简单随机抽样教案教学设计——精致详细
简单随机抽样教案

简单随机抽样教案一、教学目标1.了解简单随机抽样的定义和特点;2.掌握简单随机抽样的抽样方法;3.理解简单随机抽样的应用场景。
二、教学内容1. 简单随机抽样的定义和特点简单随机抽样是指从总体中随机地抽取n个样本,使得每个样本被抽中的概率相等。
简单随机抽样的特点有:•抽样结果具有代表性;•抽样过程简单易行;•抽样误差可控制。
2. 简单随机抽样的抽样方法简单随机抽样的抽样方法有以下几种:(1)纸条抽签法将总体中每个个体的编号写在纸条上,放入一个容器中,然后从中随机抽取n个纸条,对应的个体即为样本。
(2)随机数表法利用随机数表,从总体中随机抽取n个个体作为样本。
(3)随机数发生器法利用计算机随机数发生器,从总体中随机抽取n个个体作为样本。
3. 简单随机抽样的应用场景简单随机抽样适用于总体中个体之间没有明显差异的情况,例如:•人口普查;•质量检验;•市场调查等。
三、教学过程1. 简单随机抽样的定义和特点教师通过讲解,让学生了解简单随机抽样的定义和特点,并与其他抽样方法进行比较,让学生明确简单随机抽样的优势。
2. 简单随机抽样的抽样方法教师通过实例演示,让学生掌握纸条抽签法、随机数表法和随机数发生器法的抽样方法,并让学生分析各种方法的优缺点。
3. 简单随机抽样的应用场景教师通过实例演示,让学生了解简单随机抽样的应用场景,并让学生思考在实际应用中如何选择合适的抽样方法。
四、教学评价教师可以通过以下方式对学生进行评价:•课堂练习:让学生在课堂上完成简单随机抽样的练习题,检查学生对知识点的掌握情况;•作业评估:布置简单随机抽样的作业,检查学生对知识点的理解和应用能力;•实践评价:让学生在实际应用中进行简单随机抽样,并对抽样结果进行分析和评价。
五、教学反思简单随机抽样是统计学中最基本的抽样方法,对于学生来说,掌握简单随机抽样的定义、特点和抽样方法非常重要。
在教学过程中,教师应该注重实例演示和练习,让学生通过实践掌握知识点,提高学生的应用能力。
简单随机抽样教学设计

简单随机抽样教学设计第1篇:上海教师资格证考试:简单随机抽样教案2017上海教师资格证考试:简单随机抽样教案简单随机抽样教案一、教学目标【知识与技能】能够准确叙述出随机抽样的概念,可以利用抽签法解决简单的实际问题。
【过程与方法】在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
【情感态度与价值观】通过对现实生活统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
二、教学重、难点【重点】掌握简单随机抽样常见的抽签法.【难点】理解简单随机抽样的科学性,以及由此推断结论的可靠性.三、教学过程(一)创设情境,导入新课请问下列调查是“普查”还是“抽样”调查?(1)一锅水饺的味道(2)旅客上飞机前的安全检查(3)一批炮弹的杀伤半径(4)一批彩电的质量情况(5)美国总统的民意支持率学生经过讨论后得出答案。
引出课题。
(二)师生互动,探索新知在学生明确了抽样与普查的区别之后,为了加深对抽样概念的理解设计如下例题。
例1:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么? A.在班级12名班委名单中逐个抽查5位同学进行背诵B.在班级45名同学中逐一抽查10位同学进行背诵先让学生分析、选择B后,师生一起归纳其特征,让学生体验B 种抽样的科学性,然后教师指出这就是简单随机抽样,最后板书课题——简单随机抽样及其定义。
简单随机抽样的含义:一般地,设一个总体有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样。
教师总结简单随机抽样的特点:(1)总体的个数有限;(2)样本的抽取式逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体(4)每个个体被抽到的机会都相等,抽样具有公平性例2.在班级45名同学中逐一抽查10位同学进行背诵的抽签步骤是什么呢? 先让学生独立思考,然后分小组合作学习,各小组推荐一位同学发言,最后师生一起归纳“抽签法”步骤,教师板书上面步骤。
2.1.1简单随机抽样-优秀教案

1、某校高一级有932名学生,现在需要抽取86名学生的期末数学成绩作为样本进行统计分析。
下面说法正确的是:()
A、这932名学生是一个总体
B、这86名学生是一个样本
C、每个学生是一个个体
D、这个样本的容量为86
2,某次考试有70000名学生参加,为了了解这70000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法:
(1)1000名考生是总体的一个样本;
(2)1000名考生数学成绩的平均数是总体平均数;
(3)70000名考生是总体;
(4)样本容量是1000,其中正确的说法有:
A.1种B.2种C.3种D.4种
3. 某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是
A.40
B.50
C.120
D.150
4. 对于简单随机抽样,个体被抽到的机会
A.相等
B.不相等
C.不确定
D.与抽取的次数有关
5. 抽签法中确保样本代表性的关键是
A.制签
B.搅拌均匀
C.逐一抽取
D.抽取不放回
6.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.试用简单随机抽样方法中的抽签法取样.写出操作过程。
答案:D,B,C,A,B
6,解:抽签法:以姓名制签,在容器中搅拌均匀,每次从中抽取一个,连续抽取5次,从而得到一容量为5的人选样本.。
《简单随机抽样》示范课教学设计【高中数学教案】

