2011概率论与数理统计复习题

合集下载

概率论与数理统计考试试题及答案

概率论与数理统计考试试题及答案

重庆西南大学 2012 至 2013 学年度第 2 期概率论与数理统计 试题(A )试题使用对象: 2011 级 专业(本科)1.设,,A B C 表示三个随机事件,则,,A B C 中至少有两个事件发生可表示为 ( ) A. A B C ⋃⋃ B. ABC C. AB BC AC ⋃⋃ D. ABC2.设随机事件A 与B 互不相容,且()0,()0P A P B >>,则( ) A. ()1()P A P B =-B. ()()()P AB P A P B =C. ()1P A B ⋃=D. ()1P AB =3.某射手命中目标的概率为P, 则三次射击中至少有一次命中的概率为( ) A. P 3B. (1-P)3C. 1-P 3D. 1-(1-P)34.设随机变量X 的概率密度为, 02()20, xx f x ⎧<<⎪=⎨⎪⎩;其它,则(11)P X -≤≤=( )A. 0B. 0.25C. 0.5D. 15.若随机变量()1D X =,则 (2)D X =( ) A .2 B. 3 C. 4 D. 5二、填空题(本题共5小题,每小题4分,共20分)1.设()0.6,()0.5P A P B ==,且()0.4P AB =,求()P A B ⋃= .2.设()0.7P A =,则()P A = .3.有5人排成一排照相,则其中,a b 两人不能相邻照相的概率= .4.5.某工厂每天生产中出现的次品数ξ的概率分布如下表,则平均每天出次品 件.ξ 1 2 3 4P 0.2 0.3 0.4 0.1三、 计算题(本题共6小题,1-5小题每题8分,第6小题6分)1. 有三只同样的箱子,A 箱中有4只黑球1只白球,B 箱中有3只黑球3只白球, C 箱中有3只黑球5只白球,现任取一箱,再从中任取一球,求(1)此球是白球的概率;(2)若为白球,求出自B 箱的概率.2. 设随机变量X 与Y 的分布列为: X 0 1 3 Y 0 1 P12 38 18 , P 13 23求:(1)()E X ;(2)(23)E Y +. 3. 设X 满足如下分布律X k = -1 2 3()P X k = 14 12 14求X 的分布函数,并求135(),(),(23).222P X P X P X ≤<≤≤≤ 4. 设X 是连续性随机变量,其密度函数为2(42), 02,()0, k x x x f x ⎧-<<=⎨⎩其他,试求:(1)常数k 的值;(2)(1).P X > 5. 已知X 的分布律为:X -1 0 1 2k P 18 18 14 12求21221,Y X Y X =-=的分布律. 6. 设随机变量X 的密度函数分别为:2, 01()0, x x f x ≤≤⎧=⎨⎩其他, 求()E X .四、 证明题(共14分,每小题7分)1. 证明:设X 是一个随机变量,若2(),()E X E X 存在,则22()()()D X E X E X =-.2. 证明:设,X Y 是随机变量,若,X Y 相互独立,证明()()()D X Y D X D Y +=+.重庆三峡学院 2012 至 2013 学年度第 2 期 概率与数理统计 课 程 期 末 考 查A 卷 参考答案一、单项选择题(每小题4分,本题共20分)1. C ;2. D ;3. D ;4. B ;5. C二、填空题(每小题4分,本题共20分)1. 0.7;2. 0.3;3.35; 4. 0.6; 5. 2.4 三、计算题(本题共6小题,1-5小题每题8分,第6小题6分)1. 解:设{}B {B }{}A A C ===箱中取球,箱中取球,C 箱中取球,{}D =取白球,则1()()()3P A P B P C ===,(1)()()(|)()(|)()(|)P D P A P D A P B P D B P C P D C =++11131553.353638120=⨯+⨯+⨯= (4分)(2)()(|)(|)()(|)()(|)()(|)P B P D B P B D P A P D A P B P D B P C P D C =++132036.11131553353638⨯==⨯+⨯+⨯(8分)2. 解:(1)1313()013;2884E X =⨯+⨯+⨯= (4分)(2)122()01333E Y =⨯+⨯= ; 213(23)2()(3)2()32333E Y E Y E E Y +=+=+=⨯+= . (8分)3. 