2020年广东省东莞市中考数学试卷答案解析
2020年广东省东莞市中考数学试卷(解析版)

2020年东莞市初中毕业生水平考试《数学》参考答案一、选择题:1-5CBDCA 6-10CBDAD二、填空题:12.10 15.5 16.7 17.64(填62亦可) 三、解答题(一)18.解:原式122212=--+⨯-4=-19.解:原式2(1)1(1)(1)x x x x -=⋅--1x =当x =6==20.解:(1)如图,EF 为AB 的垂直平分线;(2)∵EF 为AB 的垂直平分线 ∴152AE AB ==,90AEF ∠=︒∵在Rt ABC ∆中,8AC =,10AB =∴6BC ==∵90C AEF ∠=∠=︒,A A ∠=∠∴AFE ABC ∆∆∽ ∴AEEFAC BC =, 即586EF=∴154EF = 四、解答题(二)21.解:(1)108°(2)(3)∴机会均等的结果有AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC 等共12种情况,其中所选的项目恰好是A 和B 的情况有2种;∴P (所选的项目恰好是A 和B )21126==. 22.解:(1)设乙厂每天能生产口罩x 万只,则甲厂每天能生产口罩1.5x 万只, 依题意,得:606051.5x x-=, 解得:4x =,经检验,4x =是原方程的解,且符合题意,∴甲厂每天可以生产口罩:1.546⨯=(万只).答:甲、乙厂每天分别可以生产6万和4万只口罩.(3)设应安排两个工厂工作y 天才能完成任务,依题意,得:()64100y +≥,解得:10y ≥.答:至少应安排两个工厂工作10天才能完成任务.23.(1)证明:过点O 作OM BC ⊥,交AD 于点M ,∴MC MB =,90OMA ∠=︒,∵OA OD =,OM AD ⊥,∴MA MD =∴MA MB MD MC -=-,即AB CD =.又∵OA OD =,OB OC =,∴()OAB ODC SSS ∆∆≌.(2)解:连OE ,设半径OE r =,∵O 与AE 相切于点E ,∴90OEA ∠=︒,又∵90EAD ∠=︒,90OMA ∠=︒,∴四边形AEOM 为矩形,∴4OM AE ==,OE AM r ==,在Rt OBM ∆中,222BM OM OB +=,即222(2)4r r -+=,∴5r =.即O 的半径为5.五、解答题(三)24.(1)证明:∵ED 为AC 平移所得,∴//AC ED ,AC ED =,∴四边形ACDE 为平行四边形,∴AE CD =,在Rt ABC ∆中,点E 为斜边AB 的中点,∴AE CE BE ==,∴CD BE =.(2)证明:∵四边形ACDE 为平行四边形,∴//AE CD ,即//CD BE ,又∵CD BE =,∴四边形BECD 为平行四边形,又∵CE BE =,∴四边形BECD 为菱形.(3)解:在菱形BECD 中,点M 为DE 的中点,又10DE AC ==, ∴152ME DE ==, ∵//AC DE ,∴18090CEM ACB ∠=︒-∠=︒,ACE CEM ∠=∠, ∴在Rt CME ∆中,5cos 13ME CEM CE ∠==, 即5cos 13ME ACE CE ∠==, ∴135135CE =⨯=, 在平行四边形ACDE 中,点N 为CE 的中点, ∴1 6.52MN CE ==. 25.解:(1)∵对称轴12(1)b x =-=-⨯-, ∴2b =-,∴223y x x =--+ 当0y =时,2230x x --+=,解得13x =-,21x =, 即(3,0)A -,(1,0)B ,∴1(3)4AB =--=. (2)经过点(3,0)A -和(0,3)C 的直线AC 关系式为3y x =+, ∴点D 的坐标为(,3)m m +.在抛物线上的点E 的坐标为()2,23m m m --+,∴()2223(3)3DE m m m m m =--+-+=--, ∴111222ACE S DE F DE OF DE OA ∆=⋅⋅+⋅⋅=⋅⋅ ()2213933222m m m m =⋅--⋅=--,当9323222m -=-=-⎛⎫⨯- ⎪⎝⎭时,ACE S ∆的最大值是233932722228⎛⎫⎛⎫-⨯--⨯-= ⎪ ⎪⎝⎭⎝⎭, ∴点D 的坐标为33,322⎛⎫--+ ⎪⎝⎭,即33,22⎛⎫- ⎪⎝⎭(3)连EF ,情况一:如图,当//CE AF 时,ADF CDE ∆∆∽, 当3y =时,2233x x --+=,解得10x =,22x =-, ∴点E 的横坐标为-2,即点D 的横坐标为-2, ∴2m =-情况二:∵点(3,0)A -和(0,3)C ,∴OA OC =,即45OAC ∠=︒.如图,当ADF EDC ∆∆∽时,45OAC CED ∠=∠=︒,90AFD DCE ∠=∠=︒, 即EDC ∆为等腰直角三角形,过点C 作CG DE ⊥,即点CG 为等腰Rt EDC ∆的中线, ∴22m DE CG ==-,3DF m =+,∴EF DE DF =+,即22323m m m m --+=-++, 解得1m =,0m =(舍去)综述所述,当1m =-或-2时,ADF ∆与CDE ∆相似.。
2020年广东省东莞市中考数学试卷(解析版).docx

2020年东莞市初中毕业生水平考试《数学》参考答案一、选择题:1-5CBDCA 6-10CBDAD二、填空题: 11.3 12.10 13.3 14.110°15.5 16.7 17.64(填62亦可) 三、解答题(一)18.解:原式122212=--+⨯-4=-19.解:原式2(1)1(1)(1)x x x x -=⋅--1x =当23x =时,原式323==20.解:(1)如图,EF 为AB 的垂直平分线;(2)∵EF 为AB 的垂直平分线∴152AE AB ==,90AEF ∠=︒∵在Rt ABC ∆中,8AC =,10AB =∴221086BC =-=∵90C AEF ∠=∠=︒,A A ∠=∠∴AFE ABC ∆∆∽∴AE EFAC BC =,即586EF=∴154EF = 四、解答题(二) 21.解:(1)108°(2)(3)∴机会均等的结果有AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC 等共12种情况,其中所选的项目恰好是A 和B 的情况有2种;∴P (所选的项目恰好是A 和B )21126==. 22.解:(1)设乙厂每天能生产口罩x 万只,则甲厂每天能生产口罩1.5x 万只,依题意,得:606051.5x x-=, 解得:4x =,经检验,4x =是原方程的解,且符合题意,∴甲厂每天可以生产口罩:1.546⨯=(万只).答:甲、乙厂每天分别可以生产6万和4万只口罩.(3)设应安排两个工厂工作y 天才能完成任务,依题意,得:()64100y +≥,解得:10y ≥.答:至少应安排两个工厂工作10天才能完成任务.23.(1)证明:过点O 作OM BC ⊥,交AD 于点M ,∴MC MB =,90OMA ∠=︒,∵OA OD =,OM AD ⊥,∴MA MD =∴MA MB MD MC -=-,即AB CD =.又∵OA OD =,OB OC =,∴()OAB ODC SSS ∆∆≌.(2)解:连OE ,设半径OE r =,∵O 与AE 相切于点E ,∴90OEA ∠=︒,又∵90EAD ∠=︒,90OMA ∠=︒,∴四边形AEOM 为矩形,∴4OM AE ==,OE AM r ==,在Rt OBM ∆中,222BM OM OB +=,即222(2)4r r -+=,∴5r =.即O 的半径为5.五、解答题(三)24.(1)证明:∵ED 为AC 平移所得,∴//AC ED ,AC ED =,∴四边形ACDE 为平行四边形,∴AE CD =,在Rt ABC ∆中,点E 为斜边AB 的中点,∴AE CE BE ==,∴CD BE =.(2)证明:∵四边形ACDE 为平行四边形,∴//AE CD ,即//CD BE ,又∵CD BE =,∴四边形BECD 为平行四边形,又∵CE BE =,∴四边形BECD 为菱形.(3)解:在菱形BECD 中,点M 为DE 的中点,又10DE AC ==, ∴152ME DE ==, ∵//AC DE ,∴18090CEM ACB ∠=︒-∠=︒,ACE CEM ∠=∠,∴在Rt CME ∆中,5cos 13ME CEM CE ∠==, 即5cos 13ME ACE CE ∠==, ∴135135CE =⨯=, 在平行四边形ACDE 中,点N 为CE 的中点, ∴1 6.52MN CE ==. 25.解:(1)∵对称轴12(1)b x =-=-⨯-, ∴2b =-,∴223y x x =--+ 当0y =时,2230x x --+=,解得13x =-,21x =,即(3,0)A -,(1,0)B ,∴1(3)4AB =--=.(2)经过点(3,0)A -和(0,3)C 的直线AC 关系式为3y x =+,∴点D 的坐标为(,3)m m +.在抛物线上的点E 的坐标为()2,23m m m --+,∴()2223(3)3DE m m m m m =--+-+=--, ∴111222ACE S DE F DE OF DE OA ∆=⋅⋅+⋅⋅=⋅⋅ ()2213933222m m m m =⋅--⋅=--,当9323222m-=-=-⎛⎫⨯- ⎪⎝⎭时,ACES∆的最大值是233932722228⎛⎫⎛⎫-⨯--⨯-=⎪ ⎪⎝⎭⎝⎭,∴点D的坐标为33,322⎛⎫--+⎪⎝⎭,即33,22⎛⎫-⎪⎝⎭(3)连EF,情况一:如图,当//CE AF时,ADF CDE∆∆∽,当3y=时,2233x x--+=,解得1x=,22x=-,∴点E的横坐标为-2,即点D的横坐标为-2,∴2m=-情况二:∵点(3,0)A-和(0,3)C,∴OA OC=,即45OAC∠=︒.如图,当ADF EDC∆∆∽时,45OAC CED∠=∠=︒,90AFD DCE∠=∠=︒,即EDC∆为等腰直角三角形,过点C作CG DE⊥,即点CG为等腰Rt EDC∆的中线,∴22mDE CG==-,3DF m=+,∴EF DE DF=+,即22323m m m m--+=-++,解得1m=,0m=(舍去)综述所述,当1m=-或-2时,ADF∆与CDE∆相似.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
2020年广东省中考数学试卷含答案

绝密★启用前2020年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是( )A .9-B .9C .91D .19-2.一组数据2、4、3、5、2的中位数是( )A .5B .3.5C .3D .2.5 3.在平面直角坐标系中,点()3,2关于x 轴对称的点的坐标为( )A .()3,2-B .()2,3-C .()2,3-D .()3,2- 4.若一个多边形的内角和是540︒,则该多边形的边数为( )A .4B .5C .6D .7 5.x 的取值范围是( ) A .2x ≠B .2x ≥C .2x ≤D .2x ≠-6.已知ABC △的周长为16,点D 、E 、F 分别为ABC △三条边的中点,则DEF △的周长为( )A .8B .22C .16D .47.把函数()212y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A .22y x =+B .()211y x =-+C .()222y x =-+D .()213y x =-+8.不等式组()231122x x x --⎧⎪⎨--+⎪⎩≥≥的解集为( )A .无解B .1x ≤C .1x -≥D .11x -≤≤9.如题9图,在正方形ABCD 中,3AB =,点E 、F 分别在边AB 、CD 上,60EFD =︒∠.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )A .1B .2C .3D .210.如题10图,抛物线2y ax bx c =++的对称轴是直线1x =.下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>.其中正确的结论有( )A .4个B .3个C .2个D .1二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy x -=________.12.如果单项式3m x y 与35n x y -是同类项,那么m n +=________. 13.10b +=,则()2020a b +=________.14.已知5x y =-,2xy =,计算334x y xy +-的值为________.毕业学校_____________姓名________________ 考生号________________________________ _____________-------------在------------------此------------------卷------------------上------------------答------------------题------------------无------------------效----------------15.