《简单随机抽样》教学设计1.以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
2.正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
3.通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法。
1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。
2.能够从现实生活或其他学科中提出具有一定价值的统计问题;3.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
4.通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
【教学重点】简单随机抽样的概念,抽签法及随机数法的操作步骤。
【教学难点】对样本随机性的理解。
抽签纸,图表等。
(一)知识回顾统计学:研究客观事物的数量特征和数量关系,它是关于数据的搜集、整理、归纳和分析方法的科学。
统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。
数理统计所要解决的问题是如何根据样本来推断总体?总体、个体、样本、样本容量的概念:总体:所要考察对象的全体。
个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这个总体的一个样本。
样本容量:样本中个体的数目。
(二)新课导入在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意测验,调查兰顿和罗斯福中谁将当选下一届总统。
为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(在1936年电话和汽车只有少数富人拥有),通过分析收回的调查表,显示兰顿非常受欢迎。
于是此杂志预测兰顿将在选举中获胜。
实际选举结果正好相反,最后罗斯福在选举中获胜。
其数据如下:①预测结果出错的原因是什么?抽取的样本不具有代表性,调查结果只能代表富人的意见。
简单随机抽样--优质获奖精品教案 (1)

2.1.1 简单随机抽样教学目的:1、理解简单随机抽样的概念。
2、会用简单随机抽样(抽签法、随机数表法)从总体中抽取样本。
教学重点:简单随机抽样的概念.抽签法、随机数表法。
教学难点:进行简单随机抽样时,“每次抽取一个个体时任一个体a被抽到的概率”与“在整个抽样过程中个体a被抽到的概率”的不同。
教学过程一、复习引入⑴在一次考试中,考生有2万名,为了得到这些考生的数学平均成绩,将他们的成绩全部相加再除以考生总数,那将是十分麻烦的,怎样才能了解到这些考生的数学平均成绩呢?⑵现有某灯泡厂生产的灯泡10000只,怎样才能了解到这批灯泡的使用寿命呢?要解决这两个问题,就需要掌握一些统计学知识.在初中阶段,我们学习过一些统计学初步知识,了解了统计学的一些基本概念.学习了总体、个体、样本、样本的容量、总体平均数、样本平均数的意义:在统计学里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量.总体中所有个体的平均数叫做总体平均数,样本中所有个体的平均数叫做样本平均数.统计学的基本思想方法是用样本估计总体,即通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况.因此,样本的抽去是否得当,对于研究总体来说就十分关键.究竟怎样从总体中抽取样本?怎样抽取的样本更能充分地反映总体的情况?本节课开始,我们就来学习几种常用的抽样方法二、新课1、简单随机抽样:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取n个个体作为样本(n≤N),且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
用简单随机抽样从含有6个个体的总体中抽取一个容量为2的样本.问:①总体中的某一个体在第一次抽取时被抽到的概率是多少?②个体在第1次未被抽到,而第2次被抽到的概率是多少?③在整个抽样过程中,个体被抽到的概率是多少?分析:①总体中的某一个体在第一次抽取时被抽到的概率是;②个体在第1次未被抽到,而第2次被抽到的概率是;③由于个体在第一次被抽到与第2次被抽到是互斥事件,所以在整个抽样过程中,个体被抽到的概率是。
数学《简单随机抽样》教案

数学《简单随机抽样》教案一、教学目标:1. 能够正确理解和定义简单随机抽样。
2. 能够通过例子和实例解决简单随机抽样的相关问题。
二、教学重点:1. 理解简单随机抽样的概念和原理。
2. 了解简单随机抽样的应用领域和常见问题。
三、教学难点:1. 解决复杂问题中的简单随机抽样。
2. 掌握相关的统计方法和计算公式。
四、教学方法:讲解法、案例分析法、问题解决法。
五、教学过程:1. 引入:请学生们回忆一下自己前些天的一些活动,比如上学、做作业、出门逛街等,问问同学们这些活动中有哪些是随机的,哪些不是随机的。
2. 讲解:简单随机抽样是统计学中的一种基本抽样方法。
在简单随机抽样中,我们从总体中随机地选出 n 个样本,使得每个样本被选中的概率相等。
这样的样本叫做简单随机样本。
3. 例子:例如,我们在一家公司进行问卷调查时,可以先从公司全体员工中随机抽取一部分人做为样本,对这部分人进行问卷调查,并将调查结果推广到整个员工群体中。
这样的调查结果,就是一个基于简单随机抽样的统计结果。
4. 练习:下面有几个案例,请根据已知信息进行简单随机抽样。
