简单随机抽样(教教案)

合集下载

《简单随机抽样》教案

《简单随机抽样》教案

简单随机抽样教案教学目标一、知识与技能1.通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2.了解简单随机抽样的意义;二、过程与方法1.通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2.通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1.使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2.通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否适宜;教学方法引导发现法、启发猜测、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一局部学生进展调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改良调查方法二、新课学习方法1:调查学校田径队的30名同学选取的样本是田径队的同学,他们暑假中体育活动多方法2:调查每个班的男同学只调查男同学,没调查女同学方法3:从每班抽取1名学生进展调查选取的样本容量太小,不能客观的反映全校学生方法4:选取每个班级中的一半学生进展调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一局部样本数据就可以对于总体情况进展估计。

如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否那么估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。

简单随机抽样的含义:为了获取能够客观反映问题的结果,通常按照总体中每个个体都有一样的被抽取时机的原那么抽取样本,这种抽取样本的方法叫做简单随机抽样。

注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。

在学校门口随机询问,或者利用学号,抽取一定数量的学生进展调查。

简单随机抽样教案

简单随机抽样教案

简单随机抽样教案一、教学目标1.了解简单随机抽样的定义和特点;2.掌握简单随机抽样的抽样方法;3.理解简单随机抽样的应用场景。

二、教学内容1. 简单随机抽样的定义和特点简单随机抽样是指从总体中随机地抽取n个样本,使得每个样本被抽中的概率相等。

简单随机抽样的特点有:•抽样结果具有代表性;•抽样过程简单易行;•抽样误差可控制。

2. 简单随机抽样的抽样方法简单随机抽样的抽样方法有以下几种:(1)纸条抽签法将总体中每个个体的编号写在纸条上,放入一个容器中,然后从中随机抽取n个纸条,对应的个体即为样本。

(2)随机数表法利用随机数表,从总体中随机抽取n个个体作为样本。

(3)随机数发生器法利用计算机随机数发生器,从总体中随机抽取n个个体作为样本。

3. 简单随机抽样的应用场景简单随机抽样适用于总体中个体之间没有明显差异的情况,例如:•人口普查;•质量检验;•市场调查等。

三、教学过程1. 简单随机抽样的定义和特点教师通过讲解,让学生了解简单随机抽样的定义和特点,并与其他抽样方法进行比较,让学生明确简单随机抽样的优势。

2. 简单随机抽样的抽样方法教师通过实例演示,让学生掌握纸条抽签法、随机数表法和随机数发生器法的抽样方法,并让学生分析各种方法的优缺点。

3. 简单随机抽样的应用场景教师通过实例演示,让学生了解简单随机抽样的应用场景,并让学生思考在实际应用中如何选择合适的抽样方法。

四、教学评价教师可以通过以下方式对学生进行评价:•课堂练习:让学生在课堂上完成简单随机抽样的练习题,检查学生对知识点的掌握情况;•作业评估:布置简单随机抽样的作业,检查学生对知识点的理解和应用能力;•实践评价:让学生在实际应用中进行简单随机抽样,并对抽样结果进行分析和评价。

