中考数学试题目整理汇编三角形的基础知识

合集下载

浙江省中考数学复习 第一部分 考点研究 第四单元 三角形 第17课时 三角形的基础知识试题-人教版初

浙江省中考数学复习 第一部分 考点研究 第四单元 三角形 第17课时 三角形的基础知识试题-人教版初

第四单元三角形第17课时三角形的基础知识(建议答题时间:40分钟)基础过关1.(2017某某)若一个三角形的两边长分别为2和4,则该三角形的周长可能是( )A. 6B. 7C. 11D. 122.(2017某某模拟)△ABC的外心在三角形的外部,则△ABC是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法判断3.(2017某某改编)三角形的内心是( )A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点4.(2017德阳)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于点E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是( )° B. 20° C. 25° D. 30°第4题图5.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于点E,F为AB上的一点,CF⊥AD于点H.下列判断正确的有( )第5题图①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高.A. 1个B. 2个C. 3个D. 0个6.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作垂线交BC 于点F,已知BC=10,△ABD的面积为12,则EF的长为( )B. 2.4 C第6题图7.(2017某某)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=( )第7题图A.60° B.75° C.90° D.105°8.(2017某某)如图,△ABC中,E是BC的中点,AD是∠BAC的平分线,EF∥AD交AC 于点F.若AB=11,AC=15,则FC的长为( )A. 11B. 12C. 13D. 14第8题图9.(2017某某)在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数为__________.第10题图10.(2017某某)如图,△ABC中,D,E分别是边AB,AC的中点,连接DE,若DE=3,则线段BC的长等于________.11.(2017某某)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=________°.第11题图12.(2017来宾)如图,在△ABC中,∠ACB=90°,∠ABC的平分线BD交AC于点D,已知AC=3,AD=2,则点D到AB边的距离为________.第12题图13.(2017某某)已知一副三角板按如图所示的方式放置,其中AB//DF,∠A=45°,∠D=30°,∠C=∠F=90°,则∠α+∠β=________.第13题图14.(2017宿迁)如图,在△ABC中,∠ACB=90°,点D、E、F分别是AB、BC、CA的中点.若CD=2,则线段EF的长是________.第14题图15.(2017某某)如图,在△A B C中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为______.第15题图16.如图,△ABC 的中线AE ,BD 交于点G ,过点D 作DM ∥BC 交AE 于点M ,则△AMD ,△DMG 和△BEG 的面积之比为________.第16题图17.如图,在△ABC 中,CD 是AB 边上的高,CE 是∠ACB 的平分线.(1)若∠A =40°,∠B =80°,求∠DCE 的度数;(2)若∠A =α,∠B =β,求∠DCE 的度数(用含α、β的式子表示).第17题图满分冲关1.(2017某某)如图,Rt △ABC 中,∠ACB =90°,斜边AB =9,D 为AB 的中点,F 为CD 上一点,且CF =13CD ,过点B 作BE ∥DC第1题图交AF的延长线于点E,则BE的长为( )A. 6B. 4C. 7D. 122.(2017某某)在△ABC中,已知BD和CE分别是边AC,AB上的中线,且BD⊥CE,垂足为O,若OD=2 cm,OE=4 cm,则线段AO的长度为________cm.第3题图3.(2018原创)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…;∠A2017BC和∠A2017CD的平分线交于点A2018,则∠A2018=________.4.(1)如图①,在△ABC中,∠A=α,∠ABC和∠ACB的平分线交于点P,则∠BPC的度数是________;(2)类比探究:如图②,在△ABC中,∠ABC的平分线和∠ACB的外角∠ACE的角平分线交于点P,则∠BPC与∠A的关系是________;(3)类比延伸:如图③,在△ABC中,∠ABC的外角∠CBF的角平分线和∠ACB的外角∠BCE的角平分线交于点P,请直接写出∠BPC与∠A的关系是________.第4题图冲刺名校1.(1)如图①,已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.求∠DAE的度数;(2)如图②,已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C =(x+36)°,①∠CAE=________;(用含x的代数式表示)②求∠F的度数.第1题图答案基础过关1.C 【解析】由三角形三边关系可知,该三角形第三边取值X围为4-2<x<4+2,即2<x<6.∵该三角形周长为2+4+x=6+x,∴该三角形的周长取值X围为大于8,小于12,故选C.2.C 【解析】根据三角形的外心的位置可断定三角形的形状:若外心在三角形的外部,则三角形是钝角三角形;若外心在三角形的内部,则三角形是锐角三角形;若外心在三角形的边上,则三角形是直角三角形,且这条边是斜边.3.D 【解析】根据三角形的内心的定义:三角形的三个内角的平分线交于一点,这点叫三角形的内心即可判定.4.B 【解析】∵BE 是∠ABC 的角平分线,∠ABE =25°,∴∠ABC =50°,又∵∠BAC =60°,∴∠C =180°-∠ABC -∠BAC =180°-50°-60°=70°,∴∠DAC =180°-∠ADC -∠C =180°-90°-70°=20°.5.A 【解析】①根据三角形的角平分线的概念,知AD 是△ABC 的角平分线,AG 是△ABE 的角平分线,故此说法错误;②根据三角形的中线的概念,知BG 是△ABD 的边AD 上的中线,故此说法错误;③根据三角形的高的概念,知CH 是△ACD 边AD 上的高,故此说法正确.6.B 【解析】∵AD 是BC 边上的中线,△ABD 的面积为12,∴△ADC 的面积为12,∵点E 是AD 中点,∴△CDE 的面积为6,∵BC =10,AD 是BC 边上的中线,∴DC =5,∴EF =2S △EDC DC =2×65=2.4. 7.C 【解析】∵点E 为BC 边的中点,CD ⊥AB ,DE =32,∴BE =CE =DE =32,即∠CDE =∠DCE ,∴BC = 3.在△ABC 中,AC 2+BC 2=1+(3)2=4=AB 2,∴∠ACB =90°,∴∠CDE +∠ACD =90°,故选C.8.C 【解析】∵AD 平分∠BAC,∴AB AC =BD CD =1115.设BD =11x ,CD =15x ,则BC =26x ,CE =12BC =13x .∵EF ∥AD ,∴CF AC =CE CD ,∴FC 15=13x 15x,解得FC =13. 9.40° 【解析】根据三角形内角和定理,∵∠A +∠B +∠C =180°,∠A ∶∠B ∶∠C =2∶3∶4,∴∠A =29×180°=40°. 10.6 【解析】∵D ,E 分别是AB ,AC 的中点,∴DE 是△ABC 的中位线,∴BC =2DE =6.11.120 【解析】由三角形的外角的性质可知,∠1=90°+30°=120°.12.1 【解析】如解图,过点D 作DE ⊥AB 于点E ,∵BD 平分∠ABC ,∴根据角平分线定理,得DE =DC =AC -ADD 到AB 边的距离为1.第12题解图13.210° 【解析】∵∠α=∠D +∠1=30°+∠1,∠β=∠F +∠2=90°+∠2,而∠1=∠A ,∠2=∠B ,∴∠α+∠β=120°+∠A +∠B ,又∵在Rt △ABC 中,∠A +∠B =90°,∴∠α+∠β=120°+90°=210°.第13题解图14.2 【解析】如解图,连接DF 、DE ,∵点D 、E 、F 分别是AB 、BC 、CA 的中点,∴DF ∥CE ,DE ∥CF ,∵∠ACB =90°,∴四边形CEDF 是矩形,∴EF =CD =2.第14题解图【一题多解】由三角形中位线的性质,可得EF =12AB ,在Rt △ABC 中,CD = 12AB ,∴CD =EF =2.15.2a +3b 【解析】∵在△ABC 中,AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =72°,∵DE 垂直平分AC ,∴CE =AE ,∴∠ECA =∠A =36°,∴∠BEC =∠A +∠ECA =72°,∴∠BEC =∠B ,∴BC =CE =b ,∴△ABC 的周长=AB +AC +BC =2AB +BC =2(a +b )+b =2a +3b .16.2∶1∶4 【解析】∵点D 是AC 的中点,DM ∥BC ,∴MD 是△AEC 的中位线,∴MD =12CE .∵AE 是△ABC 的中线,∴BE =CE ,∴BE =2MD ,∵MD ∥BC ,∴△DMG ∽△BEG ,∴MG ∶EG =MD ∶EB =1∶2,∴AM =ME =2MG ,∴S △AMD =2S △MDG ,S △BGE =4S △MDG ,∴△AMD ,△DMG ,△BEG 的面积比为2∶1∶4.17.解:(1)∵∠A =40°,∠B =80°,∴∠ACB =60°,∵CE 是∠ACB 的平分线,∴∠ECB =12∠ACB =30°, ∵CD 是AB 边上的高,∴∠BDC =90°,∴∠BCD =90°-∠B =10°,∴∠DCE =∠ECB -∠BCD =30°-10°=20°;(2)∵∠A =α,∠B =β,∴∠ACB =180°-α-β,∵CE 是∠ACB 的平分线,∴∠ECB =12∠ACB =12(180°-α-β), ∵CD 是AB 边上的高,∴∠BDC =90°, ∴∠BCD =90°-∠B =90°-β, ∴∠DCE =∠ECB -∠BCD=12β-12α. 满分冲关1.A 【解析】在Rt △ABC 中,∠ACB =90°,AB =9,D 是AB 的中点,∴CD =12AB =92,∵CF =13CD ,∴CF =13×92=32,∴DF =CD -CF =92-32=3,∵D 是AB 的中点,BE ∥DF 交AF 的延长线于点E ,∴BE =2DF =6.2. 【解析】如解图,连接AO 并延长,交BC 于点H ,由勾股定理得,DE =OE 2+OD 2=2 5 cm ,∵BD 和CE 分别是边AC ,AB 上的中线,∴BC =2DE =4 5 cm ,∵O 是△ABC 的重心,∴AH 是中线,又∵BD ⊥CE ,∴OH =12BC =2 5 cm ,∵O 是△ABC 的重心,∴AO =2OH =4 5 cm.第2题解图3.(m 22018)° 【解析】∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC =12∠ABC ,∠A 1CA =12∠ACD ,∵∠A 1CD =∠A 1+∠A 1BC ,即12∠ACD =∠A 1+12∠ABC ,∴∠A 1=12(∠ACD -∠ABC ),∵∠A +∠ABC =∠ACD ,∴∠A =∠ACD -∠ABC ,∴∠A 1=12∠A ,∠A 2=12∠A 1=122∠A ,…,以此类推可知∠A 2018=122018∠A =(m 22018)°, 4.(1)90°+12α; 【解法提示】∵∠A =α,∴∠ABC +∠ACB =180°-α,∵∠ABC 和∠ACB 的平分线交于点P ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB ,∴∠BPC =180°-12(∠ABC +∠ACB )=90°+12α; (2)∠BPC =12∠A ; 理由如下:∵∠ACE 是△ABC 的外角,∠PCE 是△PBC 的外角,∴∠ACE =∠ABC +∠A ,∠PCE =∠PBC +∠BPC ,∵BP 平分∠ABC ,CP 平分∠ACE ,∴∠PBC =12∠ABC ,∠PCE =12∠ACE , ∴12∠ACE =12∠ABC +∠BPC , ∴∠BPC =12∠AEC -12∠ABC =12(∠ACE -∠ABC ), ∴∠BPC =12∠A , (3)∠BPC =90°-12∠A . 冲刺名校1.解:(1)∵∠B =30°,∠C =50°,∴∠CAB =180°-∠B -∠C =100°,∵AE 是△ABC 的角平分线,∴∠CAE =12∠CAB =50°, ∵AD 是△ABC 的高,∴∠ADC =90°,∴∠CAD =90°-∠C =40°,∴∠DAE =∠CAE -∠CAD =50°-40°=10°;(2)①72°-x °;【解法提示】∵∠B =x °,∠C =(x +36)°,AF 平分∠BAC ,∴∠EAC =∠BAF ,∴∠CAE =12×[180°-x °-(x +36)°]=72°-x °; ②∵∠AEC =∠BAE +∠B =72°,∵FD ⊥BC ,∴∠F =90°-72°=18°.。