(1)某小学有200名学生,现在要从中抽取40名学生进行问卷调查,请问应该如何进行简单随机抽样?(2)某厂家要对自己生产的汽车零部件进行质量检测,为此需要从生产线上随机抽取100个零部件,请问应该如何进行简单随机抽样?5. 解答:(1)将200名学生标号为1~200,然后使用随机数生成器生成40个1~200之间的随机数,将对应的学生选中即可。
(2)随机选取100个零部件,每个零部件被选中的概率相等,可以使用随机数生成器或抽签等方法进行抽样。
六、教学总结:通过以上例子,我们可以看出,简单随机抽样是一种基本的统计学方法,广泛应用于各个领域。
在进行简单随机抽样时,我们需要确保每个样本被选中的概率相等,这样才能保证样本的代表性和可靠性。
简单随机抽样--优质获奖精品教案 (19)

2.1 随机抽样【教学目标】1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.【教法指导】本节重点是能从现实生活或其他学中提出具有一定价值的统计问题及学会简单随机抽样方法,了解分层和系统抽样方法;难点是对样本随机性的理解;本节知识的主要学习方法是动手与观察,思考与交流,归纳与总结.加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法.【教学过程】课本导读一、总体、个体、样本在统计里,把所考察对象的某一数值指标的全体构成的集合看成总体,其中构成总体的每一个考察的对象为个体.从总体中随机抽取若干个个体构成的集合叫做总体的一个样本,样本中包含的个体数目叫做样本容量.二、随机抽样抽样时保持每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样条件的抽样是随机抽样.三、简单随机抽样1.定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.最常用的简单随机抽样的方法抽签法和随机数法.四、系统抽样1.定义当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取1个个体得到所需要的样本,这种抽样方法叫做系统抽样.五、分层抽样1.定义在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做分层抽样.2.分层抽样的操作步骤第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.六、三种抽样方法的区别与联系适用范围总体中个体数较少总体中个体数较多总体由差异明显的几部分组成疑难辨析1.简单随机抽样(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最大.( )[ 学 ](2)从20个零件中用简单随机抽样一次性抽取3个进行质量检测.( )(3)从100件玩具随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样.( )2.系统抽样(1)当总体中个体数较多时,应采取系统抽样法.( )(2)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )3.分层抽样(1)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )(2)某地区教育部门要调查中小学生的近视情况及形成原因,要抽取1 的学生进行调查,可用分层抽样进行.( )[ 学 ]4.三种抽样方法的比较(1)某班有45人,现抽取5人参加一项社会活动,则可以用简单随机抽样法抽取.( )(2)某校即将召开学生代表大会,现要从高一、高二、高三共抽取60名代表,则可用分层抽样方法抽取.( )(3)三种抽样方法,不论是哪一种,总体中每一个个体被抽到的机会均等.( )(3)根据三种抽样方法的规则可知,每个个体被抽到的机会均等.题型一简单随机抽样例1第十二届全运会将于2013年8月31日至9月12日在辽宁省沈阳市举行,沈阳某大学为了支持大运会,从报名的30名大三学生中选8人组成志愿小组,请用抽签法和随机数表法设计抽样方案.探究一通过本例题让学生了解利用简单随机抽样抽取样本时条件及步骤.1.条件(1)总体的个数较少,利用随机数表法或抽签法可容易获得样本;2.步骤(1)随机数表法的操作步骤 编号、选起始数、读数、获取样本;(2)抽签法的操作步骤 编号、制签、搅匀、抽取.学思考题一1、下列问题中,最适合用简单随机抽样方法抽样的是 ( )A .某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B .从10台冰箱中抽出3台进行质量检查C .某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D .某乡农田有 山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量 答案 B解析 A 的总体容量较大,用简单随机抽样法比较麻烦;B 的总体容量较少,用简单随机抽样法比较方便;C 由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D 总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.2.利用抽签法,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.13B.514C.14D.10273.用随机数表进行抽样有以下几个步骤①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为( )A.①②③ B.①③②C.③②① D.③①②4.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同5.现有120台机器,请用随机数表法抽取10台机器,写出抽样过程.