五、教学反思简单随机抽样是统计学中最基本的抽样方法,对于学生来说,掌握简单随机抽样的定义、特点和抽样方法非常重要。

在教学过程中,教师应该注重实例演示和练习,让学生通过实践掌握知识点,提高学生的应用能力。

《简单随机抽样》教学设计

《简单随机抽样》教学设计

《简单随机抽样》教学设计一、教学内容与内容解析1.内容:统计,简单随机抽样,抽签法,随机数表法。

2.内容解析:本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。

本课题为“简单随机抽样”,主要学习简单随机抽样的理论与方法.从理论上讲,“简单”是指抽取的样本为“简单随机样本”,获取简单随机样本的抽样方法称为简单随机抽样.简单随机抽样要满足以下两个条件:(1)代表性,即要求样本的每个分量X i与所考察的总体X具有相同的概率分布F(X);(2)独立性,X1,X2,…,X n为相互独立的随机变量,也就是说,每个观察结果不影响其它观察结果,也不受其它观察结果的影响.当然在有限总体中,样本的各个观察结果可以是不独立的.在本节课中,要将这些关于随机抽样的理论,用浅显的例子渗透在学生的学习过程中.因此,教学的内容应侧重于如何使抽取的数据能代表总体,即抽取的样本要能反映总体的本质特征.要抓住两个特征展开,要求抽取的样本有代表性,样本的容量要适当,太大没有必要,太小不能反映总体的特征.其次,要体现独立性,在简单随机抽取时,总体中每个个体被抽到的概率是相等的,说明这种抽样的方法是独立的.抽取的样本的分布与总体分布相似度越高,样本的代表就越大.这就为后续学习三种抽样方法的形成与评价提供基础.从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。

《简单随机抽样》示范课教学设计【高中数学教案】

《简单随机抽样》示范课教学设计【高中数学教案】

《简单随机抽样》教学设计1.以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

2.正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

3.通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法。

1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。

2.能够从现实生活或其他学科中提出具有一定价值的统计问题;3.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

4.通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

【教学重点】简单随机抽样的概念,抽签法及随机数法的操作步骤。

【教学难点】对样本随机性的理解。

抽签纸,图表等。

(一)知识回顾统计学:研究客观事物的数量特征和数量关系,它是关于数据的搜集、整理、归纳和分析方法的科学。

统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。

数理统计所要解决的问题是如何根据样本来推断总体?总体、个体、样本、样本容量的概念:总体:所要考察对象的全体。

个体:总体中的每一个考察对象。

样本:从总体中抽取的一部分个体叫做这个总体的一个样本。

样本容量:样本中个体的数目。

(二)新课导入在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意测验,调查兰顿和罗斯福中谁将当选下一届总统。

为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(在1936年电话和汽车只有少数富人拥有),通过分析收回的调查表,显示兰顿非常受欢迎。