2022中考数学试题分类汇编考点36相似三角形含解析20220714471

2022中考数学试题分类汇编考点36相似三角形含解析20220714471

2022中考数学试题分类汇编:考点36 相似三角形一.选择题〔共28小题〕1.〔2022•重庆〕制作一块3m×2m长方形广告牌的本钱是120元,在每平方米制作本钱相同的情况下,假设将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的本钱是〔〕A.360元B.720元C.1080元D.2160元【分析】根据题意求出长方形广告牌每平方米的本钱,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的本钱是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,那么面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的本钱是54×20=1080m2,应选:C.2.〔2022•玉林〕两三角形的相似比是2:3,那么其面积之比是〔〕A.:B.2:3 C.4:9 D.8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,应选:C.3.〔2022•重庆〕要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,那么它的最长边为〔〕A.3cm B.4cm C.4.5cm D.5cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得: =,解得:x=4.5,即另一个三角形的最长边长为4.5cm,应选:C.4.〔2022•内江〕△ABC与△A1B1C1相似,且相似比为1:3,那么△ABC与△A1B1C1的面积比为〔〕A.1:1 B.1:3 C.1:6 D.1:9【分析】利用相似三角形面积之比等于相似比的平方,求出即可.【解答】解:△ABC与△A1B1C1相似,且相似比为1:3,那么△ABC与△A1B1C1的面积比为1:9,应选:D.5.〔2022•铜仁市〕△ABC∽△DEF,相似比为2,且△ABC的面积为16,那么△DEF的面积为〔〕A.32 B.8 C.4 D.16【分析】由△ABC∽△DEF,相似比为2,根据相似三角形的面积的比等于相似比的平方,即可得△ABC与△DEF的面积比为4,又由△ABC的面积为16,即可求得△DEF的面积.【解答】解:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为16,∴△DEF的面积为:16×=4.应选:C.6.〔2022•重庆〕△ABC∽△DEF,且相似比为1:2,那么△ABC与△DEF的面积比为〔〕A.1:4 B.4:1 C.1:2 D.2:1【分析】利用相似三角形面积之比等于相似比的平方计算即可.【解答】解:∵△ABC∽△DEF,且相似比为1:2,∴△ABC与△DEF的面积比为1:4,应选:A.7.〔2022•临安区〕如图,小正方形的边长均为1,那么以下图中的三角形〔阴影局部〕与△ABC相似的是〔〕A.B.C.D.【分析】根据正方形的性质求出∠ACB,根据相似三角形的判定定理判断即可.【解答】解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A、C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,∵=,∴图B中的三角形〔阴影局部〕与△ABC相似,应选:B.8.〔2022•广东〕在△ABC中,点D、E分别为边AB、AC的中点,那么△ADE与△ABC的面积之比为〔〕A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE ∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=〔〕2=.应选:C.9.〔2022•自贡〕如图,在△ABC中,点D、E分别是AB、AC的中点,假设△ADE的面积为4,那么△ABC的面积为〔〕A.8 B.12 C.14 D.16【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,应选:D.10.〔2022•崇明县一模〕如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,那么△DEF的面积与△BAF的面积之比为〔〕A.3:4 B.9:16 C.9:1 D.3:1【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.应选:B.11.〔2022•随州〕如图,平行于BC的直线DE把△ABC分成面积相等的两局部,那么的值为〔〕A.1 B.C. 1 D.【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出=,结合BD=AB﹣AD即可求出的值,此题得解.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴〔〕2=.∵S△ADE=S四边形BCED,∴=,∴===﹣1.应选:C.12.〔2022•哈尔滨〕如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE ∥BD,且交AB于点E,GF∥AC,且交CD于点F,那么以下结论一定正确的选项是〔〕A. = B. = C. = D. =【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=, =,∴==.应选:D.13.〔2022•遵义〕如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.假设DE=3,那么AD的长为〔〕A.5 B.4 C.3 D.2【分析】先求出AC,进而判断出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,那么AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,应选:D.14.〔2022•扬州〕如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于以下结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的选项是〔〕A.①②③B.①C.①② D.②③【分析】〔1〕由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;〔2〕通过等积式倒推可知,证明△PAM∽△EMD即可;〔3〕2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确应选:A.15.〔2022•贵港〕如图,在△ABC中,EF∥BC,AB=3AE,假设S四边形BCFE=16,那么S△ABC=〔〕A.16 B.18 C.20 D.24【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出那么S△ABC的值.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,∴S△ABC=18,应选:B.16.〔2022•孝感〕如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE ⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.那么以下结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=〔﹣1〕EF.其中正确结论的个数为〔〕A.5 B.4 C.3 D.2【分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,那么AF=2x、AP==x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判断.【解答】解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,那么∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH〔ASA〕,∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,那么AF=2x、AP==x,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE﹣BH=a+2x﹣2x=a,∵∠APF=∠AEH=90°,∠FAP=∠HAE,∴△PAF∽△EAH,∴=,即=,整理,得:2x2=〔﹣1〕ax,由x≠0得2x=〔﹣1〕a,即AF=〔﹣1〕EF,故⑤正确;应选:B.17.〔2022•泸州〕如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,假设AE=3ED,DF=CF,那么的值是〔〕A.B.C.D.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,那么AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,那么AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∴===,应选:C.18.〔2022•临安区〕如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,假设AD=4,DB=2,那么DE:BC的值为〔〕A.B.C.D.【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解那么可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===.应选:A.19.〔2022•恩施州〕如下图,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.FG=2,那么线段AE的长度为〔〕A.6 B.8 C.10 D.12【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.应选:D.20.〔2022•杭州〕如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2〔〕A.假设2AD>AB,那么3S1>2S2B.假设2AD>AB,那么3S1<2S2C.假设2AD<AB,那么3S1>2S2D.假设2AD<AB,那么3S1<2S2【分析】根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.【解答】解:∵如图,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=〔〕2,∴假设2AD>AB,即>时,>,此时3S1>S2+S△BDE,而S2+S△BDE<2S2.但是不能确定3S1与2S2的大小,应选项A不符合题意,选项B不符合题意.假设2AD<AB,即<时,<,此时3S1<S2+S△BDE<2S2,应选项C不符合题意,选项D符合题意.应选:D.21.〔2022•永州〕如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,那么边AC的长为〔〕A.2 B.4 C.6 D.8【分析】只要证明△ADC∽△ACB,可得=,即AC2=AD•AB,由此即可解决问题;【解答】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,应选:B.22.〔2022•香坊区〕如图,点D、E、F分别是△ABC的边AB、AC、BC上的点,假设DE∥BC,EF∥AB,那么以下比例式一定成立的是〔〕A. = B. = C. = D. =【分析】用平行线分线段成比例定理和相似三角形的判定即可得出结论.