解:(1)0,11,124()3,2341,3x x F x x x <-⎧⎪⎪-≤<⎪=⎨⎪≤<⎪⎪≥⎩(2分)(2)11();24P X ≤= 35531()()();22222P X F F <≤=-=3(23).4P x ≤≤=(6分)4. 解:(1)利用()1.f x dx +∞-∞=⎰则2201()(42)f x dx k x x dx +∞-∞==-⎰⎰=8,3k 所以3.8k =(4分)(2)2231131(1)()(42).82P X f x dx x x dx >==-=⎰⎰(8分)5. 解:1Y 的分布律为1Y -3 -1 1 3k P 18 18 14 12(4分)2Y 的分布律为:2Y 0 1 4k P 18 3814(8分)6. 解:102()=()2.3E X xf x dx x xdx +∞-∞=⋅=⎰⎰(6分)四、证明题(共14分,每小题7分)1.证明:由方差的定义有2()[()]D X E X E X =-(3分)22[2()()]E X XE X E X =-+22()2()()2()E X E X E X E X =-+22()()E X E X =-. (7分) 2.证明:2222()[()()] [(())(())] =[(()]2[(()][(()][(()]D X Y E X Y E X Y =E X E X Y E Y E X E X E X E X Y E Y E Y E Y +=+-+-+--+--+-(4分)因为,X Y 相互独立,则有 2[(()][(()]0.E X E X Y E Y --=所以()()()D X Y D X D Y +=+. (7分)重庆西南大学 2012 至 2013 学年度第 2 期概率论与数理统计 试题(B )试题使用对象: 2011 级 专业(本科)1.设,,A B C 表示三个随机事件,则,,A B C 中至少有一个发生可表示为 ( C ) A. A B C ⋃⋃ B. ABC C. AB BC AC ⋃⋃ D. ABC2.设随机事件,A B 相互独立,则( D ) A. ()1()P A P B =-B. ()()()P AB P A P B =C. ()1P A B ⋃=D. ()1P AB =3.某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( C )A. 33()4B. 231()44⨯C. 213(44⨯D. 2241()4C ⨯4.设随机变量X 的概率密度为, 02()0, x x f x <<⎧=⎨⎩;其它,则(01)P X ≤≤=( C )A. 0B. 0.25C. 0.5D. 15.若随机变量()2E X =,则 (21)E X +=( D ) A .2 B. 3 C. 4 D. 5二、填空题(本题共5小题,每小题4分,共20分重庆西南大学 概率论与数理统计1.设()0.8,()0.3P A P B ==,且()0.2P AB =,求()P A B ⋃= 0.9 .2.若随机事件A 的概率2()3P A =,则()P A = . 3.设随机变量X 服从[1,5]上的均匀分布,则(24)P X ≤≤= 0.5 . 4.5.将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为 0.25 .五、 计算题(本题共5小题,每小题10分,共50分)1. 设W 表示昆虫出现残翅,E 表示有退化性眼睛,且()0.125,()0.075P W P E ==,()0.025,P WE =求昆虫出现残翅或退化性眼睛的概率. 2. 设X 是连续性随机变量,其密度函数为2(42), 02,()0, k x x x f x ⎧-<<=⎨⎩其他,试求:(1)常数k 的值;(2)(1).P X > 3.且已知E (X )=0.1,E (X 2)=0.9,求P 1,P 2,P 3.4. 设随机变量X 的概率密度函数为:, 04()80, xx f x ⎧<<⎪=⎨⎪⎩其他,求随机变量28Y X =+的概率密度.5. 设连续型随机变量X 的分布函数为:1()arctan ()2F X A x x =+-∞<<∞ 试求:(1)A 的值;(2)X 的密度函数;(3)X 落在[0,1]内的概率.六、 证明题(共10分)证明:设X 是一个随机变量,若2(),()E X E X 存在,则22()()()D X E X E X =-.。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