如题15图,在菱形ABCD 中,30A =︒∠,取大于12AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为________.16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120︒的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为________m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,90ABC =︒∠,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,4MN =,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:()()()222x y x y x y x +++--,其中2x =,3y =.19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级 非常了解 比较了解 基本了解 不太了解人数(人)247218x(1)求x 的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如题20图,在ABC △中,点D 、E 分别是AB 、AC 边上的点,BD CE =,ABE ACD =∠∠,BE 与CD 相交于点F .求证:ABC △是等腰三角形.四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组231034ax y x y ⎧+=-⎪⎨+=⎪⎩与215x y x by -=⎧⎨+=⎩的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程20x ax b ++=的解,试判断该三角形的形状,并说明理由.22.如题22﹣1图,在四边形ABCD 中,AD BC ∥,90DAB =︒∠,AB 是O 的直径,CO 平分BCD ∠.(1)求证:直线CD 与O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE 上一点,1AD =,2BC =,求tan APE ∠的值.23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,毎小题10分,共20分)24.如题24图,点B 是反比例函数()80y x x=>图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数()0ky x x=>的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG .(1)填空:k =________; (2)求BDF △的面积;(3)求证:四边形BDFG 为平行四边形.25.如题25图,抛物线236y x bx c =++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,33BO AO ==,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D,BC =. (1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当ABD △与BPQ △相似时,请直接写出所有满足条件的点Q 的坐标.毕业学校_____________姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上------------------答------------------题------------------无------------------效----------------2020年广东省初中学业水平考试数学答案解析一、 1.【答案】A【解析】正数的相反数是负数. 【考点】相反数 2.【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数. 【考点】中位数 3.【答案】D【解析】关于x 轴对称:横坐标不变,纵坐标互为相反数. 【考点】对称性 4.【答案】B【解析】()2180540n -⨯︒=︒,解得5n =. 【考点】n 边形的内角和 5.【答案】B【解析】偶数次方根的被开方数是非负数. 【考点】二次根式 6.【答案】A【解析】三角形的中位线等于第三边的一半. 【考点】三角形中位线的性质 7.【答案】C【解析】左加右减,向右x 变为1x -,()()2211222y x y x =--+=-+. 【考点】函数的平移问题 8.【答案】D 【解析】解不等式.【考点】不等式组的解集表示20.【答案】证明:∵BD CE =,ABE ACD =∠∠,DFB CFE =∠∠ ∴()BFDF CFE AAS △≌△ ∴DBF ECF =∠∠∵DBF ABE ECF ACD +=+∠∠∠∠ ∴ABC ACB =∠∠∴AB AC =∴ABC △是等腰三角形【解析】等式的性质、等角对等边.【考点】全等三角形的判定方法,等腰三角形的判定方法四、21.【答案】(1)解:由题意得42x y x y +=⎧⎨-=⎩,解得31x y =⎧⎨=⎩由3315a b ⎧+-⎪⎨+=⎪⎩,解得12a b ⎧=-⎪⎨=⎪⎩(2)该三角形的形状是等腰直角三角形,理由如下: 由(1)得2102x +=-(20x -=12x x ==∴该三角形的形状是等腰三角形∵(224=,(212=∴(((222=+∴该三角形的形状是等腰直角三角形【解析】理解方程组同解的概念,一元二次方程的解法、三角形形状的判断. 【考点】二元一次方程组,一元二次方程,勾股定理逆定理 22.【答案】(1)证明:过点O 作OE CD ⊥交于点E ∵AD BC ∥,90DAB =︒∠ ∴90OBC =︒∠,即OB BC ⊥∵OE CD ⊥,OB BC ⊥,CO 平分BCD ∠ ∴OB OE = ∵AB 是O 的直径∴OE 是O 的半径 ∴直线CD 与O 相切(2)连接OD 、OE∵由(1)得,直线CD 、AD 、BC 与O 相切 ∴由切线长定理可得1AD DE ==,3BC CE ==,ADO EDO =∠∠,BCO ECO =∠∠∴AOD EOD =∠∠,3CD = ∵AE AE =∴12APE AOE AOD ==∠∠∠ ∵AD BC ∥∴180ADE BCE +=︒∠∠∴90EDO ECO +=︒∠∠即90DOC =︒∠ ∵OE DC ⊥,ODE CDO =∠∠ ∴ODE CDO ≌∽△ ∴DE OD OD CD =即13ODOD =∴OD =∵在Rt AOD △中,AO =∴tan AOD AD AO =∠∴an t APE =∠【解析】无切点作垂直证半径,切线长定理,直角三角形的判定,相似三角形的运用、辅助线的作法.【考点】切线的判定,切线长定理,圆周角定理,相似三角形,三角函数23.【答案】(1)解:设每个B 类摊位占地面积为x 平方米,则每个A 类摊位占地面积为()2x +平方米.6060325x x =+ 解得3x =经检验3x =是原方程的解 ∴25x +=(平方米)答:每个A 、B 类摊位占地面积各为5平方米和3平方米.设A 类摊位数量为a 个,则B 类摊位数量为()90a -个,最大费用为y 元. 由903a a -≥,解得22.5a ≤ ∵a 为正整数 ∴a 的最大值为22()403090102700y a a a =+-=+∵100>∴y 随a 的增大而增大∴当22a =时,102227002920y =⨯+=(元) 答:这90个摊位的最大费用为2920元.【解析】分式方程的应用题注意检验,等量关系的确定是关键. 【考点】分式方程的应用,不等式的应用,一次函数应用五、24.【答案】(1)2(2)解:过点D 作DP x ⊥轴交于点P由题意得,8OBC S AB AO k ===矩形,2ADPO S AD AO k ===矩形∴1=4AD AB 即34BD AB = ∵38132BDF S BD AO AB AO ===△(3)连接OE由题意得112OEC S OC CE ==△,142OBC S OC CB ==△∴14CE CB =即13CE BE =∵DEB CEF =∠∠,DBE FCE =∠∠ ∴DEB FEC △∽△∴13CF BD =∵OC GC =,AB OC = ∴4133BD BD BD FG AB CF --=== ∵AB OG ∥ ∴BD FG ∥∴四边形BDFG 为平行四边形【解析】反比例函数k 的几何意义,三角形面积的表示,清楚相似比与线段比的关. 【考点】反比例函数,相似三角形,三角形的面积比,平行四边形的判定25.【答案】解:(1)由题意得()1,0A -,()3,0B ,代入抛物线解析式得0930b c b c -+=++=,解得1322b c ⎧=--⎪⎪⎨⎪=--⎪⎩(2)过点D 作DEx ⊥轴交于点E ∵OC OC ∥,BC =,3OB =∴OB BCOE DC==∴OE =∴点D 的横坐标为D x= ∵点D 是射线BC 与抛物线的交点∴把D x =代入抛物线解析式得1Dy = ∴()1D设直线BD 解析式为y kx m =+,将()3,0B、()1D 代入031k m k m =+⎧⎪=+,解得k m ⎧=⎪⎨⎪=⎩∴直线BD 的直线解析式为y =(3)由题意得an t ABD ∠=,tan 1ADB ∠=由题意得抛物线的对称轴为直线1x =,设对称轴与x 轴交点为M ,()1,P n且0n <,(),0Q x 且3x <①当PBQ ABD △∽△时,tan tan PBQ ABD =∠∠即n -=n -=tan tan PQB ADB =∠∠,即11n x-=-,解得1x =②当PQB ABD △∽△时,tan tan PBQ ADB =∠∠即12n-=,解得2n -=tan tan QPB ABD =∠∠,即1n x -=-1x =-③当PQB DAB △∽△时,tan tan PBQ ABD =∠∠即23n -=3n -=tan tan PQM DAE =∠∠,即1n x -=-1x - ④当PQB ABD △∽△时,tan tan PBQ ABD =∠∠即12n-=,解得2n -=tan tan PQM DAE =∠∠,即1n x -=-5x =-综上所述,113Q ⎛⎫- ⎪ ⎪⎝⎭、()21Q -、31,0Q ⎫-⎪⎪⎝⎭、()45Q - 【解析】分类讨论不重不漏,计算能力要求高.【考点】一次函数,二次函数,平面直角坐标系,相似三角形,三角函数,分类讨论,二次根式计算。
2020年广东省东莞市中考数学试卷及答案解析

2020年广东省东莞市中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是( )A .﹣9B .9C .19D .−192.(3分)一组数据2,4,3,5,2的中位数是( )A .5B .3.5C .3D .2.53.(3分)在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)4.(3分)若一个多边形的内角和是540°,则该多边形的边数为( )A .4B .5C .6D .75.(3分)若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣26.(3分)已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2√2C .16D .47.(3分)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为( )A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2+38.(3分)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( ) A .无解 B .x ≤1 C .x ≥﹣1 D .﹣1≤x ≤19.(3分)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B ′恰好落在AD 边上,则BE 的长度为( )A .1B .√2C .√3D .2 10.(3分)如图,抛物线y =ax 2+bx +c 的对称轴是直线x =1,下列结论:①abc >0;②b 2﹣4ac >0;③8a +c <0;④5a +b +2c >0,正确的有( )A .4个B .3个C .2个D .1个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy ﹣x = .12.(4分)如果单项式3x m y 与﹣5x 3y n 是同类项,那么m +n = .13.(4分)若√a −2+|b +1|=0,则(a +b )2020= .14.(4分)已知x =5﹣y ,xy =2,计算3x +3y ﹣4xy 的值为 .15.(4分)如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 .16.(4分)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m .17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生必选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如表:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组{ax+2√3y=−10√3,x+y=4与{x−y=2,x+by=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AÊ上一点,AD =1,BC =2.求tan ∠APE 的值.23.