【解答】解:∵DE∥BC,∴,∵DE∥BC,∴△ADE∽△ABC,∴,∵EF∥AB,∴,∵EF∥AB,∴△CEF∽△CAB,∴,∵DE∥BC,EF∥AB,∴四边形BDEF是平行四边形,∴DE=BF,EF=BD,∴,,,,∴正确,应选:C.23.〔2022•荆门〕如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,那么S△EFG:S△ABG=〔〕A.1:3 B.3:1 C.1:9 D.9:1【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵DE=EF=FC,∴EF:AB=1:3,∴△EFG∽△BAG,∴=〔〕2=,应选:C.24.〔2022•达州〕如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,那么的值为〔〕A.B.C.D.1【分析】首先证明AG:AB=CH:BC=1:3,推出GH∥AC,推出△BGH∽△BAC,可得==〔〕2=〔〕2=, =,由此即可解决问题.【解答】解:∵四边形ABCD是平行四边形∴AD=BC,DC=AB,∵AC=CA,∴△ADC≌△CBA,∴S△ADC=S△ABC,∵AE=CF=AC,AG∥CD,CH∥AD,∴AG:DC=AE:CE=1:3,CH:AD=CF:AF=1:3,∴AG:AB=CH:BC=1:3,∴GH∥AC,∴△BGH∽△BAC,∴==〔〕2=〔〕2=,∵=,∴=×=,应选:C.25.〔2022•南充〕如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE ⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.以下结论正确的选项是〔〕A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF【分析】首先证明BH=AH,推出EG=BG,推出CE=CB,再证明△CEH≌△CBH,Rt△HFE≌Rt△HFA,利用全等三角形的性质即可一一判断.【解答】解:连接EH.∵四边形ABCD是正方形,∴CD=AB═BC=AD=2,CD∥AB,∵BE⊥AP,CH⊥BE,∴CH∥PA,∴四边形CPAH是平行四边形,∴CP=AH,∵CP=PD=1,∴AH=PC=1,∴AH=BH,在Rt△ABE中,∵AH=HB,∴EH=HB,∵HC⊥BE,∴BG=EG,∴CB=CE=2,应选项A错误,∵CH=CH,CB=CE,HB=HE,∴△ABC≌△CEH,∴∠CBH=∠CEH=90°,∵HF=HF,HE=HA,∴Rt△HFE≌Rt△HFA,∴AF=EF,设EF=AF=x,在Rt△CDF中,有22+〔2﹣x〕2=〔2+x〕2,∴x=,∴EF=,故B错误,∵PA∥CH,∴∠CEP=∠ECH=∠BCH,∴cos∠CEP=cos∠BCH==,故C错误.∵HF=,EF=,FC=∴HF2=EF•FC,故D正确,应选:D.26.〔2022•临沂〕如图.利用标杆BE测量建筑物的高度.标杆BE高 1.2m,测得AB=1.6m.BC=12.4m.那么建筑物CD的高是〔〕A.9.3m B.10.5m C.12.4m D.14m【分析】先证明∴△ABE∽△ACD,那么利用相似三角形的性质得=,然后利用比例性质求出CD即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5〔米〕.应选:B.27.〔2022•长春〕?孙子算经?是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸〔提示:1丈=10尺,1尺=10寸〕,那么竹竿的长为〔〕A.五丈 B.四丈五尺 C.一丈 D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45〔尺〕.应选:B.28.〔2022•绍兴〕学校门口的栏杆如下图,栏杆从水平位置BD绕O点旋转到AC位置,AB ⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,那么栏杆C端应下降的垂直距离CD为〔〕A.0.2m B.0.3m C.0.4m D.0.5m【分析】由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将数据代入即可得.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,那么=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,应选:C.二.填空题〔共7小题〕29.〔2022•邵阳〕如下图,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD 于点F,连接BF.写出图中任意一对相似三角形:△ADF∽△ECF .【分析】利用平行四边形的性质得到AD∥CE,那么根据相似三角形的判定方法可判断△ADF ∽△ECF.【解答】解:∵四边形ABCD为平行四边形,∴AD∥CE,∴△ADF∽△ECF.故答案为△ADF∽△ECF.30.〔2022•北京〕如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,假设AB=4,AD=3,那么CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD〔对顶角相等〕可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.31.〔2022•包头〕如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.假设S△AEF=1,那么S△ADF的值为.【分析】由3AE=2EB可设AE=2a、BE=3a,根据EF∥BC得=〔〕2=,结合S△AEF=1知S△ADC=S△ABC=,再由==知=,继而根据S△ADF=S△ADC可得答案.【解答】解:∵3AE=2EB,∴可设AE=2a、BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴=〔〕2=〔〕2=,∵S△AEF=1,∴S△ABC=,∵四边形ABCD是平行四边形,∴S△ADC=S△ABC=,∵EF∥BC,∴===,∴==,∴S△ADF=S△ADC=×=,故答案为:.32.〔2022•资阳〕:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,那么四边形BCED的面积为9 .【分析】设四边形BCED的面积为x,那么S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得=〔〕2,据此建立关于x的方程,解之可得.【解答】解:设四边形BCED的面积为x,那么S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,那么=〔〕2,即=,解得:x=9,即四边形BCED的面积为9,故答案为:9.33.〔2022•泰安〕?九章算术?是中国传统数学最重要的著作,在“勾股〞章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?〞用今天的话说,大意是:如图,DEFG是一座边长为200步〔“步〞是古代的长度单位〕的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木〔即点D在直线AC上〕?请你计算KC的长为步.【分析】证明△CDK∽△DAH,利用相似三角形的性质得=,然后利用比例性质可求出CK的长.【解答】解:DH=100,DK=100,AH=15,∵AH∥DK,∴∠CDK=∠A,而∠CKD=∠AHD,∴△CDK∽△DAH,∴=,即=,∴CK=.答:KC的长为步.故答案为.34.〔2022•岳阳〕?九章算术?是我国古代数学名著,书中有以下问题:“今有勾五步,股十二步,问勾中容方几何?〞其意思为:“今有直角三角形,勾〔短直角边〕长为5步,股〔长直角边〕长为12步,问该直角三角形能容纳的正方形边长最大是多少步?〞该问题的答案是步.【分析】如图1,根据正方形的性质得:DE∥BC,那么△ADE∽△ACB,列比例式可得结论;如图2,同理可得正方形的边长,比拟可得最大值.【解答】解:如图1,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,那么CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴,∴,x=,如图2,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,设ED=x,S△ABC=AC•BC=AB•CP,12×5=13CP,CP=,同理得:△CDG∽△CAB,∴,∴,x=,∴该直角三角形能容纳的正方形边长最大是〔步〕,故答案为:.35.〔2022•吉林〕如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB= 100 m.【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,,解得:AB=〔米〕.故答案为:100.三.解答题〔共15小题〕36.〔2022•张家界〕如图,点P是⊙O的直径AB延长线上一点,且AB=4,点M为上一个动点〔不与A,B重合〕,射线PM与⊙O交于点N〔不与M重合〕〔1〕当M在什么位置时,△MAB的面积最大,并求岀这个最大值;〔2〕求证:△PAN∽△PMB.【分析】〔1〕当M在弧AB中点时,三角形MAB面积最大,此时OM与AB垂直,求出此时三角形面积最大值即可;〔2〕由同弧所对的圆周角相等及公共角,利用两对角相等的三角形相似即可得证.【解答】解:〔1〕当点M在的中点处时,△MAB面积最大,此时OM⊥AB,∵OM=AB=×4=2,∴S△ABM=AB•OM=×4×2=4;〔2〕∵∠PMB=∠PAN,∠P=∠P,∴△PAN∽△PMB.37.〔2022•株洲〕如图,在Rt△ABM和Rt△ADN的斜边分别为正方形的边AB和AD,其中AM=AN.〔1〕求证:Rt△ABM≌Rt△AND;〔2〕线段MN与线段AD相交于T,假设AT=,求tan∠ABM的值.【分析】〔1〕利用HL证明即可;〔2〕想方法证明△DNT∽△AMT,可得由AT=,推出,在Rt△ABM中,tan∠ABM=.【解答】解:〔1〕∵AD=AB,AM=AN,∠AMB=∠AND=90°∴Rt△ABM≌Rt△AND〔HL〕.〔2〕由Rt△ABM≌Rt△AND易得:∠DAN=∠BAM,DN=BM∵∠BAM+∠DAM=90°;∠DAN+∠ADN=90°∴∠DAM=∠AND∴ND∥AM∴△DNT∽△AMT∴∵AT=,∴∵Rt△ABM∴tan∠ABM=.38.〔2022•大庆〕如图,AB是⊙O的直径,点E为线段OB上一点〔不与O,B重合〕,作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.〔1〕求证:AC平分∠FAB;〔2〕求证:BC2=CE•CP;〔3〕当AB=4且=时,求劣弧的长度.【分析】〔1〕根据等角的余角相等证明即可;〔2〕只要证明△CBE∽△CPB,可得=解决问题;〔3〕作BM⊥PF于M.那么CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】〔1〕证明:∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,即AC平分∠FAB.〔2〕证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∵CD是直径,∴∠CBD=∠CBP=90°,∴△CBE∽△CPB,∴=,∴BC2=CE•CP;〔3〕解:作BM⊥PF于M.