【分析】已知N=120,n=10,用随机数表法抽样时编号000,001,002,…,119,抽取10个编号(都是三位数),对应的机器组成样本.【解析】第一步,先将120台机器编号,可以编为000,001,002, (119)第二步,在随机数表中任选一个数作为开始,任选一个方向作为读数方向,例如选出第9行第7列的数3,向右读;第三步,从选定的数3开始向右读,每次读取三位,凡不在000~119中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080, 003,105,107,083,092;第四步,以上这10个号码074,100,094,052,080,003,105,107,083,092所对应的10台机器就是要抽取的对象.题型二 系统抽样例2、 1、某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数 =80050=16,即每16人抽取一人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是________.【解析】 (1)因为采用系统抽样方法,每16人抽取一人,1~16中随机抽取一个数抽到的是7,所以在第 组抽到的是7+16( -1),所以从33~48这16个数中应取的数是7+16×2=39.【答案】392、某装订厂平均每小时大约装订图书360册,要求检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.3.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程.【分析】 按1∶5的比例确定样本容量,再按系统抽样的步骤进行,关键是确定第1段的编号.【解析】 按照1∶5的比例抽取样本,则样本容量为15×295=59.抽样步骤是(1)编号按现有的号码;(2)确定分段间隔=5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生;(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(1≤l≤5);(4)那么抽取的学生编号为l+5(=0,1,2,...,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13, (288)293.[ 学 ]探究二通过本例题让学生理解系统抽样的特点及步骤.(1)通过例2的(1)(2)让学生理解系统抽样的特点是等距离抽样,若第一组抽取号码a,然后以d为间距依次等距离抽取后面的编号,抽出的所有号码为a+d ( =0,1,2,…,n-1),其中n是组数.(2)通过例2的(3)让学生理解系统抽样的步骤第一步,将总体的N个个体编号.第二步,确定分段间隔,对编号进行分段.第三步,在第1段用简单随机抽样确定起始个体编号l.第四步,按照一定的规则抽取样本.思考题二(1)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10组,组号依次为1,2,3,…,10,现用系统抽样抽取一个容量为10的样本,并规定如果在第一组随机抽取的号码为m,那么在第(=2,3,…,10)组中抽取的号码的个位数字与m +的个位数字相同.若m=6,则该样本的全部号码是__________________.(2)将某班的60名学生编号 01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.题型三、分层抽样例3、(1)(2013·湖南卷)某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A.抽签法 B.随机数法C.系统抽样法 D.分层抽样法(2)[2012·江苏卷] 某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(3)[2012·天津卷] 某地区有小学150所,中学75所,大学25所,现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.(4)某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( )A.15,5,25 B.15,15,15C.10,5,30 D.15,10,20(5)某城市有210家百货商店,其中大型商店20家、中型商店40家、小型商店150家,为了掌握各商店的营业情况,计划抽取一个容量为21的样本,按照分层抽样方法抽取时,各种百货商店分别要抽取多少家?并写出抽样过程.探究三通过本例题让学生理解分成抽样的特点及步骤,各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是灵活的.分层抽样中,个体被抽中的机会均等,体现了抽样的公平性.(1)通过例3(1)让学生了解什么情况采用分层抽样;(2)通过例3(2)(3)(4)让学生理解分层抽样的抽样比如何计算;(3)通过例3(5)让学生理解分层抽样的步骤.思考题三、(1)[2012·南阳一模] 某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中抽取若干人组成调查小组,相关数据见下表 相关人员数[ ] 抽取人数 公务员35 b 教师a 3 自由职业者28 4则调查小组的总人数为( )A .84B .12C .81D .14(2)[2012·江西重点中学一模] 在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本 ①采用随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则( )A .