(8分)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=8x(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=kx(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=3+√36x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.2020年广东省东莞市中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是( )A .﹣9B .9C .19D .−19【解答】解:9的相反数是﹣9,故选:A .2.(3分)一组数据2,4,3,5,2的中位数是( )A .5B .3.5C .3D .2.5【解答】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C .3.(3分)在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)【解答】解:点(3,2)关于x 轴对称的点的坐标为(3,﹣2).故选:D .4.(3分)若一个多边形的内角和是540°,则该多边形的边数为( )A .4B .5C .6D .7【解答】解:设多边形的边数是n ,则(n ﹣2)•180°=540°,解得n =5.故选:B .5.(3分)若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣2【解答】解:∵√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,∴x 的取值范围是:x ≥2.故选:B .6.(3分)已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2√2C .16D .4【解答】解:∵D 、E 、F 分别为△ABC 三边的中点,∴DE 、DF 、EF 都是△ABC 的中位线,∴DF =12AC ,DE =12BC ,EF =12AC ,故△DEF 的周长=DE +DF +EF =12(BC +AB +AC )=12×16=8. 故选:A .7.(3分)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为( )A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2+3【解答】解:二次函数y =(x ﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y =(x ﹣2)2+2.故选:C .8.(3分)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( ) A .无解 B .x ≤1 C .x ≥﹣1 D .﹣1≤x ≤1【解答】解:解不等式2﹣3x ≥﹣1,得:x ≤1,解不等式x ﹣1≥﹣2(x +2),得:x ≥﹣1,则不等式组的解集为﹣1≤x ≤1,故选:D .9.(3分)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B ′恰好落在AD 边上,则BE 的长度为( )A.1B.√2C.√3D.2【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【解答】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4分)若√a−2+|b+1|=0,则(a+b)2020=1.【解答】解:∵√a−2≥,|b+1|≥0,√a−2+|b+1|=0,∴a﹣2=0,a=2,b+1=0,b=﹣1,∴(a+b)2020=1.故答案为:1.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2 =15﹣8 =7, 故答案为:7.15.(4分)如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 45° .【解答】解:∵四边形ABCD 是菱形, ∴AD =AB ,∴∠ABD =∠ADB =12(180°﹣∠A )=75°, 由作图可知,EA =EB , ∴∠ABE =∠A =30°,∴∠EBD =∠ABD ﹣∠ABE =75°﹣30°=45°, 故答案为45°.16.(4分)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为13m .【解答】解:如图,连接OA ,OB ,OC ,则OB =OA =OC =1m ,因此阴影扇形的半径为1m ,圆心角的度数为120°, 则扇形的弧长为:120π×1180m ,而扇形的弧长相当于围成圆锥的底面周长,因此有: 2πr =120π×1180, 解得,r =13(m ), 故答案为:13.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN =4,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为 2√5−2 .【解答】解:如图,连接BE ,BD .由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.(也可以用DE≥BD﹣BE,即DE≥2√5−2确定最小值)故答案为2√5−2.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生必选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如表:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【解答】证明:∵∠ABE =∠ACD , ∴∠DBF =∠ECF ,在△BDF 和△CEF 中,{∠DBF =∠ECF∠BFD =∠CFE BD =CE ,∴△BDF ≌△CEF (AAS ), ∴BF =CF ,DF =EF , ∴∠FBC =∠FCB , ∴∠ABC =∠ACB , ∴AB =AC ,即△ABC 是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分) 21.(8分)已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.【解答】解:(1)由题意得,关于x ,y 的方程组的相同解,就是方程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =﹣4√3,b =12;(2)该三角形是等腰直角三角形,理由如下:当a =﹣4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2﹣4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.22.(8分)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧AÊ上一点,AD=1,BC=2.求tan∠APE 的值.【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,{∠OEC=∠OBC ∠OCE=∠OCB OC=OC,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图2所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD 是⊙O 的切线, ∴ED =AD =1,EC =BC =2, ∴CD =ED +EC =3,∴DF =√CD 2−CF 2=√32−12=2√2, ∴AB =DF =2√2, ∴OB =√2, ∵CO 平分∠BCD , ∴CO ⊥BE ,∴∠BCH +∠CBH =∠CBH +∠ABE =90°, ∴∠ABE =∠BCH , ∵∠APE =∠ABE , ∴∠APE =∠BCH ,∴tan ∠APE =tan ∠BCH =OBBC =√22.23.(8分)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)解法一:设建A摊位a个,建造这90个摊位的费用为y元,则建B摊位(90﹣a)个,由题意得:y=5a×40+3×30(90﹣a)=110a+8100,∵110>0,∴y随a的增大而增大,∵90﹣a≥3a,解得a≤22.5,∵a为整数,∴当a取最大值22时,费用最大,此时最大费用为:110×22+8100=10520;解法二:设建A摊位a(a为整数)个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B 是反比例函数y =8x(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数y =kx (x >0)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .(1)填空:k = 2 ; (2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.【解答】解:(1)设点B (s ,t ),st =8,则点M (12s ,12t ),则k =12s •12t =14st =2, 故答案为2;(2)连接OD ,则△BDF 的面积=△OBD 的面积=S △BOA ﹣S △OAD =12×8−12×2=3;(3)设点D (m ,2m),则点B (4m ,2m),∵点G 与点O 关于点C 对称,故点G (8m ,0), 则点E (4m ,12m),设直线DE 的表达式为:y =px +n ,将点D 、E 的坐标代入上式得{2m =mp +n 12m=4mp +n 并解得{p =−12m 2n =52m, 直线DE 的表达式为:y =−12m2x +52m ,令y =0,则x =5m ,故点F (5m ,0), 故FG =8m ﹣5m =3m ,而BD =4m ﹣m =3m =FG , 又∵FG ∥BD ,故四边形BDFG 为平行四边形. 25.(10分)如图,抛物线y =3+√36x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =√3CD . (1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.【解答】解:(1)∵BO =3AO =3, ∴点B (3,0),点A (﹣1,0), ∴抛物线解析式为:y =3+√36(x +1)(x ﹣3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32; (2)如图1,过点D 作DE ⊥AB 于E ,∴CO ∥DE ,∴BC CD =BO OE ,∵BC =√3CD ,BO =3,∴√3=3OE, ∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标为(−√3,√3+1),设直线BD 的函数解析式为:y =kx +m ,由题意可得:{√3+1=−√3k +m 0=3k +m, 解得:{k =−√33m =√3,∴直线BD 的函数解析式为y =−√33x +√3;(3)∵点B (3,0),点A (﹣1,0),点D (−√3,√3+1), ∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1, ∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C (0,√3),∴OC =√3,∵tan ∠CBO =CO BO =√33,∴∠CBO =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N (1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN ,∴PN =2√33,BP =4√33, 当△BAD ∽△BPQ ,∴BP BA =BQ BD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q (1−2√33,0);当△BAD ∽△BQP ,∴BP BD =BQ AB ,∴BQ=4√33×42√3+2=4−4√33,∴点Q(﹣1+4√33,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=√2BN=2√2,当△DAB∽△BPQ,∴BPAD =BQ BD,∴√22√2=2√3+2,∴BQ=2√3+2∴点Q(1﹣2√3,0);当△BAD∽△PQB,∴BPBD =BQAD,∴BQ=2√2×2√22√3+2=2√3−2,∴点Q(5﹣2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(﹣1+4√33,0)或(1﹣2√3,0)或(5﹣2√3,0).。
2020年广东省中考数学试卷及其答案