2011年10月全国自考概率论与数理统计(经管类)试题(真题)和答案

2011年10月全国自考概率论与数理统计(经管类)试题(真题)和答案

2011年10月全国自考概率论与数理统计(经管类)试题和解析一、单项选择1.设随机变量A 与B 相互独立,P (A )>0,P (B )>0,则一定有P (A ∪B )=()A .P (A )+P (B ) B .P (A )P (B )C .1-P (A )P (B )D .1+P (A )P (B )答案:C 解析:因为A 和B 相互独立,则A 与B 相互独立,即P (A B )=P (A )P (B ).而P (A ∪B )表示A 和B 至少有一个发生的概率,它等于1减去A 和B都不发生的概率,即P (A ∪B )=1- P (A B )=1- P (A )P (B ).故选C. 2.设A 、B 为两个事件,P (A )≠P (B )>0,且A B ⊃,则一定有()A .P (A |B )=1 B .P (B |A )=1C .P (B |A )=1D .P (A |B )=0答案:A 解析:A ,B 为两个事件,P (A )≠P (B )>0,且A ⊃B ,可得B 发生,A 一定发生,A 不发生,B 就一定不发生,即P (A |B )=1,P (B |A )=1.则P {-1<X ≤1}=()A .0.2B .0.3C .0.7D .0.5 答案:D4.下列函数中,可以作为连续型随机变量的概率密度的是()A . 3sin ,()20,x x f x ππ⎧≤≤⎪=⎨⎪⎩其他B .3sin ,()20,x x f x ππ⎧-≤≤⎪=⎨⎪⎩其他C .3cos ,()20,x x f x ππ⎧≤≤⎪=⎨⎪⎩其他D .31cos ,()20,x x f x ππ⎧-≤≤⎪=⎨⎪⎩其他答案:B 解析:连续型随机变量的概率密度有两条性质:(1)()f x ≥0;(2)0 1 20.2 0.3 0.5X P 3.若随机变量X 的分布为了,()1f x dx +∞-∞=⎰. A选项中,3[,]2x ππ∈时,()f x =sin x ≤0;B选项中,3[,]2x ππ∈时,()f x ≥0,且()1f xd x +∞-∞=⎰;C 选项中,()fx ≤0;D 选项中,()f x ≥0,()f x dx +∞-∞=⎰2π+1.故只有B 是正确的. 5.若()1,()3,E X D X =-=则E (32X -4)=() A .4 B .8 C .3 D .6答案:B 解析:E (2X )=2()[()]D X E X +=4,E (32X -4)=3E (2X )-4=8.6.设二维随机变量(X ,Y )的密度函数⎩⎨⎧≤≤≤≤=,y x y x f 其他,0;10,10,1),(则X 与Y ()A .独立且有相同分布B .不独立但有相同分布C .独立而分布不同D .不独立也不同分布答案:A 解析:分别求出X ,Y 的边缘分布得:()X f x =⎩⎨⎧≤≤,x 其他,0,10,1()Y f y =⎩⎨⎧≤≤,y 其他,0,10,1由于(,)f x y = ()X f x ·()Y f y ,可以得到X 与Y 相互独立且具有相同分布.7.设随机变量X ~B (16,12),Y ~N (4,25),又E (XY )=24,则X 与Y 的相关系数XY ρ=()A .0.16B .-0.16C .-0.8D .0.8答案:C 解析:因为X ~B (16,12),Y ~N (4,25),所以E (X )=16×12=8,E (Y )=4, D(X )=16×12×12=4,D (Y )=25,所以XY ρ=0.8==-.8.设总体X ~N (μ, 2σ),12,,,n x x x 为其样本,则Y =2211()ni i x μσ=-∑服从分布() A .2(1)n χ- B .2()n χ C .(1)t n - D .()t n答案:B 解析:因为12,,,n x x x ~N (μ,2σ),则ix μ-~N (0,2σ),()i x μσ-~N (0,1),故Y =2211()ni i x μσ=-∑=21()ni i x μσ=-∑的分布称为自由度为n 的2χ分布,记为2()n χ.9.设总体X ~N (μ, 2σ),其中2σ已知,12,,,n x x x 为其样本,x =11ni i x n =∑,作为μ的置信区间(0.025x u -0.025x u +),其置信水平为()A .0.95B .0.05C .0.975D .0.025答案:A 解析:本题属于2σ已知的单个正态总体参数的置信区间,故0.025=2α,α=0.05,置信水平为1-α=0.95.10.总体X ~N (μ, 2σ),12,,,n x x x 为其样本,x 和2s 分别为样本均值与样本方差,在2σ已知时,对假设检验0010::H H μμμμ=↔≠应选用的统计量是() ABCD答案:A 解析:对假设检验0010::H H μμμμ=↔≠,由于2σ已知,应选用统计量u=x 的标准化随机变量,具有的特点是:(1)u 中包含所要估计的未知参数μ;(2) u 的分布为N (0,1),它与参数μ无关.二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。