不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B .①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C .①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同(3)[2012·吉林一模] 从总数为N的一群学生中抽取一个容量为100的样本,若每个学生被抽取的概率为14,则N的值为( )A.25 B.75 C.400 D.5004.某公司有三个部门,第一个部门800个员工,第二个部门604个员工,第三个部门500个员工,现在用按部门分层抽样的方法抽取一个容量为380名员工的样本,求应该剔除几个人,每个部门应该抽取多少名员工?随堂测评1.现要完成下列3项抽样调查①从10盒酸奶中抽取3盒进行食品卫生检查.②技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取听众意见,需要请32位听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意义,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样[2012·漳州三校二联] 某学校为了调查高二年级的80名文学生和高三年级的120名文学生完成课后作业所需时间,采取了两种抽样调查的方式第一种由学生会的同学随机抽取高二年级8名和高三年级12名同学进行调查;第二种由教务处对该年级的文学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,则这两种抽样的方法依次为( )A.分层抽样,简单随机抽样B.抽签法,随机数表法C.分层抽样,系统抽样D.简单随机抽样,系统抽样3.[2013·南通中学联考] 某地有居民2万户,从中随机抽取200户,调查是否已安装安全救助报警系统,调查结果如下表所示[ ] 外户原住户已安装60 35未安装45 604.某商场想通过检查发票及销售记录的 2 快速估计每月的销售总额.采取如下方法从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…,发票上的销售额组成一个调查样本.这种抽取样本的方法是( )A.抽签法 B.随机数表法C.系统抽样法 D.其他方式的抽样5.为了考察某校的教学水平,将抽查这个学校高三年级部分学生的本学年考试成绩进行考察.为了全面地反映实际情况,采取以下三种方式进行(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;②每个班都抽取1人,共计14人,考察14个学生的成绩;③把学校高三年级的学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的叙述,试回答下列问题(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是什么?(2)上面三种抽取方式各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.。
简单随机抽样教案

简单随机抽样教案教案:简单随机抽样目标:让学生了解简单随机抽样的概念,并能够运用简单随机抽样方法进行抽样。
教学步骤:引入:1. 引导学生回顾抽样的概念,即从总体中选择一部分样本进行统计调查。
2. 介绍简单随机抽样的概念,即每个样本被选择的机会相等。
实施:1. 解释简单随机抽样的具体步骤:a. 第一步,确定总体。
让学生明确要研究调查的总体。
b. 第二步,为总体编号。
将总体中的个体进行编号。
c. 第三步,使用随机抽样方法。
使用随机数表或随机数发生器,通过随机数选择要进行抽样的个体。
d. 第四步,进行抽样。
根据随机选择的个体,进行调查或实验。
2. 列举简单随机抽样的优点和缺点:a. 优点:能够保证每个样本的选择机会相同,具有代表性。
b. 缺点:可能存在抽样偏差,即样本与总体的差别较大。
练习:1. 给出一个实际问题,要求学生使用简单随机抽样的方法进行调查研究。
2. 确定总体,并进行编号。
3. 使用随机数表或随机数发生器,选择要进行抽样的样本。
4. 进行实际调查或实验。
总结:1. 确保学生理解简单随机抽样的概念。
2. 强调抽样过程中的每一步骤的重要性。
3. 提醒学生在进行简单随机抽样时要注意抽样偏差的可能性,并尽量减小偏差的影响。
拓展:1. 引入其他抽样方法,如系统抽样、分层抽样等,让学生了解不同的抽样方法在不同情境下的应用。
2. 给学生更多的实践机会,通过实际操作,提高他们运用抽样方法的能力。
3. 引导学生思考抽样方法选择的合理性,帮助他们在实际问题中进行抽样方法的选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单随机抽样
一、课题名称
简单随机抽样(人教版普通高中数学必修三2.1节随机抽样第一课时)
二、教材分析
(1
(2
认识数学的重要性。
四、教学重点、难点
正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
五、教学方法与手段
方法:讲授法和引导探究法;
手段:PPT;
六、教学流程
(一)回顾引入
数学与生活密不可分,数学来源于生活也应用于生活,而数学与生活联系很紧密的一个问题就是统计问题,
率``````
1.
(1
(2
(3
(4
(5
2.
别要收集什么数据?
研究对象称之为研究总体,需要收集的数据称之为研究变量;
3.再举个例子:某批袋装牛奶的细菌含量超标情况;这个问题是不是统计问题?那么研究总体是什么呢?研究变量是什么?