于是此杂志预测兰顿将在选举中获胜。

实际选举结果正好相反,最后罗斯福在选举中获胜。

其数据如下:①预测结果出错的原因是什么?抽取的样本不具有代表性,调查结果只能代表富人的意见。

随机抽样教案范文

随机抽样教案范文

随机抽样教案范文讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性.接下来是小编为大家整理的随机抽样教案范文,希望大家喜欢!随机抽样教案范文一一、内容和内容解析1.内容本节课主要内容是让学生了解在客观世界中要认识客观现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确的加以分析,是正确的认识未知现象的基础,也是统计所研究的基本问题.2.内容解析本节课是高中阶段学习统计学的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据.学生在九年义务阶段已经学习了收集、整理、描述和分析数据等处理数据的基本方法.在高中学习统计的过程中还将逐步让学生体会确定性思维与统计思维的差异,注意到统计结果的随机性特征,统计推断是有可能错的,这是由统计本身的性质所决定的.统计有两种.一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如我国进行的人口普查.但是在很多情况下我们无法采用描述性统计对所有的个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计.例如有的产品数量非常的大或者有的产品的质量检查是破坏性的.统计和概率的基础知识已经成为一个未来公民的必备常识.抽样调查是我们收集数据的一种重要途径,是一种重要的、科学的非全面调查方法.它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据来推断总体.其中蕴涵了重要的统计思想样本估计总体.而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则为:保证样本能够很好地代表总体.而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑.本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性.二、目标和目标解析1.目标(1)通过对具体的案例分析,逐步学会从现实生活中提出具有一定价值的统计问题,(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性;(3)以问题链的形式深刻理解样本的代表性.2.目标解析本章章头图列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义.同时通过具体的实例,使学生能够尝试从实际问题中发现统计问题,提出统计问题.让学生养成从现实生活或其他学科中发现问题、提出问题的习惯,培养学生发现问题与提出问题的能力与意识.对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大,出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查,在这个过程中让学生逐步体会到随机抽样的必要性和重要性.抽样调查,就是通过从总体中抽取一部分个体进行调查,借以获得对整体的了解.为了使由样本到总体的推断有效,样本必须是总体的代表,否则就可能出现方便样本.由此在对实例的分析过程中探讨获取能够代表总体的样本的方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系.三、教学问题诊断分析学生在九年义务教育阶段已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对于如何抽样更能使样本代表总体的意识还不强;在以前的学习中,学生的学习内容以确定性数学学习为主;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学,而随机抽样学习则要求学生通过对具体问题的解决,能体会到统计中的重要思想样本估计总体以及统计结果的不确定性.学生已有知识经验与本节要达成的教学目标之间还有很大的差距.主要的困难有:对样本估计总体的思想、对统计结果的不确定性产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑.在教学过程中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的体育锻炼时间,学生的近视率,一批电灯泡的寿命是否符合要求等等.在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本,通过这样一个教学过程,更能激起学生的学习兴趣,能学有所用,拉近知识与实践的距离,培养学生从现实生活或其他学科中提出具有一定价值的统计问题的能力.在这个过程中提升学生对统计抽样概念的理解,初步培养学生运用统计思想表述、思考和理解现实世界中的问题能力,这样教学效果可能会更佳.根据这一分析,确定本课时的教学难点是:如何使学生真正理解样本的抽取是随机的,随机抽取的样本将能够代表总体.四、教学支持条件分析准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学.五、教学过程设计(一)感悟数据、引入课题问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯.问题2:我发现我们班级有很多的同学都是戴眼镜的,谁能告诉我我们班的近视率?普查:为了一定的目的而对考察对象进行的全面调查称为普查.总体:所要考察对象的全体称为总体(population)个体:组成总体的每一个考察对象称为个体(individual)普查是我们进行调查得到全部信息的一种方式,比如我国10年一次的人口普查等.设计意图:通过与学生比较贴近的案例入手,让学生体会到统计是从日常生活中产生的.(二)操作实践、展开课题问题3:如果我想了解榆次二中所有高一学生的近视率,你打算怎么做呢?抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查(sampling investigation).样本:从总体中抽取的一部分个体叫做总体的一个样本(sample).师生活动:以四人小组为单位进行讨论,每个小组派一个代表汇报方案.设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的.列举:一个著名的案例在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车量登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:候选人预测结果%选举结果%Roosevelt4362Landon5738随机抽样教案范文二一、教材背景与内容分析本节内容是新课标实验教材(人教版A版)必修③第二章统计的第一课时。

《简单随机抽样》教案 (公开课获奖)教案 2022青岛版

《简单随机抽样》教案 (公开课获奖)教案 2022青岛版

4.2 简单随机抽样学习目标:1、了解简单随机抽样的概念2、知道简单随机抽样的方法3、知道简单随机抽样经常使用的地方。

4、学习重点:理解和把握简单随机抽样的概念5、学习难点:理解简单随机抽样的方法,并能尝试性的进行简单的操作。

学习过程一创设情境,引入新课交流与发现为了了解本校学生暑期参加体育活动的情况,学校准备抽取一部分学生进行问卷调查,现有四个发放调查问卷的方案,你认为按下面的调查方法取得的结果能放映全校学生的一般情况吗?如果不能,应当如何改进调查方法?方案一:发给学校田径队的30名同学方案二:调查每个班的男同学方案三:从每个班随机抽取1名同学方案四:从每个班抽取一半学生进行调查二合作交流,探索新知1.简单随机抽样的含义为了获取能够客观反映问题的结果,通常按照总体内的每个个体被抽到的机会都相等的原则抽取样本, 则这种抽样方法叫做简单随机抽样.注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素.2.讨论P/88实验与探究,思考:根据你的理解,简单随机抽样有哪些主要特点?(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.三.例题讲解例1:李大伯为了估计一袋大豆种子中大豆的粒数,先从袋中取出50粒,做上记号,然后放回袋中,将豆粒搅匀,再从袋中取出100粒,,从这100粒中,找出带记号的大豆,如果带记号的大豆有两粒,便可以估计出袋中所有大豆的粒数,你知道他是怎样估计的吗?四实际应用1、某校的黑板报上刊登了一篇题为《大部分学生不吃早餐》的报道,文章说。

“通过对课间学校商品部买小食品的20名同学的调查发现16人是因为没有吃早餐而去买零食,由此判断,我校80%的同学在家不吃早餐”2、在某次篮球赛中,解说员介绍了参加美国职业篮球队的3名中国籍队员的身高,有位观众把这3个人的平均身高与美国人的平均身高进行比较,得出一个结论:“中国人的平均身高比美国人高”。

