牛顿运动定律的应用
物理牛顿三大运动定律的应用

物理牛顿三大运动定律的应用物理学中,牛顿三大运动定律是描述物体运动的基本定律。
这些定律在我们日常生活中得到广泛应用,在工程、交通运输、体育等领域都有重要意义。
本文将就牛顿三大运动定律的应用进行探讨。
一、牛顿第一定律的应用牛顿第一定律,也称为惯性定律,认为物体在没有受力作用时将保持静止或者匀速直线运动。
其应用范围广泛,以下是一些常见的实例:1. 车辆行驶车辆在没有外力作用的情况下,会保持匀速直线运动。
这是因为车辆发动机的作用力和摩擦力相互抵消,从而使车辆保持匀速直线行驶。
2. 旅客乘车当火车或汽车突然刹车时,旅客会因惯性而向前滑动或者向后倾斜。
这是因为旅客的身体具有惯性,保持匀速直线运动的趋势。
3. 摆钟的运动摆钟通过重力力作用下的摆动,借助牛顿第一定律来保持匀速直线运动,从而进行精准的时间测量。
二、牛顿第二定律的应用牛顿第二定律表明物体的运动与施加在它上面的力和物体的质量有关。
这一定律在许多领域都有实际应用:1. 火箭升空火箭的升空过程中,燃料燃烧产生的庞大推力是驱使火箭升空的力,而火箭的质量则影响它的加速度。
根据牛顿第二定律,火箭的加速度与推力成正比,与质量成反比。
2. 运动员的加速度运动员在比赛中通过肌肉力量产生加速度,以达到更高的速度。
根据牛顿第二定律,运动员的加速度与施加力的大小成正比,与运动员的质量成反比。
3. 地心引力的影响地球的引力对物体的吸引力是根据牛顿第二定律计算的。
根据万有引力定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
三、牛顿第三定律的应用牛顿第三定律指出,任何两个物体之间存在相互作用力,其大小相等、方向相反。
这一定律对于以下情况有重要应用:1. 喷气推进原理根据牛顿第三定律,火箭喷出的燃料以极高的速度向后喷射,而火箭则会获得一个向前的推力。
这是因为喷气推进的原理利用了物体之间相互作用力的平衡。
2. 游泳游泳时,人通过腿部和手臂的划水动作产生的反作用力推动自己前进。
牛顿运动定律的应用

牛顿运动定律的应用牛顿运动定律的应用(精选6篇)牛顿运动定律的应用篇1教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇2教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇3教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇4教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇5教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇6教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.。
牛顿运动定律的应用

牛顿运动定律的应用牛顿运动定律是经典力学的基石,被广泛应用于各个领域。
它们为我们解释了物体运动的规律,并且在实际生活和科学研究中有着重要的应用。
在本文中,我们将探讨几个关于牛顿运动定律应用的例子,展示这些定律的实际应用和意义。
一、运动中的惯性第一个应用例子是关于运动中的惯性。
牛顿第一定律告诉我们,一个物体如果没有外力作用,将保持其原有的状态,即静止物体保持静止,运动物体保持匀速直线运动。
这就是物体的惯性。
拿我们日常生活中最常见的例子来说,当我们在汽车上突然刹车时,身体会继续保持前进的动力,直到与座椅或安全带接触,才会停下来。
这说明了牛顿第一定律的应用。
如果没有外力的作用,我们会按照惯性继续移动。
二、加速度与力的关系牛顿第二定律是描述物体加速度与施加在物体上的力之间关系的定律。
它告诉我们,物体的加速度与作用力成正比,与物体的质量成反比。
运用这一定律,我们可以解释为什么需要施加更大的力来加速一个较重的物体,而用相同大小的力加速一个较轻的物体时,后者的加速度更大。
在我们日常生活中,这个定律的应用非常广泛。
比如,开车时,我们需要踩下油门,施加一定的力来加速汽车。
同时,如果我们要减速或停车,需要踩下刹车踏板,通过施加反向的力来减少汽车的速度。
三、作用力与反作用力牛顿第三定律指出,对于每一个作用力都会有一个同大小、反方向的作用力作用在不同的物体上。
这就是我们常说的“作用力与反作用力”。
这个定律可以解释许多我们生活中的现象。
例如,当我们走路时,脚对地面施加力,地面也会对脚产生同样大小、反方向的力。
这种反作用力推动我们向前移动。
在工程领域中,牛顿第三定律的应用也非常重要。
例如,当一架飞机在空气中飞行时,空气对飞机产生的阻力同时也是飞机推进的力。
这个定律有助于我们设计高效的飞机引擎和减少能源消耗。
四、万有引力定律最后一个应用例子是万有引力定律。
这个定律描述了两个物体之间相互作用的引力大小与它们质量的乘积成正比,与它们之间距离的平方成反比。
牛顿运动定律的综合应用