8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。

9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。

但当增⼤置信⽔平时,则相应的置信区间长度总是。

⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。

设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。

三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

2011年1月概率论与数理统计(经管类)试题及答案

2011年1月概率论与数理统计(经管类)试题及答案

全国2011年1月高等教育自学考试概率论与数理统计(经管类)试题(课程代码:04183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1. 袋中有5个红球,3个白球,2个黑球,现从中任取3个球,其恰为一红一白一黑的概率为( )A. 41B. 31C. 21D. 432. 设A 、B 为两件事件,已知3.0)(=A P ,则有( )A. 1)()(=+A B P A B PB. 1)()(=+A B P A B PC. 1)()(=+A B P A B PD. 7.0)(=B P 3. 设,0)(,0)(>>B P A P 则由事件A ,B 相互独立,可推出( ) A. )()()(B P A P B A P +=⋃ B. )()(A P B A P = C. )()(A P A B P = D. B A =4. 已知随机变量X 只能取值-1,0,1,2,其相应概率依次为,167,85,43,21cc c c 则}0|1{≠<X X P =( )A. 254B. 258C. 2512D. 25165. 下列各函数是随机变量X 的分布函数的是( ) A. +∞<<-∞+=x x x F ,11)(2B. +∞<<-∞=-x e x F x ,)(C. +∞<<-∞+=x x x F ,arctan 2143)(πD. ⎪⎩⎪⎨⎧>+≤=0,10,0)(x xxx x F 6. 设随机变量(X,Y )只取如下数组中的值:(0,0),(-1,1),(-1,31),(2,0)且相应的概率依次为,45,41,1,21cc c c 则c 的 值为( )A. 2B. 3C. 4D. 57. 设(X,Y )的联合概率密度为),(y x f ,则=>}1{X P ( ) A. ⎰⎰+∞∞-∞-dy y x f dx ,),(1B. ⎰+∞∞-dx y x f ),( C. ⎰∞-1,),(dx y x f D. ⎰⎰+∞∞-+∞dy y x f dx ),(18. 设随机变量X 服从参数为λ的泊松分布,即)(~λP X ,若已知),2()1(===X P X P 则X的期望)(X E 是( )A. 0B. 1C. 2D. 39. 设n X 为n 次独立重复试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则对任意的=⎭⎬⎫⎩⎨⎧≥->∞→εεp n X P n n lim,0( ) A. 0 B. ε C. p D. 110. 已知一元线性回归方程为x y 1ˆ6ˆβ+=,且4,2==y x ,则1ˆβ=( ) A. -1 B. 0 C. 1 D. 2 二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

概率论与数理统计复习资料

概率论与数理统计复习资料

山东科技大学2010—2011学年第一学期《概率论与数理统计》考试试卷(A 卷)一、填空题(本大题共6小题,每小题3分,总计18分)1、1.设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P 。