那么CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵∠MCB+∠P=90°,∠P+∠PBM=90°,∴∠MCB=∠PBM,∵CD是直径,BM⊥PC,∴∠CMB=∠BMP=90°,∴△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∠BOD=120°∴的长==π.39.〔2022•江西〕如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.【分析】根据角平分线定义和平行线的性质求出∠D=∠CBD,求出BC=CD=4,证△AEB∽△CED,得出比例式,求出AE=2CE,即可得出答案.【解答】解:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD,∵BC=4,∴CD=4,∵AB∥CD,∴△ABE∽△CDE,∴=,∴=,∵AC=6=AE+CE,∴AE=4.40.〔2022•上海〕:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.〔1〕求证:EF=AE﹣BE;〔2〕联结BF,如课=.求证:EF=EP.【分析】〔1〕利用正方形的性质得AB=AD,∠BAD=90°,根据等角的余角相等得到∠1=∠3,那么可判断△ABE≌△DAF,那么BE=AF,然后利用等线段代换可得到结论;〔2〕利用=和AF=BE得到=,那么可判定Rt△BEF∽Rt△DFA,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP.【解答】证明:〔1〕∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;〔2〕如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.41.〔2022•东营〕如图,CD是⊙O的切线,点C在直径AB的延长线上.〔1〕求证:∠CAD=∠BDC;〔2〕假设BD=AD,AC=3,求CD的长.【分析】〔1〕连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;〔2〕由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】〔1〕证明:连接OD,如下图.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.〔2〕解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.42.〔2022•南京〕如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.〔1〕求证:△AFG∽△DFC;〔2〕假设正方形ABCD的边长为4,AE=1,求⊙O的半径.【分析】〔1〕欲证明△AFG∽△DFC,只要证明∠FAG=∠FDC,∠AGF=∠FCD;〔2〕首先证明CG是直径,求出CG即可解决问题;【解答】〔1〕证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC.〔2〕解:如图,连接CG.∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF,∴=,即=,∵△AFG∽△DFC,∴=,∴=,在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA﹣AG=4﹣1=3,∴CG==5,∵∠CDG=90°,∴CG是⊙O的直径,∴⊙O的半径为.43.〔2022•滨州〕如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:〔1〕直线DC是⊙O的切线;〔2〕AC2=2AD•AO.【分析】〔1〕连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;〔2〕连接BC,证△DAC∽△CAB即可得.【解答】解:〔1〕如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;〔2〕连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.44.〔2022•十堰〕如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作FG⊥AC于点F,交AB的延长线于点G.〔1〕求证:FG是⊙O的切线;〔2〕假设tanC=2,求的值.【分析】〔1〕欲证明FG是⊙O的切线,只要证明OD⊥FG;〔2〕由△GDB∽△GAD,设BG=a.可得===,推出DG=2a,AG=4a,由此即可解决问题;【解答】〔1〕证明:连接AD、OD.∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AC=AB,∴CD=BD,∵OA=OB,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴FG是⊙O的切线.〔2〕解:∵tanC==2,BD=CD,∴BD:AD=1:2,∵∠GDB+∠ODB=90°,∠ADO+∠ODB=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠GDB=∠GAD,∵∠G=∠G,∴△GDB∽△GAD,设BG=a.∴===,∴DG=2a,AG=4a,∴BG:GA=1:4.45.〔2022•杭州〕如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.〔1〕求证:△BDE∽△CAD.〔2〕假设AB=13,BC=10,求线段DE的长.【分析】〔1〕想方法证明∠B=∠C,∠DEB=∠ADC=90°即可解决问题;〔2〕利用面积法:•AD•BD=•AB•DE求解即可;【解答】解:〔1〕∵AB=AC,BD=CD,∴AD⊥BC,∠B=∠C,∵DE⊥AB,∴∠DEB=∠ADC,∴△BDE∽△CAD.〔2〕∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,AD===12,∵•AD•BD=•AB•DE,∴DE=.46.〔2022•烟台〕如图,D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为上一点,连接FE并延长交AC的延长线于点N,交AB于点M.〔1〕假设∠EBD为α,请将∠CAD用含α的代数式表示;〔2〕假设EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;〔3〕在〔2〕的条件下,假设AD=,求的值.【分析】〔1〕根据同圆的半径相等和等边对等角得:∠EDB=∠EBD=α,∠CAD=∠ACD,∠DCE=∠DEC=2α,再根据三角形内角和定理可得结论;〔2〕设∠MBE=x,同理得:∠EMB=∠MBE=x,根据切线的性质知:∠DEF=90°,所以∠CED+∠MEB=90°,同理根据三角形内角和定理可得∠CAD=45°;〔3〕由〔2〕得:∠CAD=45°;根据〔1〕的结论计算∠MBE=30°,证明△CDE是等边三角形,得CD=CE=DE=EF=AD=,求EM=1,MF=EF﹣EM=﹣1,根据三角形内角和及等腰三角形的判定得:EN=CE=,代入化简可得结论.【解答】解:〔1〕连接CD、DE,⊙E中,∵ED=EB,∴∠EDB=∠EBD=α,∴∠CED=∠EDB+∠EBD=2α,⊙D中,∵DC=DE=AD,∴∠CAD=∠ACD,∠DCE=∠DE C=2α,△ACB中,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴∠CAD==;〔2〕设∠MBE=x,∵EM=MB,∴∠EMB=∠MBE=x,当EF为⊙D的切线时,∠DEF=90°,∴∠CED+∠MEB=90°,∴∠CED=∠DCE=90°﹣x,△ACB中,同理得,∠CAD+∠ACD+∠DCE+∠EBD=180°,∴2∠CAD=180°﹣90∴=90∴,∴∠CAD=45°;〔3〕由〔2〕得:∠CAD=45°;由〔1〕得:∠CAD=;∴∠MBE=30°,∴∠CED=2∠MBE=60°,∵CD=DE,∴△CDE是等边三角形,∴CD=CE=DE=EF=AD=,Rt△DEM中,∠EDM=30°,DE=,∴EM=1,MF=EF﹣EM=﹣1,△ACB中,∠NCB=45°+30°=75°,△CNE中,∠CEN=∠BEF=30°,∴∠CNE=75°,∴∠CNE=∠NCB=75°,∴EN=CE=,∴===2+.47.〔2022•陕西〕周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如下图.请根据相关测量信息,求河宽AB.【分析】由BC∥DE,可得=,构建方程即可解决问题.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴=,∴=,∴AB=17〔m〕,经检验:AB=17是分式方程的解,答:河宽AB的长为17米.48.〔2022•济宁〕如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.〔1〕猜测DG与CF的数量关系,并证明你的结论;〔2〕过点H作MN∥CD,分别交AD,BC于点M,N,假设正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.【分析】〔1〕结论:CF=2DG.只要证明△DEG∽△CDF即可;〔2〕作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK;【解答】解:〔1〕结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴==,∴CF=2DG.〔2〕作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG=,EG=,DH==,∴EH=2DH=2,∴HM==2,∴DM=CN=NK==1,在Rt△DCK中,DK===2,∴△PCD的周长的最小值为10+2.49.〔2022•聊城〕如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.〔1〕求证:AE=BF.〔2〕假设正方形边长是5,BE=2,求AF的长.【分析】〔1〕根据ASA证明△ABE≌△BCF,可得结论;〔2〕根据〔1〕得:△ABE≌△BCF,那么CF=BE=2,最后利用勾股定理可得AF的长.【解答】〔1〕证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE+∠AEB=90°,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF〔ASA〕,∴AE=BF;〔2〕解:∵AB=BC=5,由〔1〕得:△ABE≌△BCF,∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF====.50.〔2022•乌鲁木齐〕如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.〔1〕求证:直线BC是⊙O的切线;〔2〕假设AC=2CD,设⊙O的半径为r,求BD的长度.【分析】〔1〕根据角平分线的定义和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;〔2〕在Rt△ACD中,设CD=a,那么AC=2a,AD=a,证明△ACD∽△ADE,表示a=,由平行线分线段成比例定理得:,代入可得结论.【解答】〔1〕证明:连接OD,∵AG是∠HAF的平分线,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;〔4分〕〔2〕解:在Rt△ACD中,设CD=a,那么AC=2a,AD=a,连接DE,∵AE是⊙O的直径,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴a=,由〔1〕知:OD∥AC,∴,即,∵a=,解得BD=r.〔10分〕。