研究总体:这批牛奶;研究变量:细菌含量;
设计意图:感受生活当中的统计问题,并了解统计问题的特征,明确研究对象和需要收集的数据。
4.那对于这个问题我们怎么样去解决?怎样统计这批袋装牛奶的细菌含量超标情况?普查好不好,检查每一袋?
答:不好,检查需要拆包,具有破坏性,虽然能得到这批袋装牛奶的准确结果,但是拆包后就不能销售了,损失较大。
此外普查耗费大量人力、物力、财力以及畜力。
5.
测的n
就决定
6.
(1
(2
(3)足够的样本量:比如说这牛奶,你总不能只抽两三袋吧,这样偶然性很大,得到的结果可能偏差很大。
一般而言,抽取的样本数量越大越接近总体,得到的调查结果与实际情况越接近,设计意图:学生了解有代表性的样本需要总体的“搅拌均匀”、随机抽取和一定的样本容量;
7.那么单纯地追求样本量可不可以呢,我们一起来看看《一个经典的案例》
样本容量:回收问卷超过240万,堪称史上数量最多,范围最广的问卷调查。
说服力。
发现问题:这种抽样方式只调查了富人,排除了穷人,而结合当时的背景,穷人以及失业者的数量庞大,比较支持罗斯福的新政。
得出结论:在科学严谨的抽样调查中,样本的挑选必须很公正,不应有所倾向,也就是说每个个体被选取的机会应均等。
彩蛋后续:由于此次调查结果触礁打脸,该杂志在总统选举不久之后便破产倒闭。
设计意图:学生通过了解数学上的这次调查事件,增加对数学学习的兴趣,并且感受到抽样调
1.
(1
(2
(3)
设计意图:初步感受简单随机抽样的操作过程,并了解注意事项以及目的,引出简单随机抽样的概念;
2.简单随机抽样的概念:一般地,设一个总体含有N个个体,从中不放回地抽取n个个体作为样本,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样;
3.简单随机抽样有哪些特点?(叫学生回答)
特点:
1、总体个数有限N;无限的话即使抽再多的样本也无法反映总体情况;
2、逐个抽取;不能一抓一大把,否则抽到的样本扎堆代表性可能很差;
3、不放回;免重复检测以及让每一个个体被抽到的概率相同;
4、每个个体被抽到的机会都相等(n/N);保证签的大小质地均匀,各个特征都要尽量相同,否则会出现作弊的情况:欧冠抽签加热球;
5、
1.
局限性:
2.
(1
(2)
(3
(4)逐个随机抽取n次,得到容量为n的样本;
注意:制签可以是纸条,竹签,乒乓球,要保证每个签的大小、形状质地均匀,目的就是让每个个体被抽到的概率相同,否则代表性差甚至应用于作弊,举例:欧冠加热球;
Q:考察某公司生产的500g袋装牛奶的质量是否达标,先从800袋牛奶中抽取60进行检验;
用抽签法,编号、制签困难,工作量大,不经济实效,且难以搅拌均匀,抽到的样本代表性差的可能性很
大。
设计意图:让学生在实例中感受抽签法的缺点局限性并总结,同时也引出了新的方法:随机数法,来克服这些局限性;
Q:你认为抽签法有什么缺点和优点?
优点:简单易操作;
3.
(1)
(2)
(1)确定总体数量并编号:000,001,······799;编号也可以是001,002,……,800,因为随机数表的随机性,000和800的概率是相同的。
(2)确定样本容量60;
(3)确定起始点和读取方向;
(4)按规则选取数码;
起点选择方法:翻开随机数码表,闭上眼睛,用笔随机点击一个位置作为起始点;
选码规则:三位三位选取,剔除超出范围的号码和重复的号码;所以说编号时,需要将个位数补充成三位数,才能读数;注意:785916,读了785是916,而不是859,因为前后要互不联系,保持独立。
注意“随机”而不能“随意”:读取方向不能忽左忽右一上一下走的跟贪吃蛇一样;
Q:当N等于100时,分别以0,3,6作为起点时对总体进行编号,再利用随机数表抽取10个号码你能说出从0开始对总体编号的好处吗?
读数20
m-n+1;
1、
2.随机数表的优点缺点;
答:相对抽签法,省去了制签的麻烦,大大省去抽签的繁琐程序,也可以无需“搅拌均匀”完全排除主观选择样本的可能性。
缺点是,总体较大的情况,编号困难,工作量大;
结束语:简单随机抽样操作比较简单,但是不太总体数量较多的情况,那对于总体数量较多的情况该如何,且听下回分解。