2、设D(X)=4, D(Y)=9, 0.4xy ρ=,则D(X+Y)= 。

3、设随机变量X 服从参数为2的泊松分布,则应用切比雪夫不等式估计得{}22P X -≥≤ 。

4、设随机变量X 的期望()3E X =,方差()5D X =,则期望()24E X ⎡⎤+=⎣⎦。

5、设123,,X X X 是来自正态总体X ~(),1N μ的样本,则当a = 时,12311ˆ32X X aX μ=++是总体均值μ的无偏估计。

6、设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信 度为1α-的单侧置信区间的下限为 。

二、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共6个小题,每小题3分,总计18分)1、设随机变量的概率密度21()01qx x f x x -⎧>=⎨≤⎩,则q=( )。

(A)1/2 (B)1 (C)-1 (D)3/22、设每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得)1(n r r ≤≤次成功的概率为( ).(A)r n r r n p p C ----)1(11;(B)r n r r n p p C --)1( ;(C)1111)1(+-----r n r r n p pC ;(D)r n r p p --)1(. 3、设)4,5.1(~N X ,则P{-2<x<4}=( )。

(A)0.8543 (B)0.1457 (C)0.3541 (D)0.25434、设,X Y 相互独立,且211~(,)X N μσ,222~(,)Y N μσ,则Z X Y =-服从正态分布,且Z 服从( ).(A) 22112(,)N μσσ+ ; (B)22212(,)N μσσ⋅; (C)221212(,)N μμσσ-+; (D)221212(,)N μμσσ++。

概率论与数理统计期末复习参考试题

概率论与数理统计期末复习参考试题

<概率论与数理统计>期末复习参考试题一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件 1〕A 、B 、C 至少有一个发生 2〕A 、B 、C 中恰有一个发生 3〕A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

那么P(B )A =3.假设事件A 和事件B 互相独立, P()=,A αP(B)=0.3,P(AB)=0.7,那么α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅那么A=______________7. 随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,那么a =________b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,那么{0}P x <= _________ 9. 一射手对同一目的独立地进展四次射击,假设至少命中一次的概率为8081,那么该射手的命中率为_________10.假设随机变量ξ在〔1,6〕上服从均匀分布,那么方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,那么{max{,}0}P X Y ≥= 12.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{a b,c}X Y ≤≤<= 13.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,那么〔x,y 〕关于X 的边缘概率密度在x = 1 处的值为 15.)4.0,2(~2-N X ,那么2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 互相独立,那么(3)D X Y -=17.设X的概率密度为2()x f x -=,那么()D X =18.设随机变量X 1,X 2,X 3互相独立,其中X 1在[0,6]上服从均匀分布,X 2服从正态分布N 〔0,22〕,X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,那么D 〔Y 〕=19.设()()25,36,0.4xy D X D Y ρ===,那么()D X Y +=20.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或~ 。