2020年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.B.9C.﹣9D.﹣2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.53.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(3,﹣2)B.(﹣2,3)C.(2,﹣3)D.(﹣3,2)4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.75.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣26.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.47.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+38.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤19.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上点B′处,则BE的长度为()A.1B.C.D.210.(3分)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=.12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.13.(4分)若+|b+1|=0,则(a+b)2020=.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆心角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生必选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如表:等级非常了解比较了解基本了解不太了解人数(人)247218x(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD 相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.2020年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.B.9C.﹣9D.﹣【解答】解:根据相反数的定义,得9的相反数是﹣9.故选:C.2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.5【解答】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(3,﹣2)B.(﹣2,3)C.(2,﹣3)D.(﹣3,2)【解答】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:A.4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.5.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣2【解答】解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.4【解答】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3【解答】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.8.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1【解答】解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上点B′处,则BE的长度为()A.1B.C.D.2【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上点B′处,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【解答】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4分)若+|b+1|=0,则(a+b)2020=1.【解答】解:∵≥,|b+1|≥0,+|b+1|=0,∴a﹣2=0,a=2,b+1=0,b=﹣1,∴(a+b)2020=1.故答案为:1.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为45°.【解答】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆心角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.【解答】解:如图,连接OA,OB,OC,则OB=OA=OC=1m,因此阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:m,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=(m),故答案为:.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.【解答】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.(也可以用DE≥BD﹣BE,即DE≥2﹣2确定最小值)故答案为2﹣2.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生必选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如表:等级非常了解比较了解基本了解不太了解人数(人)247218x(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD 相交于点F.求证:△ABC是等腰三角形.【解答】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴∠FBC=∠FCB,∴∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【解答】解:(1)由题意得,关于x,y的方程组的相同解,就是方程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)该三角形是等腰直角三角形,理由如下:当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图2所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)解法一:设建A摊位a个,建造这90个摊位的费用为y元,则建B摊位(90﹣a)个,由题意得:y=5a×40+3×30(90﹣a)=110a+8100,∵110>0,∴y随a的增大而增大,∵90﹣a≥3a,解得a≤22.5,∵a为整数,∴当a取最大值22时,费用最大,此时最大费用为:110×22+8100=10520;解法二:设建A摊位a(a为整数)个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【解答】解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)连接OD,则△BDF的面积=△OBD的面积=S△BOA ﹣S△OAD=×8﹣×2=3;(3)方法一:设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=px+n,将点D、E的坐标代入上式得并解得,直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,又∵FG∥BD,故四边形BDFG为平行四边形.方法二:设点D(m,),则点B(4m,),∵点G、O关于点C对称,则点G(8m,0),∴点E(4m,),∴BD=4m﹣m=3m,BE=,EC=,∵BD∥OG,∴△BDE∽△CFE,∴,即,解得:CF=m,∴FG=OG﹣OC﹣CF=8m﹣4m﹣m=3m=BD,又∵FG∥BD,∴四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.【解答】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标为(﹣,+1),设直线BD的函数解析式为:y=kx+m,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△DAB∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).。
广东省2020年中考数学试题(解析版)

2020年广东省初中学业水平考试数学一、选择题(本大题10小题,每小題3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是( )A. 9B. 9-C. 19D. 19- 【答案】B【解析】根据相反数的定义:“只有符号不同的两个数互为相反数”可知,9的相反数是-9.故选B.2.一组数据2,4,3,5,2的中位数是( )A. 5B. 35C. 3D. 25【答案】C【解析】【分析】把这组数据从小到大的顺序排列,取最中间位置的数就是中位数.【详解】把这组数据从小到大的顺序排列:2,2,3,4,5,处于最中间位置的数是3,∴这组数据的中位数是3,故选:C .【点睛】本题考查了求中位数,熟练掌握中位数的求法是解答的关键.3.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (3,2)-B. (2,3)-C. (2,3)-D. (3,2)- 【答案】D【解析】【分析】利用关于x 轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.【详解】点(3,2)关于x 轴对称的点的坐标为(3,-2),故选:D .【点睛】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键.4.若一个多边形的内角和是540°,则该多边形的边数为( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】根据内角和公式即可求解.【详解】设这个多边形的边数为n,∴(n-2)×180°=540°解得n=5故选B .【点睛】此题主要考查多边形的内角和,解题的关键是熟知内角和公式.5.在实数范围内有意义,则x的取值范围是( )A. 2x ≠B. 2x ≥C. 2x ≤D. 2x ≠-【答案】B【解析】【分析】根据二次根式里面被开方数240x -≥即可求解.【详解】解:由题意知:被开方数240x -≥,解得:2x ≥,故选:B .【点睛】本题考查了二次根式有意义的条件,必须保证被开方数大于等于0.6.已知ABC ∆的周长为16,点D ,E ,F 分别为ABC ∆三条边的中点,则DEF ∆的周长为()A. 8B.C. 16D. 4【答案】A【解析】【分析】由D ,E ,F 分别为ABC ∆三条边的中点,可知DE 、EF 、DF 为ABC ∆的中位线,即可得到DEF ∆的周长.【详解】解:如图,∵D ,E ,F 分别为ABC ∆三条边的中点, ∴12DF BC =,12DE AC =,12EF AB =, ∵16BC AC AB ++=, ∴()1116822DF DE EF BC AC AB ++=++=⨯=, 故选:A .【点睛】本题考查了三角形的中位线,熟练掌握三角形的中位线平行于第三边且是第三边的一半是解题的关键.7.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A. 22y x =+B. 2(1)1y x =-+ C. 2(2)2y x =-+D. 2(1)3y x =-- 【答案】C【解析】【分析】 抛物线在平移时开口方向不变,a 不变,根据图象平移的口诀“左加右减、上加下减”即可解答.【详解】把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为[]22(1)12(2)2y x x =--+=-+, 故选:C .【点睛】本题考查了二次函数图象与几何变换,解答的重点在于熟练掌握图象平移时函数表达式的变化特点.8.不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( ) A. 无解B. 1x ≤C. 1x ≥-D. 11x -≤≤【答案】D【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x +2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.如图,在正方形ABCD 中,3AB =,点E ,F 分别在边AB ,CD 上,60EFD ∠=︒.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 12 3 D. 2【答案】D【解析】【分析】由CD ∥AB 得到∠EFD=∠FEB=60°,由折叠得到∠FEB=∠FEB’=60°,进而得到∠AEB’=60°,然后在Rt △AEB’中由30°所对直角边等于斜边一半即可求解.【详解】解:∵四边形ABCD 是正方形,∴CD ∥AB ,∴∠EFD=∠FEB=60°,由折叠前后对应角相等可知:∠FEB=∠FEB’=60°,∴∠AEB’=180°-∠FEB-∠FEB’=60°,∴∠AB’E=30°,设AE=x ,则BE=B’E=2x ,∴AB=AE+BE=3x =3,∴x =1,∴BE=2x =2,故选:D .【点睛】本题借助正方形考查了折叠问题,30°角所对直角边等于斜边的一半等知识点,折叠问题的性质包括折叠前后对应边相等,对应角相等,折叠产生角平分线,由此即可解题.10.