2022年全国中考数学真题分类汇编专题11:三角形

2022年全国中考数学真题分类汇编专题11:三角形
A. B.2 C.2D.4
17.(2022•荆州)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是( )
A.60°B.70°C.80°D.90°
18.(2022•十堰)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是( )
24.(2022•通辽)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.
25.(2022•深圳)已知△ABC是直角三角形,∠B=90°,AB=3,BC=5,AE=2 ,连接CE,以CE为底作直角三角形CDE,且CD=DE.F是AE边上的一点,连接BD和BF,且∠FBD=45°,则AF长为.
9.(2022•梧州)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,过点D分别作DE⊥AB,DF⊥AC,垂足分别是点E,F,则下列结论错误的是( )
A.∠ADC=90°B.DE=DFC.AD=BCD.BD=CD
10.(2022•广东)下列图形中有稳定性的是( )
A.三角形B.平行四边形C.长方形D.正方形
26.(2022•贵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,AC=BC=6cm,∠ACB=∠ADB=90°.若BE=2AD,则△ABE的面积是cm2,∠AEB=度.
27.(2022•广安)若(a﹣3)2 0,则以a、b为边长的等腰三角形的周长为.
28.(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=.
A.两点之间,线段最短
B.两点确定一条直线
C.垂线段最短

