18.BJT、MESFET(JFET)、MOSFET工作原理的异同点及优缺点
《半导体器件原理》考试安排
1. 考试安排(/~xujung)
考试时间:12月27日周三下午2:00-4:00
考试地点:5102教室
考试方式:开卷
注意事项:需要计算器
2. 考试成绩
总评成绩以百分制计算,由小论文成绩和期末考试成绩两部分组成。

小论文调研占40%,期末考试卷面成绩占60%。

4. 考试范围与题型
复习提纲、PPT内容;
名词概念、分析、计算、综合等。

难忘您的谆谆教诲,那是一盏明灯;
难忘您的温暖关怀,那是一弯明月;
难忘您的细心讲解,那是一份情意;
难忘您的积极乐观,那是一种力量。

默默奉献,您的品德,怎一个“高”字了得;
诲人不倦,您的恩情,怎一个“深”字了得;
桃李天下,您的精神,怎一个“伟”字了得;
元旦到,愿您健康快乐,怎一个“福”字了得!
一个平凡的岗位,却肩负着教书育人的千秋重任;一份普通的职业,却铺开了莘莘学子的锦绣前程;老师,神圣的名字。

元旦里,送上我最真心的祝愿。

相关文档
最新文档