如图,抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>,正确的有( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【分析】 由抛物线的性质和对称轴是1x =,分别判断a 、b 、c 的符号,即可判断①;抛物线与x 轴有两个交点,可判断②;由12b x a =-=,得2b a =-,令2x =-,求函数值,即可判断③;令2x =时,则420y a b c =++>,令1x =-时,0y a b c =-+>,即可判断④;然后得到答案.【详解】解:根据题意,则0a <,0c >, ∵12b x a=-=, ∴20b a =->,∴0abc <,故①错误;由抛物线与x 轴有两个交点,则240b ac ->,故②正确;∵2b a =-,令2x =-时,420y a b c =-+<,∴80a c +<,故③正确;在2y ax bx c =++中,令2x =时,则420y a b c =++>,令1x =-时,0y a b c =-+>,由两式相加,得520a b c ++>,故④正确;∴正确的结论有:②③④,共3个;故选:B .【点睛】本题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的性质,熟练判断各个式子的符号.二、填空题(本大题7小題,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy ―x =_____________.【答案】x (y -1)【解析】试题解析:xy ―x =x (y -1)12.若3m x y 与25nx y -是同类项,则m n +=___________. 【答案】3【解析】【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m 和n 的值,根据合并同类项法则合并同类项即可.【详解】解:由同类项的定义可知,m=2,n=1,∴m+n=3故答案为3.13.|1|0b +=,则2020()a b +=_________.【答案】1【解析】【分析】根据绝对值的非负性和二次根式的非负性得出a ,b 的值,即可求出答案. 【详解】∵2|1|0a b -++=∴2a =,1b =-,∴2020()a b +=202011=,故答案为:1.【点睛】本题考查了绝对值的非负性,二次根式的非负性,整数指数幂,得出a ,b 的值是解题关键. 14.已知5x y =-,2xy =,计算334x y xy +-的值为_________.【答案】7【解析】【分析】将代数式化简,然后直接将5x y +=,2xy =代入即可.【详解】由题意得5x y +=,2xy =,∴3343()41587x y xy x y xy +-=+-=-=,故答案为:7.【点睛】本题考查了提取公因式法,化简求值,化简334x y xy +-是解题关键.15.如图,在菱形ABCD 中,30A ∠=︒,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD ,则EBD ∠的度数为_________.【答案】45°【解析】【分析】根据题意知虚线为线段AB 的垂直平分线,得AE=BE ,得EBA EAB ∠=∠;结合30A ∠=°,1275ABD ABC =∠=︒,可计算EBD ∠的度数. 【详解】18030150ABC ∠=-=︒︒︒1275ABD ABC =∠=︒ ∵AE EB =∴EAB EBA ∠=∠∴753045EBD ∠=-=︒︒︒故答案为:45°.【点睛】本题考查了菱形的性质,及垂直平分线的性质,熟知以上知识点是解题的关键.16.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .【答案】13【解析】【分析】连接OA ,OB ,证明△AOB 是等边三角形,继而求得AB 的长,然后利用弧长公式可以计算出BOC 的长度,再根据扇形围成圆锥底面圆的周长等于扇形的弧长即可作答.【详解】连接OA ,OB ,则∠BAO=12∠BAC=11202⨯︒=60°, 又∵OA=OB ,∴△AOB 是等边三角形,∴AB=OA=1,∵∠BAC=120°,∴OB C 的长为:120AB2 1803ππ=,设圆锥底面圆的半径为r223rππ=13r=故答案为13.【点睛】本题主要考查了弧长公式以及扇形弧长与底面圆周长相等的知识点,借助等量关系即可算出底面圆的半径.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,90ABC∠=︒,点M,N分别在射线BA,BC上,MN长度始终保持不变,4MN=,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为_________.【答案】252【解析】【分析】根据当B、D、E三点共线,距离最小,求出BE和BD即可得出答案.【详解】如图当B、D、E三点共线,距离最小,∵4MN =,E 为MN 的中点,∴2BE =,224225BD +=252DE BD BE =-=,故答案为:252.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,勾股定理,两点间的距离线段最短,判断出距离最短的情况是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:22()()()2x y x y x y x +++--,其中2x =3y =【答案】2xy ;26【解析】【分析】根据完全平方公式、平方差公式、整式的加减运算法则进行运算即可,最后代入数据即可求解.【详解】解:原式2222222x xy y x y x =+++-- 2xy =,将2x ,3y =原式223=26=.故答案为:26【点睛】本题考查了完全平方公式、平方差公式的运算,实数的化简求值,熟练掌握公式及运算法则是解决此类题的关键.19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级 非常了解 比较了解 基本了解 不太了解 人数(人)24 72 18 x(1)求x 的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【答案】(1)6 (2)1440人【解析】【分析】(1)根据四个等级的人数之和为120求出x 的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例即可求出结果.【详解】(1)解:由题意得:247218120x +++=解得6x =(2)解:247218001440120+⨯=(人) 答:估算“非常了解”和“比较了解”垃圾分类知识的学生有1440人.【点睛】本题主要考查了用样本估计总体,属于基础题目,审清题意,找到对应数据是解题的关键. 20.如图,在ABC ∆中,点D ,E 分别是AB 、AC 边上的点,BD CE =,ABE ACD ∠=∠,BE 与CD 相交于点F ,求证:ABC ∆是等腰三角形.【答案】见解析【解析】【分析】先证明BDF CEF ∆∆≌,得到BF CF =,FBC FCB ∠=∠,进而得到A ABC CB =∠∠,故可求解.【详解】证明:在BDF ∆和CEF ∆中()DFB EFC FBD FCEBD CE ⎧∠=∠⎪∠=∠⎨⎪=⎩对顶角相等 ∴()BDF CEF AAS ∆∆≌∴BF CF =∴FBC FCB ∠=∠又∵ABE ACD ∠=∠∴FBC ABE FCB ACD ∠+∠=∠+∠即A ABC CB =∠∠∴ABC ∆是等腰三角形.【点睛】此题主要考查等腰三角形的判定,解题的关键是熟知全等三角形的判定与性质.四、解答题(二)(本大题3小题,每小题8分,共24分)21.已知关于x ,y的方程组4ax x y ⎧+=-⎪⎨+=⎪⎩215x y x by -=⎧⎨+=⎩的解相同. (1)求a ,b 的值;(2)若一个三角形的一条边的长为x 的方程20x ax b ++=的解.试判断该三角形的形状,并说明理由.【答案】(1)-12 (2)等腰直角三角形,理由见解析【解析】【分析】(1)关于x ,y的方程组4ax x y ⎧+=-⎪⎨+=⎪⎩215x y x by -=⎧⎨+=⎩的解相同.实际就是方程组 42x y x y +=⎧⎨-=⎩的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与判断三角形的形状.【详解】解:由题意列方程组:42x y x y +=⎧⎨-=⎩解得31x y =⎧⎨=⎩将3x =,1y =分别代入23103ax y +=-和15x by += 解得43a =-,12b =∴43a =-,12b =(2)243120x x -+=解得434848232x ±-== 这个三角形是等腰直角三角形理由如下:∵222(23)(23)(26)+=∴该三角形是等腰直角三角形.【点睛】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.如图1,在四边形ABCD 中,//AD BC ,90DAB ∠=︒,AB 是O 的直径,CO 平分BCD ∠.(1)求证:直线CD 与O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE 上一点,1AD =,2BC =.求tan APE ∠的值.【答案】(1)证明见解析;(2)22.【解析】【分析】(1)如图(见解析),先根据平行线的性质得出OB CB ⊥,再根据角平分线的性质可得OE OB =,然后根据圆的切线的判定即可得证;(2)如图(见解析),先根据圆周角定理可得APE ABE ∠=∠,90AEB =︒∠,再根据圆的切线的判定、切线长定理可得2,1CE BC DE AD ====,然后根据相似三角形的判定与性质可得12AE DE EF CE ==,设AE a =,从而可得2EF a =,又根据相似三角形的判定与性质可得BE AE EF BE =,从而可得2BE a =,最后根据正切三角函数的定义即可得.【详解】(1)如图,过点O 作OE CD ⊥于点E∵//AD BC ,90DAB ∠=︒∴90OBC ∠=︒,即OB CB ⊥又∵CO 平分BCD ∠,OE CD ⊥∴OE OB =即OE 是O 的半径∴直线CD 与O 相切; (2)如图,连接BE ,延长AE 交BC 延长线于点F由圆周角定理得:APE ABE ∠=∠,90AEB =︒∠AB 是O 的直径,AB AD ⊥,AB BC ⊥∴AD 、BC 都是O 的切线由切线长定理得:2,1CE BC DE AD ====∵//AD BC∴DAE CFE ∠=∠在ADE 和FCE △中,AED FEC DAE CFE∠=∠⎧⎨∠=∠⎩∴ADE FCE ~ ∴12AE DE EF CE == 设(0)AE a a =>,则2EF a =90BAE ABE FBE ABE ∠+∠=∠+∠=︒BAE FBE ∴∠=∠在ABE △和BFE △中,90BAE FBE AEB BEF ∠=∠⎧⎨∠=∠=︒⎩ABE BFE ∴~BE AE EF BE ∴=,即2BE a a BE= 解得2BE a =在Rt ABE △中,2tan 2AE ABE BE a∠=== 则2tan tan 2APE ABE ∠=∠=.【点睛】本题考查了圆的切线的判定与性质、圆周角定理、切线长定理、相似三角形的判定与性质、正切三角函数等知识点,较难的是题(2),通过作辅助线,构造相似三角形是解题关键.23.某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.【答案】(1)5平方米;3平方米 (2)10520元【解析】【分析】(1)设A 类摊位占地面积x 平方米,则B 类占地面积()2x -平方米,根据同等面积建立A 类和B 类的倍数关系列式即可;(2)设建A 类摊位a 个,则B 类(90)a -个,设费用为z ,由(1)得A 类和B 类摊位的建设费用,列出总费用的表达式,根据一次函数的性质进行讨论即可.【详解】解:(1)设每个A 类摊位占地面积x 平方米,则B 类占地面积()2x -平方米 由题意得6060325x x =⨯- 解得5x =,∴23x -=,经检验5x =为分式方程的解∴每个A 类摊位占地面积5平方米,B 类占地面积3平方米(2)设建A 类摊位a 个,则B 类(90)a -个,费用为z∵3(90)a a ≤-∴022.5a <≤405303(90)z a a =⨯+⨯-1108100a =+,∵110>0,∴z 随着a 的增大而增大,又∵a 为整数,∴当22a =时z 有最大值,此时10520z =∴建造90个摊位的最大费用为10520元【点睛】本题考查了一次函数的实际应用问题,熟练的掌握各个量之间的关系进行列式计算,是解题的关键.五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图,点B 是反比例函数8y x =(0x >)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C ,反比例函数k y x=(0x >)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .(1)填空:k =_________;(2)求BDF ∆的面积;(3)求证:四边形BDFG 为平行四边形.