自学考试 04183-概率论与数理统计(经管类) 2007-2011历年真题版

自学考试 04183-概率论与数理统计(经管类) 2007-2011历年真题版

——给所有为知识而追求的人朋友是会计专业,要参加自考2011年10月的自考,报了两门公共课:概率与数理统计/线性代数,要我给她辅导下。

回想起自己的考研经历,那时都是根据考试大纲/考点复习的,不知道为什么自考没有找到考试大纲,如果有这个东西的话希望有人分享下。

其他方面,个人觉得做真题是最有效果的,因此特意花了点时间整理了历年试题(奇怪的是没找到2011年7月全国卷)。

在此分享给大家,祝她考试顺利,也祝所有参加考试的人,考试顺利。

为了照顾2003版的朋友,以及以后的更新,这里以doc格式上传。

如果大家有新的试题,也请及时更新与共享。

谢谢!注:更新时麻烦更新目录,以方便大家查找。

其中,有个别目录出现乱码,本人没有找到原因,是手动删除的。

目录浙江省2011年7月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。

全国2011年1月自考概率论与数理统计(经管类)试题 ............... 错误!未定义书签。

全国2011年1月自考概率论与数理统计(经管类)参考答案 ....... 错误!未定义书签。

浙江省2011年1月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。

全国2010年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2010年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2010年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2008年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计练习
一、单项选择题
1. 设当事件A 与B 同时发生时C 也发生, 则 ( ).
(A) B A 是C 的子事件; (B)AB C =;
(C) AB 是C 的子事件; (D) C 是AB 的子事件.
2. 设事件=A {甲种产品畅销, 乙种产品滞销}, 则A 的对立事件为 ( ).
(A) 甲种产品滞销,乙种产品畅销; (B) 甲种产品滞销;
(C) 甲、乙两种产品均畅销; (D) 甲种产品滞销或者乙种产品畅销.
3. 设X 为随机变量,且2()0.7,()0.2,E X D X ==则( )式一定成立:
A .13{}0.222
P X -<<≥ B
.{0.6P X >≥ C
.{00.6P X <<≥ D
.{00.6P X <<≤
4. 已知()0P A >,()0P B >。

如果(|)(|)P A B P B A =,则( )
A. A B = ;
B. ()()P A P B =;
C. A,B 相互独立; D .A,B 互不相容
5. 已知随机变量X 服从均值为

等于( ) A. λ B. 1λ
D .1
6.差事件:A B -发生当且仅当( )
A . A 发生而
B 不发生; B .A 与B 同时发生;
C . A 不发生,B 发生;
D .A 与B 不能同时发生.
7. 设A ,B ,C 为三个事件,用A ,B ,C 的运算关系表示事件:A ,B ,C 中至少有两个发生( )
A .A
B B
C AC ⋃⋃ B .ABC C .ABC
D .A B C ⋃⋃
8. 若连续型随机变量X 的概率密度为1,0,()0,0.x e x x x θϕθ-⎧>⎪=⎨⎪≤⎩
,其中0θ>是常数,则称X 服从
( )
A .泊松分布
B .均匀分布
C .指数分布
D .正态分布
9. 对于任意两个事件A 和B ,则()P A B -= ( )
A. ()()P A P AB -
B. ()()()P A P B P AB -+
C. ()()P A P B - D . ()()()P A P B P AB +-
10. 设事件B A ,相互独立,则( )
A .1)(=⋃
B A P B .)(AB P =0
C .)()()(B P A P AB P =
D .0)()(=B P A P
二、填空题
1.已知,5.0)(=A P ()0.2P AB =, 4.0)(=B P , 则(1) )(AB P = ;
(2) )(B A P -= ;(3) )(B A P ⋃= ;(4) )(B A P = 。

2.若~(0,1),X N 则0(0)Φ= ;{0}P X == ; ()()x x Φ+Φ-= ;()x dx ϕ∞
-∞=⎰ ;。

3.随机变量X 的概率密度函数为
,0,()0,0.x e x f x x -⎧>=⎨≤⎩,则()E X = ;()D X = 。

4.若~(1,3),~(2,4)X N Y N 且X ,Y 相互独立,23Z X Y =-,则()E Z = ;()D Z = 。

5.已知11111(),(),(),(),(),2351015P A P B P C P AB P AC =====
11(),(),2030P BC P ABC == 则
(1) ()P A B ⋃= ; (2) ()P A B = ; (3) ()P A B C ⋃⋃= ; (4) ()P A B C = ;(5) ()P A B C = ;(6) ()P A B C ⋃= ;
6. 设X ~U[2,4],则{3}P X > =
7. 已知)4.0,2(~2-N X ,则2(3)E X += 。

8.已知2
1)|(,31)|(,41)(===B A P A B P A P ,则=⋃)(B A P 9.设)(~λE X ,且DX=4,则=λ
10. 三次独立重复试验中至少有一次试验成功的概率为
27
19 ,三次都成功的概率为为 。

三、解答题
1.观察某地区未来5天的天气情况, 记i A 为事件: “有i 天不下雨”, 已知),()(0A iP A P i = .5,4,3,2,1=i 求下列各事件的概率:
(1)5天均下雨; (2) 至少一天不下雨
2. 学校派出2名一级、5名二级、3名三级运动员组队参赛,其获胜的概率分别为0.9 , 0.8 , 0.7 ; 现任选一人上场比赛,(1)求结果失败的概率 ;
( 2)已知结果败了,则该运动员是二级的概率为多少?
3. 甲口袋中有3个白球,2个黑球;乙口袋中有4个白球,4个黑球。