《简单随机抽样》教案

《简单随机抽样》教案

《简单随机抽样》教案教学目标一、知识与技能1•通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2•了解简单随机抽样的意义;二、过程与方法1•通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2•通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1•使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2•通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否合适;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?二、新课学习方法1:调查学校田径队的30名同学选取的样本是田径队的同学,他们暑假中体育活动多方法2:调查每个班的男同学只调查男同学,没调查女同学方法3:从每班抽取1名学生进行调查选取的样本容量太小,不能客观的反映全校学生方法4:选取每个班级中的一半学生进行调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。

如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。

简单随机抽样的含义:为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。

注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。

在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。

2.1.1简单随机抽样(教案)

2.1.1简单随机抽样(教案)

2.1.1简单随机抽样(教案)【教学目标】: 1.正确理解随机抽样的概念,会描述抽签法、随机数表法的一般步骤.2.能够根据样本的具体情况选择适当的方法进行抽样.【教学重难点】:教学重点:正确理解简单随机抽样的概念,会描述抽签法及随机数法的步骤,能灵活应用相关知识从总体中抽取样本.教学难点:简单随机抽样的概念,抽签法及随机数法的步骤.【教学过程】:情境导入:1. 总体、个体、样本、样本容量的定义总体 :在统计中所有考察对象的全体叫总体。

个体:每一个考察的对象叫 个体。

样本:从总体中抽取的一部分个体叫总体的一个样本。

样本容量:样本中个体的数目叫样本的容量。

如:从50000多名考生中随机抽取500名考生的成绩,用他们的平均成绩估计所有考生的平均成绩。

总体:50000多名考生的成绩的全体。

个体:每名考生的成绩。

样本:抽取的500名考生的成绩是总体的一个样本。

样本容量:5002.课本55P 阅读你认为在该故事中预测结果出错的原因是什么?(答:用于推断的样本来自少数富人,只能代表富人的观点,不能代表全体选民观点。

)3.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。

(为什么?)那么,应当怎样获取样本呢?新知探究:一、简单随机抽样的概念:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N 是有限的。