【答案】(1)2 (2)3 (3)见解析【解析】【分析】(1)根据题意设点B 的坐标为(x ,8x ),得出点M 的坐标为(2x ,4x ),代入反比例函数k y x =(0x >),即可得出k ;(2)连接OD ,根据反比例函数系数k 的性质可得||12AOD k S ∆==,842AOB S ∆==,可得413BOD S ∆=-=,根据//OF AB ,可得点F 到AB 的距离等于点O 到AB 距离,由此可得出答案;(3)设(),B B B x y ,(),D D D x y ,可得8B B x y ⋅=,2D D x y ⋅=,根据B D y y =,可得4B D x x =,同理4B E y y =,可得31BE EC =,34BD AB =,证明EBD ECF ∆∆∽,可得13CF CE BD BE ==,根据43OC AB BD BD ==,得出41OC CF =,根据O ,G 关于C 对称,可得OC CG =,4CG CF =,3FG CF =,可得BD FG =,再根据//BD FG ,即可证明BDFG 是平行四边形. 【详解】解:(1)∵点B 在8y x =上, ∴设点B 的坐标为(x ,8x), ∴OB 中点M 的坐标为(2x ,4x), ∵点M 在反比例函数k y x=(0x >), ∴k=2x ·4x=2, 故答案为:2;(2)连接OD ,则||12AOD k S ∆==, ,∵842AOB S ∆==, ∴413BOD S ∆=-=,∵//OF AB ,∴点F 到AB 的距离等于点O 到AB 距离,∴3BDF BDO S S ∆∆==;(3)设(),B B B x y ,(),D D D x y ,8B B x y ⋅=,2D D x y ⋅=,又∵B D y y =,∴4B D x x =,同理4B E y y =,∴31BE EC =,34BD AB =, ∵//AB BC ,∴EBD ECF ∆∆∽, ∴13CF CE BD BE ==, ∵43OC AB BD BD ==, ∴41OC CF =, ∴O ,G 关于C 对称,∴OC CG =,∴4CG CF =,∴43FG CG CF OF CF CF =-=-=,又∵3BD CF =,∴BD FG =,又∵//BD FG ,∴BDFG 是平行四边形.【点睛】本题考查了反比例函数系数的性质,相似三角形的判定和性质,平行四边形的判定,平行线的性质,灵活运用知识点是解题关键.25.如图,抛物线233y x bx c +=++与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,33BO AO ==,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,3BC CD =.(1)求b ,c 的值; (2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上,当ABD ∆与BPQ ∆相似时,请直接写出所有满足条件的点Q 的坐标.【答案】(1)313--;3322-- (2)333=-y x (3)231⎛⎫- ⎪ ⎪⎝⎭,(13,0)-,431,0⎫-⎪⎪⎝⎭,(523,0)-【解析】【分析】(1)根据33BD AO ==,得出(10)A -,,(30)B ,,将A ,B 代入233y x bx c +=++得出关于b ,c 的二元一次方程组求解即可; (2)根据二次函数是2(33)33316322y x x ⎛⎫+=-+-- ⎪ ⎪⎝⎭,3BC CD =,(3,0)B ,得出D 的横坐标为,代入抛物线解析式求出(1)D ,设BD 得解析式为:y kx b =+,将B ,D 代入求解即可; (3)由题意得tan ∠tan ∠ADB=1,由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n<0,Q (x ,0)且x<3,分①当△PBQ ∽△ABD 时,②当△PQB ∽△ABD 时,③当△PQB ∽△DAB 时,④当△PQB ∽△ABD 时四种情况讨论即可.【详解】解:(1)∵33BD AO ==,∴(10)A -,,(30)B ,, ∴将A ,B代入2y x bx c =++得030b c b c -+=++=,解得132b c ⎧=--⎪⎪⎨⎪=⎪⎩,∴13b =--,322c =--; (2)∵二次函数是2312y x x ⎛=-- ⎝⎭,BC =,(3,0)B , ∴D的横坐标为代入抛物线解析式得3312y ⎛=++ ⎝⎭312=-1=∴(1)D ,设BD 得解析式为:y kx b =+将B ,D代入得103b k b =+=+⎪⎩,解得3k b ⎧=-⎪⎨⎪=⎩,∴直线BD的解析式为=y ; (3)由题意得tan ∠tan ∠ADB=1, 由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n<0,Q (x ,0)且x<3, ①当△PBQ ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=3, 解得tan ∠PQB=tan ∠ADB 即11n x-=-, 解得此时Q 的坐标为(,0); ②当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ADB 即2n -=1, 解得n=-2,tan ∠QPB=tan ∠ABD 即1n x --, 解得x=1-此时Q 的坐标为(1-0);③当△PQB ∽△DAB 时,tan ∠PBQ=tan ∠ABD 即2n -解得tan ∠PQM=tan ∠DAE即1n x -=-,解得x=3-1,此时Q 的坐标为(3-1,0); ④当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=1, 解得n=-2,tan ∠PQM=tan ∠DAE 即1n x -=-,解得x=5-Q 的坐标为(5-0);综上:Q 的坐标可能为13⎛⎫- ⎪ ⎪⎝⎭,(1-,1,03⎛⎫- ⎪ ⎪⎝⎭,(5-. 【点睛】本题考查了二次函数,一次函数,相似三角形的判定和性质,锐角三角函数,掌握知识点灵活运用是解题关键.。
2020年广东省东莞市初中毕业水平考试数学试题及答案

绝密★启用前 2020年东莞市初中毕业生水平考试 数学科试题一、选择题(本大题10小题,每小题3分,共30分)1. 下列各数中,最小的是( ).A. 0B. 1C. -1D. -22.美国约翰斯·霍普金斯大学实时统计数据显示,截至北京时间5月10日8时,全球新冠肺炎确诊病例超4000000例.其中4000000科学记数法可以表示为( )A. 70.410⨯B. 6410⨯C. 7410⨯D. 54010⨯ 3.若分式11x +有意义,则x 的取值范围是( ) A. 1x <-B. 1x ≤-C. 1x >-D. 1x ≠- 4.下列立体图形中,侧面展开图是扇形的是()A. B. C. D. 5.下列四个不等式的解集在数轴上表示如图的是( )A. 12x +≤B. 12x +<C. 12x +>D. 12x +≥6.如图,AC 是矩形ABCD 的对角线,且2AC AD =,那么CAD ∠的度数是( )A. 30°B. 45°C. 60°D. 75°7.一组数据2,3,4,2,5的众数和中位数分别是( )A. 2,2B. 2,3C. 2,4D. 5,48.计算62a a ÷的结果是( )A. 3B. 4C. 3aD. 4a9.如图,已知//AB CD ,CE 平分ACD ∠,且120A ∠=︒,则1∠=( )A. 30°B. 40°C. 45°D. 60°10.如图,一次函数1y x =+和2y x =与反比例函数2y x=的交点分别为点A 、B 和C ,下列结论中,正确的个数是( ) ①点A 与点B 关于原点对称;②OA OC =;③点A 的坐标是(1,2);④ABC ∆是直角三角形.A. 1B. 2C. 3D. 4二、填空题(本大题7小题,每小题4分,共28分)11.3-的相反数是_________.12.若正n 边形的一个外角等于36°,则n =_______.13.若等边ABC ∆的边长AB 为2,则该三角形的高为_______.14.如图,四边形ABCD 是⊙O 的内接四边形,若∠A =70°,则∠C 的度数是_____.15.一个不透明的袋子里装有除颜色不同其他都相同的红球、黄球和蓝球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为14,则蓝球的个数是______. 16.已知方程组24417x y x y +=⎧⎨-=⎩,则x y -=______. 17.如图,等腰12Rt OA A ∆,1121OA A A ==,以2OA 为直角边作23Rt OA A ∆,再以3OA 为直角边作34Rt OA A ∆,以此规律作等腰8Rt OA ∆9A ,则89OA A ∆的面积是_______.三、解答题(一)(本大题3小题,每小题6分,共18分)18.计算:03822cos60(3.14)π---+--︒. 19.先化简,再求值:2221(1)x x x x x-+÷--,其中23x =. 20.如图,在Rt ABC ∆中,90C ∠=︒,8AC =,10AB =.(1)用尺规作图作AB 的垂直平分线EF ,交AB 于点E ,交AC 于点F (保留作图痕迹,不要求写作法、证明);(2)在(1)的条件下,求EF 的长度.四、解答题(二)(本大题3小题,每小题8分,共24分)21.因受疫情影响,东莞市2020年体育中考方案有较大变化,由原来的必考加选考,调整为“七选二”,其中男生可以从A (篮球1分钟对墙双手传接球)、B (投掷实心球)、C (足球25米绕杆)、D (立定跳远)、E (1000米跑步)、F (排球1分钟对墙传球)、G (1分钟踢毽球)等七个项目中选考两项.据统计,某校初三男生都在“A ”“B ”“C ”“D ”四个项目中选择了两项作为自己的体育中考项目.根据学生选择情况,进行了数据整理,并绘制成如下统计图,请结合图中信息,解答下列问题:(1)扇形统计图中C 所对应的圆心角的度数是_______;(2)请补全条形统计图;(3)为了学生能考出好成绩,该校安排每位体育老师负责指导A 、B 、C 、D 项目中的两项.若张老师随机选两项作为自己的指导项目,请用列表法或画树状图的方法求所选的项目恰好是A 和B 的概率. 22.某地有甲、乙两家口罩厂,已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且乙厂单独完成60万只口罩的生产比甲厂单独完成多用5天.(1)求甲、乙厂每天分别可以生产多少万只口罩?(2)该地委托甲、乙两厂尽快完成100万只口罩的生产任务,问两厂同时生产至少需要多少天才能完成生产任务?23.如图,90EAD ∠=︒,O 与AD 相交于点B 、C ,与AE 相切于点E ,已知OA OD =.(1)求证:OAB ODC ∆∆≌;(2)若2AB =,4AE =,求O 的半径.五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图,Rt ABC ∆中,90ACB ∠=︒,点E 为斜边AB 的中点,将线段AC 平移至ED 交BC 于点M ,连接CD 、CE 、BD .(1)求证:CD BE =;(2)求证:四边形BECD 为菱形;(3)连接AD ,交CE 于点N ,若10AC =,5cos 13ACE ∠=,求MN 的长. 25.已知抛物线23y x bx =-++的图象与x 轴相交于点A 和点B ,与y 轴交于点C ,图象的对称轴为直线1x =-.连接AC ,有一动点D 在线段AC 上运动,过点D 作x 轴的垂线,交抛物线于点E ,交x 轴于点F .设点D 的横坐标为m .(1)求AB 的长度;(2)连接AE 、CE ,当ACE ∆的面积最大时,求点D 的坐标;(3)当m 为何值时,ADF ∆与CDE ∆相似.答案解析一、选择题(本大题10小题,每小题3分,共30分)1. 下列各数中,最小的是( ).A. 0B. 1C. -1D.【答案】D【解析】1.414≈-,所以101>>->2.美国约翰斯·霍普金斯大学实时统计数据显示,截至北京时间5月10日8时,全球新冠肺炎确诊病例超4000000例.其中4000000科学记数法可以表示为( )A. 70.410⨯B. 6410⨯C. 7410⨯D. 54010⨯ 【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将4000000用科学记数法表示为6410⨯.故选:B【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.若分式11x +有意义,则x 的取值范围是( ) A. 1x <-B. 1x ≤-C. 1x >-D. 1x ≠- 【答案】D【解析】【分析】根据分式有意义的条件可列出不等式求解.【解答】∵分式11x +有意义, ∴10x +≠,∴1x ≠-.答案选D ,【点评】本题主要考查了分式有无意义的判断,准确利用知识点是解题的关键.4.下列立体图形中,侧面展开图是扇形的是()A. B. C. D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B .5.下列四个不等式的解集在数轴上表示如图的是( )A. 12x +≤B. 12x +<C. 12x +>D. 12x +≥【答案】A【解析】【分析】根据数轴的表示方向和实心空心点情况进行分析即可.【解答】由图可知1x ≤,得到12x +≤,故A 正确.【点评】本题主要考查了数轴解集的表示,准确判断是解题的观看.6.如图,AC 是矩形ABCD 的对角线,且2AC AD =,那么CAD ∠的度数是( )A. 30°B. 45°C. 60°D. 75°【答案】C【解析】【分析】根据含30°的直角三角形的性质即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵AC=2AD,∴在Rt△DAC中,∠DCA=30°,∴∠DAC=90°-∠DCA=60°,故选:C.