中考数学真题分类汇编(第三期)专题28 解直角三角形试题(含解析)-人教版初中九年级全册数学试题

中考数学真题分类汇编(第三期)专题28 解直角三角形试题(含解析)-人教版初中九年级全册数学试题

解直角三角形一.选择题1.(2018·某某市B卷)5.坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()【分析】作BM⊥ED交ED的延长线于M,⊥DM于N.首先解直角三角形Rt△CDN,求出,DN,再根据tan24°=,构建方程即可解决问题;【解答】解:作BM⊥ED交ED的延长线于M,⊥DM于N.在Rt△CDN中,∵==,设=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴=8,DN=6,∵四边形BMNC是矩形,∴BM==8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.(2018·某某某某·3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A.B在同一水平面上).为了测量A.B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A.B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2018·某某某某·2分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二.填空题1. (2018·某某江汉·3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile 处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD.CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:182. (2018·某某荆州·3分)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为米(≈1.73,结果精确到0.1).【解答】解:如图,设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,∴CE=33,∵∠CBE=45°=∠BCE,∠CAE=30°,∴BE=CE=33,∴AE=a+33,∵tanA=,∴tan30°=,即33=a+33,解得a=33(﹣1)≈24.1,∴a的值约为24.1米,故答案为:24.1.3.(2018·某某省某某市) 如图,某景区的两个景点A.B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C 处时、测得景点A的俯角为45°,景点B的俯角为知30°,此时C到地面的距离CD为100米,则两景点A.B间的距离为100+100米(结果保留根号).【解答】解:∵∠MCA=45°,∠NCB=30°,∴∠ACD=45°,∠DCB=60°,∠B=30°.∵CD=100米,∴AD=CD=100米,D B=米,∴AB=AD+DB=100+100(米).故答案为:100+100.4. (2018·某某某某·3分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为_____m(结果保留整数,≈1.73).【答案】300【解析】【分析】在Rt△ABD中,根据正切函数求得BD=AD•tan∠BAD,在Rt△ACD中,求得CD=AD•tan∠CAD,再根据BC=BD+CD,代入数据计算即可.【详解】如图,∵在Rt△ABD中,AD=110,∠BAD=45°,∴BD= AD•tan45° =110(m),∵在Rt△ACD中,∠CAD=60°,∴CD=AD•tan60°=110×≈190(m),∴BC=BD+CD=110+190=300(m),即该建筑物的高度BC约为300米,故答案为:300.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,熟练应用锐角三角函数关系是解题关键.5.(2018·某某某某·3分)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°.∵BC=DE=6m,∴AE=DE•tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m.故答案为:9.5.三.解答题1. (2018·某某贺州·8分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)【解答】解:过点C作CM⊥AB,垂足为M,在Rt△ACM中,∠MAC=90°﹣45°=45°,则∠MCA=45°,∴AM=MC,由勾股定理得:AM2+MC2=AC2=(20×2)2,解得:AM=CM=40,∵∠ECB=15°,∴∠BCF=90°﹣15°=75°,∴∠B=∠BCF﹣∠MAC=75°﹣45°=30°,在Rt△BCM中,tanB=tan30°=,即=,∴BM=40,∴AB=AM+BM=40+40≈40+40×1.73≈109(海里),答:A处与灯塔B相距109海里.2. (2018·某某某某·8分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30°,测得瀑布底端B点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C.G、F三点在同一直线上,CF⊥AB于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【分析】过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,在Rt△CMD中,通过解直角三角形可求出CM的长度,进而可得出MF、DN的长度,再在Rt△BDN、Rt△ADN中,利用解直角三角形求出BN、AN的长度,结合AB=AN+BN即可求出瀑布AB的高度.【解答】解:过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,如图所示.在Rt△CMD中,CD=20m,∠DCM=40°,∠CMD=90°,∴CM=CD•cos40°≈15.4m,DM=CD•sin40°≈12.8m,∴DN=MF=CM+CG+GF=60m.在Rt△BDN中,∠BDN=10°,∠BND=90°,DN=60m,∴BN=DN•tan10°≈10.8m.在Rt△ADN中,∠ADN=30°,∠AND=90°,DN=60m,∴AN=DN•tan30°≈34.6m.∴AB=AN+BN=45.4m.答:瀑布AB的高度约为45.4米.【点评】本题考查了解直角三角形的应用中的仰角俯角问题及坡度坡角问题,通过解直角三角形求出AN、BN的长度是解题的关键.3. (2018·某某某某·7分)如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数).【分析】过C作CD垂直于AB,根据题意求出AD与BD的长,由AD+DB求出AB的长即可.【解答】解:过C作CD⊥AB,在Rt△ACD中,∠A=45°,∴△ACD为等腰直角三角形,∴AD=CD=AC=50海里,在Rt△BCD中,∠B=30°,∴BC=2CD=100海里,根据勾股定理得:BD=50海里,则AB=AD+BD=50+50≈193海里,则此时船锯灯塔的距离为193海里.【点评】此题考查了解直角三角形﹣方向角问题,熟练掌握各自的性质是解本题的关键.4.(2018·某某省某某·7分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)【分析】如图作AE⊥BD于E.分别求出BE.DE,可得BD的长,再根据CD=BD﹣BC计算即可;【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),答:标语牌CD的长为6.3m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.5.(2018·某某省某某·8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,X角∠HAC 为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)【分析】作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF 即可.【解答】解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.【点评】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.6.(2018·某某省某某市)两栋居民楼之间的距离CD=30米,楼AC和B D均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.【解答】解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m.∵∠BFH=∠α=30°.在Rt△BFH中,BH=,,答:此刻B楼的影子落在A楼的第5层;(2)连接BC\1BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.7.(2018·某某省某某市)(12.00分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A.B.C.D.M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题;【解答】解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.8. (2018•呼和浩特•8分)如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)解:作DH⊥BC于H.设AE=x.∵DH:BH=1:3,在Rt△BDH中,DH2+(3DH)2=6002,∴DH=60,BH=180,在Rt△ADE中,∵∠ADE=45°,∴DE=AE=x,∵又HC=ED,EC=DH,∴HC=x,EC=60,在Rt△ABC中,tan33°=,∴x=,∴AC=AE+EC=+60=.答:山顶A到地面BC的高度AC是米9. (2018•某某•8分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)【分析】根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.【解答】解:由题意得:∠DCA=60°,∠DCB=45°,在Rt△CDB中,tan∠DCB=,解得:DB=200,在Rt△CDA中,tan∠DCA=,解得:DA=200,∴AB=DA﹣DB=200﹣200≈146米,轿车速度,答:此车没有超过了该路段16m/s的限制速度.【点评】本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.10. (2018•莱芜•9分)在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C.E.D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)【分析】过点B作BF⊥AC于F,BG⊥CD于G,根据三角函数和直角三角形的性质解答即可.【解答】解:过点B作BF⊥AC于F,BG⊥CD于G,在Rt△BAF中,∠BAF=65°,BF=AB•sin∠×0.9=0.72,AF=AB•cos∠×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE中,∠AEC=50°,CE=,∴≈1.7,答:小水池的宽DE为1.7米.【点评】此题考查的知识点是解直角三角形的应用﹣仰角俯角问题,关键是本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.11.(2018·某某某某·6分)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD 顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB 的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.【解答】解:延长HF交CD于点N,延长FH交AB于点M,如右图所示,由题意可得,MB=HG=FE=ND=1.6m,HF=GE=8m,MF=BE,HN=GD,MN=BD=24m,设AM=xm,则=xm,在Rt△AFM中,MF=,在Rt△H中,HN=,∴HF=MF+HN﹣MN=x+x﹣24,即8=x+x﹣24,解得,x≈11.7,∴AB=11.7+1.6=13.3m,答:教学楼AB的高度AB长13.3m.12.(2018·某某某某·8分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A.B和点C.D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,则该段运河的河宽为30m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.。