从甲口袋任取2个球放入乙口袋,然后从乙口袋中任取1球。

求(1)此球为白球的概率。

(2)若从乙袋中取出的是白球,问从甲袋中放入乙袋的是两个白球的概率.
4.. 已知2
~(2,),{24}0.3, {0}N P P ξσξξ<<=<且求
5. 设ξ的分布函数为 330 ()1 x a F x a x a x ≤⎧⎪=⎨->⎪⎩(0)a >, 试求(23)E ξ+
6. 已知 ⎪⎪⎩
⎪⎪⎨⎧-=06)(~kx x x ϕξ 其他1002<≤<≤-x x 求:(1)常数k (2)ξ分布函数F(x) (3) p(x>-1)
(4) 21ηξ=+的密度函数 (2) E η
7. 已知),(ηξ的联合分布律为
求ξ与η的相关系数。

8. 设二维随机变量),(ηξ的概率密度为
⎩⎨⎧≥≥=--其他,且,0,21,),(2y x ke y x y x ϕ
(1)求常数k ; (2) 关于ξ与η的边缘概率密度函数.(3) ξ与η是否独立?
9. 某企业生产灯泡的合格率为0.6。

求10000个灯泡中合格灯泡数在5800到6200之间的概率。

10.某单位有200台电话分机,每台分机有5%的时间要使用外线通话。

假定每台分机是否使用外线是相互独立的,问该单位总机要安装多少条外线,才能以90%以上的概率保证分机用外线时不等待?((1.28)0.90Φ=)
11. 某市保险公司开办“重大人参意外伤害”(以下简称“大伤”)保险业务。

被保险人每年向保险公司交保险金120元。

若被保险人在一年内发生了(一次或多次)“大伤”,本人或其家属可从保险公司获得一次(仅一次)3万元的赔偿金。

该市历年发生“大伤”的概率为0.0003,且该市现有9万人参加此项保险。

求保险公司在一年内,从此项业务中至少获得954万元收益的概率。

((2.90)0.9981Φ=)。

12. 设(.,,,21n x x x ⋅⋅⋅⋅⋅⋅)是从总体X 中取出的样本观察值,若
⎩⎨⎧≤≤+=其他010)1()(~x x x X θ
θϕ,求未知参数θ的矩估计量与最极大似然估计量。

13.设(.,,,21n x x x ⋅⋅⋅⋅⋅⋅)是从总体X 中取出的样本观察值,若X 服从0-1分布,求未知参数p 最大似然估计量.
14 某加工零件长度)3,(~μN X ,其中μ未知,现抽样9次,测得长度如下: 10.1, 12.0 , 11.8, 12.5, 10.0 , 11.1 , , 11.0 , 12.0 , ;求:μ的置信度为0.95的置信区间。

15. 某地随机抽查了10个公司的外债如下(单位:万元): 12, 18, 11,-6, 8, 9,
12, 7, -2, 10;若外债服从正态分布,求其均值和方差的0.90的置信区间。

90.0)28.1(=Φ 95.0)65.1(=Φ 975.0)96.1(=Φ 8159.0)90.0(=Φ 8289.0)95.0(=Φ 8106.0)884.0(=Φ 383
.1)9(1.0=t 372.1)10(1.0=t 363.1)11(1.0=t 83.1)9(05.0=t 81.1)10(05.0=t 80.1)11(05.0=t
68.14)9(21.0=x
99.15)10(21.0=x 28.17)11(21.0=x 92.16)9(205.0=x
31.18)10(205.0=x 68.19)11(205.0=x 168.4)9(29.0=x
20.9(10) 4.865x = 578.5)11(29.0=x 325.3)9(295.0=x 94
.3)10(295.0=x 575.4)11(295.0=x。

相关文档
最新文档