【点评】本题考查了矩形的性质,含30°的直角三角形的性质,掌握含30°的直角三角形的性质是解题关键.7.一组数据2,3,4,2,5的众数和中位数分别是()A. 2,2B. 2,3C. 2,4D. 5,4【答案】B【解析】【分析】根据众数的定义,出现次数最多的叫众数,易知2为众数;根据中位数的定义,把2,3,4,2,5由小到大排序,位于中间位置的就是中位数,即可得到所求中位数.【解答】解:∵该组数据2,3,4,2,5中2出现次数最多,∴该组数据的众数为2;把2,3,4,2,5由小到大排序为2,2,3,4,5,∴该组数据的中位数为3.故选B.【点评】本题主要考查求众数和中位数,熟练掌握他们的定义,是解题的关键.8.计算62的结果是()a aA. 3B. 4C. 3aD. 4a【答案】D【解析】【分析】根据同底数幂的除法法则计算即可.【解答】a6÷a2=a4,故选:D【点评】本题考查了同底数幂的除法,是基础题.9.如图,已知//AB CD ,CE 平分ACD ∠,且120A ∠=︒,则1∠=( )A. 30°B. 40°C. 45°D. 60°【答案】A【解析】【分析】 因为//AB CD ,可得同旁内角互补,即=180ACD A ∠+︒∠,从而可得=60ACD ∠︒;又因为CE 平分ACD ∠,可得1302ACE ACD =∠=︒∠;再根据三角形内角和定理,即可求得1∠的度数. 【解答】解:∵//AB CD ,120A ∠=︒,∴=180ACD A ∠+︒∠,∴=60ACD ∠︒;∵CE 平分ACD ∠,∴1302ACE ACD =∠=︒∠; ∵在△ACE 中,根据三角形内角和定理可得:1=180ACE A ∠++︒∠∠,∴1=180=18030120=30ACE A ︒-∠-︒-︒-︒︒∠∠.故选A .【点评】本题主要考查了平行线的性质,角平分线的性质和三角形的内角和定理.熟练掌握这些定理是正确解答本题的关键.10.如图,一次函数1y x =+和2y x =与反比例函数2y x=的交点分别为点A 、B 和C ,下列结论中,正确的个数是( )①点A 与点B 关于原点对称;②OA OC =;③点A 的坐标是(1,2);④ABC ∆是直角三角形.A. 1B. 2C. 3D. 4【答案】D【解析】【分析】 根据题意,由反比例函数的性质和一次函数的性质分别求出点A 、B 、C 的坐标,然后通过计算,分别进行判断,即可得到答案.【解答】解:根据题意,由22y x y x⎧=⎪⎨⎪=⎩,解得:12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩, ∴点A 为(1,2),点B 为(1-,2-),∴点A 与点B 关于原点对称;故①③正确;由21y x y x ⎧=⎪⎨⎪=+⎩,解得:12x y =⎧⎨=⎩或21x y =-⎧⎨=-⎩, ∴点C 为(2-,1-); ∴22125OA +22(1)(2)5OC =-+-=∴OA OC =,故②正确; ∵22(12)(21)32AC =+++=22(22)(11)25AB =+++=2BC =∵222(25)(32)2)=+,∴222AB AC BC =+,∴ABC ∆是直角三角形,故④正确;故选:D .【点评】本题考查了反比例函数的性质,一次函数的性质,勾股定理求两点间的长度,以及两直线的交点问题,解题的关键是熟练掌握所学的性质进行解题.二、填空题(本大题7小题,每小题4分,共28分)11._________.【解析】【分析】根据相反数的意义,可得答案.【解答】.【点评】本题考查相反数,掌握相反数的定义是关键.12.若正n边形的一个外角等于36°,则n=_______.【答案】10【解析】【分析】直接根据多边形的外角和定理求出多边形的边数即可.【解答】解:正多边形的边数为:360°÷36°=10,则这个多边形是正十边形.故答案是:10.【点评】本题考查多边形的外角和定理,关键是掌握多边形的外角和为360°.∆的边长AB为2,则该三角形的高为_______.13.若等边ABC【解析】【分析】过点A作AD⊥BC于点D,根据等边三角形的性质结合AB=2,即可得出BD=1,在Rt△ABD中,理由勾股定理即可求出AD的长度,此题得解.【解答】过点A作AD⊥BC于点D,如图所示.∵△ABC为等边三角形,AB=2,∴BD=12BC=1.在Rt△ABD中,AB=2,BD=1,∠ADB=90°,∴AD=22AB BD=3.故答案为:3.【点评】本题考查了等边三角形的性质以及解直角三角形,根据等边三角形的性质结合勾股定理求出AD 的长度是解题的关键.14.如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是_____.【答案】110°【解析】【分析】直接根据圆内接四边形的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠C=180°﹣70°=110°.故答案为:110°.【点评】本题考查圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.15.一个不透明的袋子里装有除颜色不同其他都相同的红球、黄球和蓝球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为14,则蓝球的个数是______.【答案】5【解析】【分析】应先根据红球的个数及概率求得球的总数,减去红球和黄球的个数即为蓝球的个数.【解答】蓝球个数=2÷14−2−1=8−2−1=5(个). 故答案为:5.【点评】考查了概率公式,总体数目=部分数目÷相应百分比;如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 16.已知方程组24417x y x y +=⎧⎨-=⎩,则x y -=______. 【答案】7【解析】【分析】先求出方程组的解,然后即可求出答案.【解答】解:24417x y x y +=⎧⎨-=⎩①②, 由①式得y=4-2x ,代入②式得x-4(4-2x )=17,解得x=113, ∴y=4-2x=10-3, ∴方程组的解为:113103x y ⎧=⎪⎪⎨⎪=-⎪⎩, ∴x-y=113-(10-3)=7, 故答案为:7.【点评】本题考查了解二元一次方程组,求出x ,y 的值是解此题的关键.17.如图,等腰12Rt OA A ∆,1121OA A A ==,以2OA 为直角边作23Rt OA A ∆,再以3OA 为直角边作34Rt OA A ∆,以此规律作等腰8Rt OA ∆9A ,则89OA A ∆的面积是_______.【答案】64(填62亦可)【解析】【分析】 根据等腰直角三角形的性质和勾股定理的性质多次计算即可得到结果.【解答】∵1121OA A A ==,12Rt OA A ∆是等腰直角三角形, ∴22OA又∵23Rt OA A ∆是等腰直角三角形,∴2322=OA A A∴322=2OA =⨯,同理可得:48OA =54OA =,632OA =,78OA =,8128OA = 根据题意可得:898=128OA A A =, ∴89898111281286422OA A S A A OA ∆=⨯⨯=⨯⨯=. 故答案是64.【点评】本题主要考查了等腰直角三角形和勾股定理结合,准确进行计算,发现规律是解题的关键.三、解答题(一)(本大题3小题,每小题6分,共18分)18.03822cos60(3.14)π--+--︒.【答案】4-【解析】【分析】根据0指数幂的运算法则、开立方的运算法则、绝对值的性质、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可. 【解答】解:03822cos60(3.14)π---+--︒ 122212=--+⨯- 4=-,故答案为:4-.【点评】本题考查的是实数的运算.熟知0指数幂的运算法则、开立方的运算法则、绝对值的性质、特殊角的三角函数值是解答此题的关键.19.先化简,再求值:2221(1)x x x x x-+÷--,其中23x =. 【答案】1x ,3. 【解析】【分析】先把运用分式的除法法则,把分式的除法变成乘法,然后分别把分子、分母分解因式,再约分,即约去分子和分母的公因式化成最简分式,最后把x 的值代入,即可求出原分式的值. 【解答】原式2(1)1(1)(1)x x x x -=⋅-- 1x= 当23x =时,原式3623==. 【点评】本题主要考查分式的化简求值,特别强调,解这类题一定要先化简,后求值.20.如图,在Rt ABC ∆中,90C ∠=︒,8AC =,10AB =.(1)用尺规作图作AB 的垂直平分线EF ,交AB 于点E ,交AC 于点F (保留作图痕迹,不要求写作法、证明);(2)在(1)的条件下,求EF 的长度.【答案】(1)如图,EF 为AB 的垂直平分线;见解析;(2)154EF =. 【解析】【分析】(1)根据垂直平分线的作法即可求解;(2)先利用勾股定理求出BC,可证明AFE ABC ∆∆∽,列出比例式即可求解.【解答】(1)如图,EF 为AB 的垂直平分线;(2)∵EF 为AB 的垂直平分线∴152AE AB ==,90AEF ∠=︒ ∵在Rt ABC ∆中,8AC =,10AB = ∴221086BC =-=∵90C AEF ∠=∠=︒,A A ∠=∠∴AFE ABC ∆∆∽∴AE EF AC BC=, 即586EF = ∴154EF =. 【点评】此题主要考查相似三角形的判定与性质,解题的关键是熟知垂直平分线的作法及相似三角形的性质.四、解答题(二)(本大题3小题,每小题8分,共24分)21.因受疫情影响,东莞市2020年体育中考方案有较大变化,由原来的必考加选考,调整为“七选二”,其中男生可以从A (篮球1分钟对墙双手传接球)、B (投掷实心球)、C (足球25米绕杆)、D (立定跳远)、E (1000米跑步)、F (排球1分钟对墙传球)、G (1分钟踢毽球)等七个项目中选考两项.据统计,某校初三男生都在“A”“B”“C”“D”四个项目中选择了两项作为自己的体育中考项目.根据学生选择情况,进行了数据整理,并绘制成如下统计图,请结合图中信息,解答下列问题:(1)扇形统计图中C所对应的圆心角的度数是_______;(2)请补全条形统计图;(3)为了学生能考出好成绩,该校安排每位体育老师负责指导A、B、C、D项目中的两项.若张老师随机选两项作为自己的指导项目,请用列表法或画树状图的方法求所选的项目恰好是A和B的概率.【答案】(1)108°;(2)补全条形统计图见解析;(3)P(所选的项目恰好是A和B)16 .【解析】【分析】(1)由扇形统计图可知C占的百分比是30%,据此求解即可;(2)根据选择C所占的百分比是30%,人数为180,可以求出总人数为600人,则可以得出选择A的人数,据此补全条形统计图即可;(3)根据题意,画树状图,然后计算概率即可.【解答】解:(1)由扇形统计图可知,C占的百分比是30%,∴C所对应的圆心角的度数是36030%=108;(2)根据选择C所占的百分比是30%,人数为180,则总人数为:18030%=600,则选择A的人数为:600-180-120-60=240(人),补全条形统计图如下如图示(3)根据题意,画树状图得:∴机会均等的结果有AB、AC、AD、BA、BC、BD、CA、CB、CD、DA、DB、DC等共12种情况,其中所选的项目恰好是A和B的情况有2种;∴P(所选的项目恰好是A和B)21 126 ==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,用列表法或画树状图法求概率等知识点,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.某地有甲、乙两家口罩厂,已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且乙厂单独完成60万只口罩的生产比甲厂单独完成多用5天.(1)求甲、乙厂每天分别可以生产多少万只口罩?(2)该地委托甲、乙两厂尽快完成100万只口罩的生产任务,问两厂同时生产至少需要多少天才能完成生产任务?【答案】(1)甲、乙厂每天分别可以生产6万和4万只口罩;(2)两厂同时生产至少需要10天才能完成生产任务.【解析】【分析】(1)设乙厂每天能生产口罩x万只,则根据甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,可得甲厂每天能生产口罩1.5x万只,再由乙厂单独完成60万只口罩的生产比甲厂单独完成多用5天,根据工作时间=工作总量÷工作效率,列出分式方程,求解即可;(2)设应安排两个工厂工作y天才能完成任务,根据两厂的工作时间×两厂日生产量之和=总生产任务的数量,再由要求两厂同时生产100万只口罩至少需要多少天,列出不等式,解不等式即可.【解答】(1)设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:606051.5x x-=, 解得:4x =,经检验,4x =是原方程的解,且符合题意,∴甲厂每天可以生产口罩:1.546⨯=(万只). 答:甲、乙厂每天分别可以生产6万和4万只口罩.(2)设应安排两个工厂工作y 天才能完成任务,依题意,得:()64100y +≥,解得:10y ≥.答:两厂同时生产至少需要10天才能完成生产任务.【点评】本题主要考查列分式方程和不等式解应用题.解题的关键是熟练掌握列分式方程解应用题的步骤,一审:审清题意,弄清已知量和未知量;二设:设未知数;三列:找出等量关系,列出分式方程;四解:解所列的分式方程;五检:既要检验所求得的解是否为所列分式方程的解,又要检验所求得的解是否符合实际意义.23.