中考数学三角形知识点总结归纳

中考数学三角形知识点总结归纳

中考数学三角形知识点总结归纳提高学习效率并非一朝一夕之事,需要长期的探索和积累,前人的经验是可以借鉴的,但必须充分结合自己的特点。

下面是小编为大家整理的关于中考数学三角形知识点总结,希望对您有所帮助!初中数学三角形知识点总结一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

二、等腰三角形的性质和判定(1)性质1.等腰三角形的两个底角相等(简写成"等边对等角")。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

(2)判定在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

八年级数学全等三角形中考真题汇编[解析版]

八年级数学全等三角形中考真题汇编[解析版]

八年级数学全等三角形中考真题汇编[解析版]一、八年级数学轴对称三角形填空题(难)1.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.2.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE 的长为10,即PE+PF的最小值为10.故答案为10.3.在平面直角坐标系中,点A在x轴的正半轴上,点B在y轴的正半轴上,∠=︒,在x轴或y轴上取点C,使得ABC∆为等腰三角形,符合条件的C点有ABO36__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A为圆心,以AB为半径画弧,与x轴和y轴各有两个交点,但其中一个会与点B重合,故此时符合条件的点有3个;若以点B为圆心,以AB为半径画弧,同样与x轴和y轴各有两个交点,但其中一个与点A 重合,故此时符合条件的点有3个;线段AB 的垂直平分线与x 轴和y 轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.4.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.5.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出下列四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③EF=AB ;④12ABC AEPF S S ∆=四边形,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE 、∠CPF 都是∠APF 的余角,∴∠APE=∠CPF ,∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP ,∴∠PAE=∠PCF,在△APE与△CPF中,{?PAE PCFAP CPEPA FPC∠=∠=∠=∠,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=12S△ABC,①②④正确;而AP=12BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,∴故③不成立.故始终正确的是①②④.故选D.考点:1.全等三角形的判定与性质;2.等腰直角三角形.6.如图,在△ABC中,AB的中垂线交BC于D,AC的中垂线交BC于E,若∠BAC=126°,则∠EAD=_____°.【答案】72°【解析】【分析】根据AB的中垂线可得BAD∠,再根据AC的中垂线可得EAC∠,再结合∠BAC=126°即可计算出∠EAD.【详解】根据AB的中垂线可得BAD∠=B根据AC的中垂线可得EAC∠=C∠18012654B C︒︒︒∠+∠=-=又126BAD DAE EAC BAC︒∠+∠+∠=∠=+C+126B DAE︒∴∠∠∠=72DAE︒∴∠=【点睛】本题主要考查中垂线的性质,重点在于等量替换表示角度.7.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF ≌△GDE ,转换BF=GE ,然后即可求得其最小值.【详解】以BD 为边作等边三角形BDG ,连接GE ,如图所示:∵等边三角形BDG ,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG ,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD ,即∠BDF=∠GDE∴△BDF ≌△GDE (SAS )∴BF=GE当GE ⊥AC 时,GE 有最小值,如图所示GE′,作DH ⊥GE′∴BF=GE= CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.8.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

(人教版)2020中考数学试题分类汇编 考点20 等腰三角形、等边三角形和直角三角形(含解析)

(人教版)2020中考数学试题分类汇编 考点20 等腰三角形、等边三角形和直角三角形(含解析)

考点20 等腰三角形、等边三角形和直角三角形一.选择题(共5小题)1.(2019•湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.2.(2019•宿迁)若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8 D.6【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【解答】解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.3.(2019•扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.4.(2019•淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C.D.8【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.5.(2019•黄冈)如图,在Rt△ABC中,∠A CB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选:C.二.填空题(共12小题)6.(2019•成都)等腰三角形的一个底角为50°,则它的顶角的度数为80°.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.7.(2019•长春)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.8.(2019•哈尔滨)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.9.(2019•吉林)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36 度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.10.(2019•淮安)若一个等腰三角形的顶角等于50°,则它的底角等于65 °.【分析】利用等腰三角形的性质及三角形内角和定理直接求得答案.【解答】解:∵等腰三角形的顶角等于50°,又∵等腰三角形的底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.11.(2019•娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF= 6 cm.【分析】先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,又S△ABC=AC•BF,将AC=AB 代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,∵S△ABC=AC•BF,∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.12.(2019•桂林)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是 3 .【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:313.(2019•徐州)边长为a的正三角形的面积等于.【分析】根据正三角形的性质求解.【解答】解:过点A作AD⊥BC于点D,∵AD⊥BC∴BD=CD=a,∴AD==a,面积则是:a•a=a2.14.(2019•黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n= ()n.【分析】由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n的面积为()n.故答案为:()n.15.(2019•湘潭)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= 30°.【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.又点D是边BC的中点,∴∠BAD=∠BAC=30°.故答案是:30°.16.(2019•天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.【分析】直接利用三角形中位线定理进而得出DE=2,且DE∥AC,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【解答】解:连接DE,∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=2,且DE∥AC,BD=BE=EC=2,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=1,故EF==,∵G为EF的中点,∴EG=,∴DG==.故答案为:.17.(2019•福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.三.解答题(共2小题)18.(2019•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.19.(2019•徐州)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.※精品※试卷※【分析】(A类)连接AC,由AB=AC、AD=CD知∠BAC=∠BCA、∠DAC=∠DCA,两等式相加即可得;(B类)由以上过程反之即可得.【解答】证明:(A类)连接AC,∵AB=AC,AD=CD,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAC+∠DAC=∠BCA+∠DCA,即∠A=∠C;(B类)∵AB=AC,∴∠BAC=∠BCA,又∵∠A=∠C,即∠BAC+∠DAC=∠BCA+∠DCA,∴∠DAC=∠DCA,∴AD=CD.※推荐※下载※。