(2)简单随机样本数n 小于等于样本总体的个数N 。

(3)简单随机样本是从总体中逐个抽取的。

(4)简单随机抽样是一种不放回的抽样。

(5)简单随机抽样的每个个体入样的可能性均为n/N 。

二、抽签法和随机数法:1、抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.1简单随机抽样【教学目标】:1.正确理解随机抽样地概念,会描述抽签法、随机数表法地一般步骤.2.能够根据样本地具体情况选择适当地方法进行抽样.【教学重难点】:教学重点:正确理解简单随机抽样地概念,会描述抽签法及随机数法地步骤,能灵活应用相关知识从总体中抽取样本.教学难点:简单随机抽样地概念,抽签法及随机数法地步骤.【教学过程】:情境导入:1.根据国务院地决定,我国于2000年11月1日进行了第五次全国人口普查地登记工作.近千万普查工作人员投入到了艰苦繁重地工作中,结果显示至普查日期为止我国人口总数为129533万.上面地例子是一个统计上地典型事例,它用到了什么统计方法?它有什么优缺点?你有什么其他地办法吗?发表一下你地观点?(答:用到了普查地统计方法;优点是全面准确,缺点是工作量大,在绝大部分地统计案例中无法实现(检查具有破坏性);随机抽查地方法.)2.课本P55阅读你认为在该故事中预测结果出错地原因是什么?(答:所选样本没有代表性.)3.假设你作为一名食品卫生工作人员,要对某食品店内地一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量地饼干作为检验地样本.(为什么?)那么,应当怎样获取样本呢?新知探究:一、简单随机抽样地概念:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内地各个个体被抽到地机会都相等,就把这种抽样方法叫做简单随机抽样.思考:简单随机抽样地每个个体入样地可能性为多少?(n/N)二、抽签法和随机数法:1、抽签法一般地,抽签法就是把总体中地N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n地样本.抽签法地一般步骤:(1)将总体地个体编号;(2)连续抽签获取样本号码.思考:你认为抽签法有什么优点和缺点;当总体中地个体数很多时,用抽签法方便吗?解析:操作简便易行,当总体个数较多时工作量大,也很难做到“搅拌均匀”2、随机数法利用随机数表、随机数骰子或计算机产生地随机数进行抽样,叫随机数表法.怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产地 500克袋装牛奶地质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面地步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数,例如选出第8行第7列地数7(为了便于说明,下面摘取了附表1地第6行至第10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 7884 42 17 53 31 57 24 55 06 88 77 04 74 47 6763 01 63 78 59 16 95 55 67 19 98 10 50 71 7533 21 12 34 29 78 64 56 07 82 52 42 07 44 3857 60 86 32 44 09 47 27 96 54 49 17 46 09 6287 35 20 96 43 84 26 34 91 6421 76 33 50 25 83 92 12 06 7612 86 73 58 07 44 39 52 38 7915 51 00 13 42 99 66 02 79 5490 52 84 77 27 08 02 73 43 28第三步,从选定地数7开始向右读(读数地方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本地60个号码全部取出,这样我们就得到一个容量为60地样本.随机数表法地步骤:(1)将总体地个体编号;(2)在随机数表中选择开始数字;(3)读数获取样本号码.思考:结合自己地体会说说随机数法有什么优缺点?解析:相对于抽签法有效地避免了搅拌不均匀地弊端,但读数和计数时容易出错.精讲精练:例1.下列抽取样本地方式是否属于简单随机抽样?说明理由.(1)从无限多个个体中抽取100个个体作为样本;(2)盒子中共有80个零件,从中选出5个零件进行质量检验,在进行操作时,从中任意抽出一个零件进行质量检验后把它放回盒子里;(3)某班45名同学,指定个子最高地5人参加某活动;(4)从20个零件中一次性抽出3个进行质量检测.[解析] 根据简单随机抽样地特点进行判断,考查学生对简单随机抽样地理解;[解] (1)不是简单随机抽样,由于被抽取地样本地总体个数是无限地;(2)不是简单随机抽样,由于它是放回抽样;(3)不是简单随机抽样,因为不是等可能性抽样;(4)不是简单随机抽样,因为不是逐个抽样.[点评]判断所给抽样是不是简单随机抽样,关键是看它们是否符合简单随机抽样地四个特点.[变式训练1] 下列问题中,最适合用简单随机抽样方法抽样地是()A. 某电影有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了观报告会结束以后听取观众地意见,要留下32名观众进行座谈B. 从十台冰箱中抽取3台进行质量检验C. 某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了解大家对学校机构改革地意见,要从中抽取容量为20地样本D. 某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田480 亩估计全乡农田平均产量例2. 某车间工人加工一种轴100件,为了了解这种轴地直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样地方法抽取样本?