如图,90EAD ∠=︒,O 与AD 相交于点B 、C ,与AE 相切于点E ,已知OA OD =.(1)求证:OAB ODC ∆∆≌;(2)若2AB =,4AE =,求O 的半径. 【答案】(1)见解析;(2)O 的半径为5.【解析】【分析】(1)过点O 作OM BC ⊥,交AD 于点M ,先证明AB CD =,然后根据OA OD =,OB OC =,即可证明OAB ODC ∆∆≌;(2)解:连OE ,设半径OE r =,先证明四边形AEOM 为矩形,可得4OM AE ==,OE AM r ==,然后利用勾股定理可得222BM OM OB +=,可得出关于r 的方程求解即可.【解答】(1)证明:过点O 作OM BC ⊥,交AD 于点M ,∴MC MB =,90OMA ∠=︒,∵OA OD =,OM AD ⊥,∴MA MD =,∴MA MB MD MC -=-,即AB CD =,又∵OA OD =,OB OC =,∴()OAB ODC SSS ∆∆≌;(2)解:连OE ,设半径OE r =,∵O 与AE 相切于点E ,∴90OEA ∠=︒,又∵90EAD ∠=︒,90OMA ∠=︒,∴四边形AEOM 为矩形,∴4OM AE ==,OE AM r ==,在Rt OBM ∆中,222BM OM OB +=,即222(2)4r r -+=,∴=5r ,即O 的半径为5.【点评】本题考查了全等三角形的性质和判定,切线的性质,矩形的判定,勾股定理,掌握这些知识点灵活运用是解题关键.五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图,Rt ABC ∆中,90ACB ∠=︒,点E 为斜边AB 的中点,将线段AC 平移至ED 交BC 于点M ,连接CD 、CE 、BD .(1)求证:CD BE =;(2)求证:四边形BECD 为菱形;(3)连接AD ,交CE 于点N ,若10AC =,5cos 13ACE ∠=,求MN 的长. 【答案】(1)见解析;(2)见解析;(3) 6.5MN =.【解析】【分析】(1)根据平移的性质可得//AC ED ,AC ED =,得到四边形ACDE 为平行四边形,根据直角三角形的斜边中线定理可得结果;(2)根据一组邻边相等的平行四边形是菱形可得结果;(3)根据菱形的性质可得到18090CEM ACB ∠=︒-∠=︒,应用余弦的性质进行分析求解即可得到结果.【解答】(1)证明:∵ED 为AC 平移所得,∴//AC ED ,AC ED =,∴四边形ACDE 为平行四边形,∴AE CD =,在Rt ABC ∆中,点E 为斜边AB 的中点,∴AE CE BE ==,∴CD BE =.(2)证明:∵四边形ACDE 为平行四边形,∴//AE CD ,即//CD BE ,又∵CD BE =,∴四边形BECD 为平行四边形,又∵CE BE =,∴四边形BECD 为菱形.(3)解:在菱形BECD 中,点M 为DE 的中点,又10DE AC ==,∴152ME DE ==, ∵//AC DE ,∴18090CEM ACB ∠=︒-∠=︒,ACE CEM ∠=∠,∴在Rt CME ∆中,5cos 13ME CEM CE ∠==, 即5cos 13ME ACE CE ∠==, ∴135135CE =⨯=, 在平行四边形ACDE 中,点N 为CE 的中点,∴1 6.52MN CE ==. 【点评】本题主要考查了菱形的判定和性质,结合三角函数求解是关键.25.已知抛物线23y x bx =-++的图象与x 轴相交于点A 和点B ,与y 轴交于点C ,图象的对称轴为直线1x =-.连接AC ,有一动点D 在线段AC 上运动,过点D 作x 轴的垂线,交抛物线于点E ,交x 轴于点F .设点D 的横坐标为m .(1)求AB 的长度;(2)连接AE 、CE ,当ACE ∆的面积最大时,求点D 的坐标;(3)当m 为何值时,ADF ∆与CDE ∆相似.【答案】(1)4AB =;(2)点D 的坐标为33,322⎛⎫--+ ⎪⎝⎭,即33,22⎛⎫- ⎪⎝⎭;(3)当1m =-或-2时,ADF ∆与CDE ∆相似.【解析】【分析】(1)根据对称轴求出b ,得到抛物线解析式223y x x =--+,令0y =,求出 (3,0)A -,(1,0)B ,故可求出AB 的长;(2)先求出直线AC 关系式为3y x ,设点D 的坐标为(,3)m m +,得到点E 的坐标为()2,23m m m --+,表示出DE ,根据111222ACE S DE F DE OF DE OA ∆=⋅⋅+⋅⋅=⋅⋅表示为关于m 的二次函数,故可求解; (3)连EF ,分//CE AF 时,ADF CDE ∆∆∽,和当ADF EDC ∆∆∽时,根据二次函数的性质及等腰直角三角形的性质即可求解.【解答】(1)∵对称轴12(1)b x =-=-⨯-, ∴2b =-,∴223y x x =--+当0y =时,2x 2x 30--+=,解得13x =-,21x =,即(3,0)A -,(1,0)B ,∴1(3)4=--=AB .(2)经过点(3,0)A -和(0,3)C 的直线AC 关系式为3y x , ∴点D 的坐标为(,3)m m +.在抛物线上的点E 的坐标为()2,23m m m --+, ∴()2223(3)3DE m m m m m =--+-+=--,∴111222 ACES DE F DEOF DE OA∆=⋅⋅+⋅⋅=⋅⋅()2213933222m m m m=⋅--⋅=--,当9323222m-=-=-⎛⎫⨯-⎪⎝⎭时,ACES∆的最大值是233932722228⎛⎫⎛⎫-⨯--⨯-=⎪ ⎪⎝⎭⎝⎭,∴点D的坐标为33,322⎛⎫--+⎪⎝⎭,即33,22⎛⎫- ⎪⎝⎭,(3)连EF,情况一:如图,当//CE AF时,ADF CDE∆∆∽,当3y=时,2233x x--+=,解得10x=,22x=-,∴点E的横坐标为-2,即点D的横坐标为-2,∴2m=-情况二:∵点(3,0)A-和(0,3)C,∴OA OC=,即45OAC∠=︒.如图,当ADF EDC∆∆∽时,45OAC CED∠=∠=︒,90AFD DCE∠=∠=︒,即EDC∆为等腰直角三角形,过点C作CG DE⊥,即点CG为等腰Rt EDC∆的中线,∴22mDE CG==-,3DF m=+,∴EF DE DF=+,即22323m m m m--+=-++,解得1m=,0m=(舍去)综述所述,当1m =-或-2时,ADF ∆与CDE ∆相似.【点评】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、三角形的面积公式及相似三角形的判定定理.。
2020年广东中考数学试题及解析

D.7
解析:多边形内角和 (n 2) 180o 540o ,解得 n=5
点评:本题考查多边形内角和的计算公式,对于三、四、五、六边形的内角和我们应 该要非常熟练,本题也是送分题。
5、若式子 2x 4 在实数范围内有意义,则 x 的取值范围为(B )
A. x 2
B. x 2
C. x 2
D. x 2
2020 年广东中考数学试题
第 10 页 共 7 页
保持不变,MN=4,E 为 MN 的中点,D 到 BA,BC 的距离分别为 4 和 2,在此滑动过
程中,猫与老鼠的距离 DE 最小值为
。
解析:以 B 为原点,BC 为 X 轴,BA 为 Y 轴建立直角坐标系 B-AC,如图
D 的坐标为(4,2),设 E 的坐标为(x,y),则 N(2x,0) M(0,2y) 根据勾股定理可得, MN 2 BN 2 BM 2 (2x )2 (2y )2 4x2 4y2 16 可得 x2 y2 4 即 E 点的轨迹是一个以原点 B 为圆心,2 为半径的圆。 连结 BD,交圆的方程为 E,则此时的 ED 最短 DE BD r 42 22 2 20 2 2 5 2 . 点评:本题考查直角坐标中的两点间的距离,要知道动点 E 的轨迹是一个圆,点到圆周的 距离转化为点到圆心的距离,综合性比较强.
位于中间的那个数。可以是一个(数据为奇数),也可以是 2 个的平均(数据为偶数)。
本题从小到大排序 2,2,3,4,5,总共 5 个数,最中间的 3 就是它们的中位。
此类型的题目解题方法: (1)将数据从小到从重新排列。
(2)当数据为奇数(即单数时),中位数为中间的一个数据。
(3)当数据为偶数(即双数时),中位数为中间的两个数据之和的平均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年东莞市初中毕业生水平考试
《数学》参考答案
一、选择题:
1-5CBDCA 6-10CBDAD
二、填空题:
12.10 14.110° 15.5 16.7 17.64(填62亦可)
三、解答题(一)
18.解:原式122212
=--+⨯- 4=-
19.解:原式2(1)1(1)(1)
x x x x -=⋅-- 1x
=
当x =
=
= 20.解:(1)如图,EF 为AB 的垂直平分线;
(2)∵EF 为AB 的垂直平分线 ∵152
AE AB ==,90AEF ∠=︒ ∵在Rt ABC ∆中,8AC =,10AB =
∵6BC =
∵90C AEF ∠=∠=︒,A A ∠=∠
∵AFE ABC ∆∆∽ ∵AE EF AC BC
=, 即
586EF =
∵154
EF = 四、解答题(二)
21.解:(1)108°
(2)
(3)
∵机会均等的结果有AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC 等共12种情况,其中所选的项目恰好是A 和B 的情况有2种;
∵P (所选的项目恰好是A 和B )21126
==. 22.解:(1)设乙厂每天能生产口罩x 万只,则甲厂每天能生产口罩1.5x 万只, 依题意,得:606051.5x x
-=, 解得:4x =,
经检验,4x =是原方程的解,且符合题意,
∵甲厂每天可以生产口罩:1.546⨯=(万只).
答:甲、乙厂每天分别可以生产6万和4万只口罩.
(3)设应安排两个工厂工作y 天才能完成任务,
依题意,得:()64100y +≥,
解得:10y ≥.
答:至少应安排两个工厂工作10天才能完成任务.
23.(1)证明:过点O 作OM BC ⊥,交AD 于点M ,
∵MC MB =,90OMA ∠=︒,
∵OA OD =,OM AD ⊥,
∵MA MD =
∵MA MB MD MC -=-,
即AB CD =.
又∵OA OD =,OB OC =,
∵()OAB ODC SSS ∆∆≌.
(2)解:连OE ,设半径OE r =,
∵O 与AE 相切于点E ,
∵90OEA ∠=︒,
又∵90EAD ∠=︒,90OMA ∠=︒,
∵四边形AEOM 为矩形,
∵4OM AE ==,OE AM r ==,
在Rt OBM ∆中,222BM OM OB +=,
即222(2)4r r -+=,
∵5r =.
即O 的半径为5.
五、解答题(三)
24.(1)证明:
∵ED 为AC 平移所得,
∵//AC ED ,AC ED =,
∵四边形ACDE 为平行四边形,
∵AE CD =,
在Rt ABC ∆中,点E 为斜边AB 的中点,
∵AE CE BE ==,
∵CD BE =.
(2)证明:
∵四边形ACDE 为平行四边形,
∵//AE CD ,即//CD BE ,
又∵CD BE =,
∵四边形BECD 为平行四边形,
又∵CE BE =,
∵四边形BECD 为菱形.
(3)解:在菱形BECD 中,点M 为DE 的中点,
又10DE AC ==, ∵152
ME DE ==, ∵//AC DE ,
∵18090CEM ACB ∠=︒-∠=︒,ACE CEM ∠=∠, ∵在Rt CME ∆中,5cos 13ME CEM CE ∠=
=, 即5cos 13ME ACE CE ∠=
=, ∵135135
CE =⨯=, 在平行四边形ACDE 中,点N 为CE 的中点, ∵1 6.52
MN CE ==. 25.解:(1)∵对称轴12(1)b x =-
=-⨯-, ∵2b =-,
∵2
23y x x =--+ 当0y =时,2230x x --+=,解得13x =-,21x =, 即(3,0)A -,(1,0)B ,
∵1(3)4AB =--=.
(2)经过点(3,0)A -和(0,3)C 的直线AC 关系式为3y x =+, ∵点D 的坐标为(,3)m m +.
在抛物线上的点E 的坐标为()2,23m m m --+,
∵()2223(3)3DE m m m m m =--+-+=--, ∵111222
ACE S DE F DE OF DE OA ∆=⋅⋅+⋅⋅=⋅⋅ ()2213933222
m m m m =⋅--⋅=--,
当9323222m -=-=-⎛⎫⨯- ⎪⎝⎭
时,ACE S ∆的最大值是233932722228⎛⎫⎛⎫-⨯--⨯-= ⎪ ⎪⎝⎭⎝⎭, ∵点D 的坐标为33,322⎛⎫-
-+ ⎪⎝⎭,即33,22⎛⎫- ⎪⎝⎭
(3)连EF ,
情况一:如图,当//CE AF 时,ADF CDE ∆∆∽, 当3y =时,2233x x --+=,解得10x =,22x =-, ∵点E 的横坐标为-2,即点D 的横坐标为-2, ∵2m =-
情况二:∵点(3,0)A -和(0,3)C ,
∵OA OC =,即45OAC ∠=︒.
如图,当ADF EDC ∆∆∽时,
45OAC CED ∠=∠=︒,90AFD DCE ∠=∠=︒, 即EDC ∆为等腰直角三角形,
过点C 作CG DE ⊥,即点CG 为等腰Rt EDC ∆的中线, ∵22m DE CG ==-,
3DF m =+,
∵EF DE DF =+,即22323m m m m --+=-++, 解得1m =,0m =(舍去)
综述所述,当1m =-或-2时,ADF ∆与CDE ∆相似.。