中考数学试题分类汇编:考点19 三角形和角平分线

中考数学试题分类汇编:考点19 三角形和角平分线

中考数学试题分类汇编:考点19 三角形和角平分线一.选择题(共16小题)1.(柳州)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.2.(贵阳)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【解答】解:根据三角形中线的定义知线段BE是△ABC的中线,故选:B.3.(河北)下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.4.(长沙)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm【分析】结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.5.(福建)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.6.(常德)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.7.(昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90° B.95° C.100°D.120°【分析】依据CO=AO,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.【解答】解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选:B.8.(长春)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44° B.40° C.39° D.38°【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.(黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°, 9.∠ABC=60°,则∠EAD+∠ACD=()A.75° B.80° C.85° D.90°【分析】依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.10.(聊城)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+β D.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.11.(广西)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40° B.45° C.50° D.55°【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.【解答】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.12.(眉山)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45° B.60° C.75° D.85°【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.13.(宿迁)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D 的度数是()A.24° B.59° C.60° D.69°【分析】根据三角形外角性质求出∠DBC,根据平行线的性质得出即可.【解答】解:∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=59°,∵DE∥BC,∴∠D=∠DBC=59°,故选:B.14.(大庆)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30° B.35° C.45° D.60°【分析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB=∠DAB,计算即可.【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,故选:B.15.(常德)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.16.(黄冈)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.二.填空题(共8小题)17.(绵阳)如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB= .【分析】利用三角形中线定义得到BD=2,AE=,且可判定点O为△ABC的重心,所以AO=2OD,OB=2OE,利用勾股定理得到BO2+OD2=4,OE2+AO2=,等量代换得到BO2+AO2=4, BO2+AO2=,把两式相加得到BO2+AO2=5,然后再利用勾股定理可计算出AB的长.【解答】解:∵AD、BE为AC,BC边上的中线,∴BD=BC=2,AE=AC=,点O为△ABC的重心,∴AO=2OD,OB=2OE,∵BE⊥AD,∴BO2+OD2=BD2=4,OE2+AO2=AE2=,∴BO2+AO2=4, BO2+AO2=,∴BO2+AO2=,∴BO2+AO2=5,∴AB==.故答案为.18.(泰州)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为 5 .【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.【解答】解:根据三角形的三边关系,得第三边>4,而<6.又第三条边长为整数,则第三边是5.19.(白银)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c= 7 .【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.20.(永州)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC= 75°.【分析】根据三角板的性质以及三角形内角和定理计算即可;【解答】解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠AD E=75°,故答案为75°.21.(滨州)在△ABC中,若∠A=30°,∠B=50°,则∠C= 100°.【分析】直接利用三角形内角和定理进而得出答案.【解答】解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°22.(德州)如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为 3 .【分析】过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等可得CF=CM,进而可得答案.【解答】解:过C作CF⊥AO,∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF,∵OC=5,OM=4,∴CM=3,∴CF=3,故答案为:3.23.(广安)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF= 2 .【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答.【解答】解:作EH⊥OA于H,∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°,∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2,故答案为:2.24.(南充)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 24 度.【分析】根据线段的垂直平分线的性质得到EA=EC,得到∠EAC=∠C,根据角平分线的定义、三角形内角和定理计算即可.【解答】解:∵DE是AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∴∠FAC=∠EAC+19°,∵AF平分∠BAC,∴∠FAB=∠EAC+19°,∵∠B+∠BAC+∠C=180°,∴70°+2(∠C+19°)+∠C=180°,解得,∠C=24°,故答案为:24.三.解答题(共2小题)25.(淄博)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【分析】过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.26.(宜昌)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.【分析】(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°, ∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年中考数学试题汇编----- 三角形的基础知识
整理编辑 陶云龙
一、选择题
1.(2010广东广州)在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的
长是( )
A .2.5
B .5
C .10
D .15
2.(2010湖南益阳)如图2,已知△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且
PA =PB .下列确定P 点的方法正确的是( )
A.P 为∠A 、∠B 两角平分线的交点
B.P 为∠A 的角平分线与AB 的垂直平分线的交点
C.P 为AC 、AB 两边上的高的交点 D.P 为AC 、AB 两边的垂直平分线的交点
3.(2010 浙江义乌)下列长度的三条线段能组成三角形的是( )
A .1、2、3.5
B .4、5、9
C .20、15、8
D .5、15、8
4.(2010山东济宁)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是( )
A . 直角三角形
B . 锐角三角形
C . 钝角三角形
D . 等边三角形
5.(2010四川凉山)将一副三角板按图中的方式叠放,则角α等于( )
A .75
B .
60
C .
45 D .30
6.(2010 重庆)如图,点B 是△ADC 的边AD 的延长线上一点,DE
∥AC .若︒=∠50C ,︒=∠60BDE ,则CDB ∠的度数等于( )
A .︒70
B .100︒
C .︒110
D .120︒
7.(2010 河北)如图1,在△ABC 中,D 是BC 延长线上
一点,∠B = 40°,∠ACD = 120°,则∠A 等于( )
A .60°
B .70°
C .80°
D .90°A B C P 2图A
B C D 40°
120° 图1
8.(2010湖北鄂州)如图,AD 是△ABC 中∠BAC 的平分线,D E ⊥AB 交AB 于点E,DF ⊥AC 交AC 于点F,S △ABC =7,DE=2,AB=4,则AC 长是( )
A.4
B.3
C.6
D.5
9.(2010年山西)现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm ,从中任取三根木棒,能组成三角形的个数为( )
A .1个
B .2个
C .3个
D .4个
10.(2010云南昆明)如图,在△ABC 中,CD 是∠ACB 的
平分线,∠A = 80°,∠ACB=60°,那么∠BDC=( )
A .80°
B .90°
C .100°
D .110° 二、填空题
1.(2010安徽蚌埠)在ABC ∆中,E D 、分别是AC BC 、上
的点,CD BD CE AE 2,2==, BE AD 、交于点F ,若3=∆ABC S ,则四边形DCEF 的面积为________。

2.(2010四川凉山)已知三角形两边长是方程560x x -+=的两
个跟,则三角形的第三边c 的取值范围是 。

3.(2010 义乌)在直角三角形中,满足条件的三边长可以是 .(写出一组即可)
4.(2010 山东省德州)电子跳蚤游戏盘是如图所示的△ABC ,AB =AC =BC =6.如果跳蚤开始时在BC 边的P 0处,BP 0=2.跳蚤第一步从P 0跳到AC 边的P 1
(第1次落点)处,且CP 1= CP 0;第二步从P 1跳到AB 边的P 2
(第2次落点)处,且AP 2= AP 1;第三步从P 2跳到BC 边的P 3
(第3次落点)处,且BP 3= BP 2;…;跳蚤按照上述规则一直跳
下去,第n 次落点为P n (n 为正整数),则点P 2009与点P 2010之间
的距离为_________.
5.(2010年贵州毕节)三角形的每条边的长都是方程2680x x -+=的根,则三角形的周
长是 .
6.(2010湖南郴州)如图3,一个直角三角形纸片,剪去直角
后,得到一个四边形,则12∠+∠= 度.
三、解答题
1.(2010四川广安)某学校花台上有一块形如右图所示的三
角形
D A B C 第10题
A B C 0 P 1 P 2 P 3 第15题图 21
ABC地砖,现已破损.管理员要对此地砖测量后再去市场加工一块形状和大小与此完全相同的地砖来换,今只有尺子和量角器,请你帮他设计一个测量方案,使其加工的地砖能符合要求,并说明理由
(本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档