[解析]简单随机抽样一般采用两种方法:抽签法和随机数表法.[解]解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同地号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应地轴地直径.解法2:(随机数表法)将100件轴编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取地样本.[点评](1)抽签法和随机数表法是常见地两种简单地随机抽样方法,具体问题要灵活运用这两种方法.(2)在应用随机数表时,将100个个体编号为00,01,02,…99而非0,1,2,…99,是为了便于使用随机数表.此外,将起始号码选为00而非01,可使100个号码都用两位数字号码表示.[变式训练2]某企业有150名职工,要从中随机地抽取20人去参观学习,请用抽签法和随机数表法进行抽取,写出过程.反馈测评:1、为了了解全校240名学生地身高情况,从中抽取40名学生进行测量,下列说法正确地是A.总体是240 B、个体是每一个学生C、样本是40名学生D、样本容量是402、为了正确所加工一批零件地长度,抽测了其中200个零件地长度,在这个问题中,200个零件地长度是()A、总体B、个体是每一个学生C、总体地一个样本D、样本容量3、一个总体中共有200个个体,用简单随机抽样地方法从中抽取一个容量为20地样本,则某一特定个体a被抽到地可能性是,a在第10次被抽到地可能性是【板书设计】:【作业布置】:优化丛书23P 体验成功2.1.1.2.1.1简单随机抽样课前预习学案一、预习目标预习简单随机抽样地概念,初步了解抽签法、随机数表法地一般步骤.二、预习内容1.一般地,设一个总体含有N个个体,从中地抽取n个个体作为(n≤N),如果每次抽取时总体内地各个个体,就把这种抽样方法叫做2.一般地,抽签法就是把总体中地N个个体,把号码写在上,将号签放在一个容器中, ,每次从中抽取一个号签,n次就得到一个容量为n地样本3.利用或计算机产生地随机数进行抽样,叫随机数表法.三、提出疑惑1.抽签法有什么优点和缺点?2.随机数表法有什么优点和缺点?3.如何灵活运用这两种方法?课内探究学案一、学习目标1.正确理解随机抽样地概念,会描述抽签法、随机数表法地一般步骤.2.能够根据样本地具体情况选择适当地方法进行抽样.二、学习重难点:正确理解简单随机抽样地概念,会描述抽签法及随机数法地步骤,能灵活应用相关知识从总体中抽取样本.三、学习过程(一)合作探究简单随机抽样地概念:探究一:假设你作为一名食品卫生工作人员,要对某食品店内地一批小包装饼干进行卫生达标检验,你准备怎样做?探究二:简单随机抽样地定义探究三:简单随机抽样地特点:(1)简单随机抽样要求被抽取地样本地总体个数N是(2)简单随机样本是从总体中逐个抽取地(3)简单随机抽样地每个个体入样地可能性均为②抽签法探究四:抽签法地一般步骤:1.2.探究五:抽签法地优点和缺点优点:缺点:③随机数法探究六:随机数法地一般步骤:1.2.3.探究七:随机数法地优点和缺点优点:缺点:(二)精讲点拨:例1.下列抽取样本地方式是否属于简单随机抽样?说明理由.(1)从无限多个个体中抽取100个个体作为样本;(2)盒子中共有80个零件,从中选出5个零件进行质量检验,在进行操作时,从中任意抽出一个零件进行质量检验后把它放回盒子里;(3)某班45名同学,指定个子最高地5人参加某活动;(4)从20个零件中一次性抽出3个进行质量检测.[变式训练1] 下列问题中,最适合用简单随机抽样方法抽样地是()A. 某电影有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了观报告会结束以后听取观众地意见,要留下32名观众进行座谈B. 从十台冰箱中抽取3台进行质量检验C. 某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了解大家对学校机构改革地意见,要从中抽取容量为20地样本D. 某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田 480 亩估计全乡农田平均产量例2. 某车间工人加工一种轴100件,为了了解这种轴地直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样地方法抽取样本?[变式训练2]某企业有150名职工,要从中随机地抽取20人去参观学习,请用抽签法和随机数表法进行抽取,写出过程.(三)反思总结:(四)当堂检测:1、为了了解全校240名学生地身高情况,从中抽取40名学生进行测量,下列说法正确地是A.总体是240 B、个体是每一个学生C、样本是40名学生D、样本容量是402、为了正确所加工一批零件地长度,抽测了其中200个零件地长度,在这个问题中,200个零件地长度是()A、总体B、个体是每一个学生C、总体地一个样本D、样本容量3、一个总体中共有200个个体,用简单随机抽样地方法从中抽取一个容量为20地样本,则某一特定个体a被抽到地可能性是 ,a在第10次被抽到地可能性是课后练习与提高一、选择题1.对于简单随机抽样,个体被抽到地机会( )A. 相等B.不相等C.不确定D.与抽取地次数有关2.抽签法中确保样本代表性地关键是 ( )A.制签B.均匀搅拌C.注意抽取D.抽样不放回3.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男生被抽到地概率是( )A.1001 B.251 C.51 D.41 二、填空题4.从50个产品中抽取10个进行检查,则总体个数为,样本容量为5.福利彩票地中奖号码是由1~36个号码中,选出7个号码来按规则确定中奖情况,这种从36个选7个号地抽取方法是.三、解答题6.某中学高一年级400人,高二年级有320人,高三年级有280人,以每人被抽取地概率为0.2,向该中学抽取一个容量为n 地样本,求n 地值.。

相关文档
最新文档