3.解题方法 整体法、隔离法. 4.解题思路 (1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出 滑块和滑板的加速度. (2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的 位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都 是相对地的位移.
[典例 1] 长为 L=1.5 m 的长木板 B 静止放在水平冰面上,
3.图象的应用 (1)已知物体在一过程中所受的某个力随时间变化的图线,要 求分析物体的运动情况. (2)已知物体在一运动过程中速度、加速度随时间变化的图线, 要求分析物体的受力情况. (3)通过图象对物体的受力与运动情况进行分析.
4.解答图象问题的策略 (1)弄清图象坐标轴、斜率、截距、交点、拐点、面积的物理 意义. (2)应用物理规律列出与图象对应的函数方程式,进而明确 “图象与公式”、“图象与物体”间的关系,以便对有关物理问 题作出准确判断.
可行的办法是( BD )
A.增大 A 物的质量 B.增大 B 物的质量 C.增大倾角θ D.增大拉力 F
2. 如图所示,质量为 M、中空为半球形的光滑凹槽放置于光 滑水平地面上,光滑槽内有一质量为 m 的小铁球,现用一水平向 右的推力 F 推动凹槽,小铁球与光滑凹槽相对静止时,凹槽圆心
和小铁球的连线与竖直方向成 α 角,则下列说法正确的是( C )
A.小铁球受到的合外力方向水平向左 B.凹槽对小铁球的支持力为smingα C.系统的加速度为 a=gtan α D.推力 F=Mgtan α
二、动力学中的图象问题 1.常见的图象有
v-t 图象,a-t 图象,F-t 图象,F-a 图象等.
2.图象间的联系
加速度是联系 v-t 图象与 F-t 图象的桥梁.
练习: 1.(多选)如图(a),一物块在 t=0 时刻滑上一固定斜面,其运
大学物理——牛顿运动定律及其应用

mg
F Fi 0
a' 0
引入惯性离心力后,在非惯性系 中,牛顿第二定律形式上成立
例 水桶以匀角速度 旋转,求水面的形状。 解:水面旋转参考系是非惯性系。 取水面质元 m,在非惯性系内质元 “静止”,惯性力 F惯 = m2 x, 在切线方向
mg sin q m 2 x cos q 0 2 dy tgq x dx g 2 y x 积分 dy xdx y0 0 g
分析物体受力
其中 m aM 就是惯性力. 而 mg 和 N 是真实力.
列方程:
沿斜面方向: mgsin+maMcos=ma'
垂直于斜面方向:
分析M(相对惯性系): 由此解得相对加速度
N-mgcos+maMsin=0
N sin=M aM 水平方向
a'=(m+M)sing / (M+msin2)
m sin 2q a0 g 2 2( M m sin q )
( M m ) sin2 q M sin 2q g ax g ay 2 2 M m sin q 2( M m sin q )
a
( M m ) sin2 q M sin 2q gi gj 2 2 2( M m sin q ) ( M m sin q )
fk1
N1 v 1 N2
(1) 滑动摩擦力 f k k N
(2) 静摩擦力
f s max s N
F fs
v2
F fk 2
五 基本的自然力
四种基本相互作用:
1. 引力相互作用 2. 电磁相互作用 3. 强相互作用 4. 弱相互作用
《牛顿运动定律的应用》 讲义

《牛顿运动定律的应用》讲义一、牛顿运动定律的概述牛顿运动定律是经典力学的基础,由艾萨克·牛顿在 17 世纪提出。
它包括三条定律,分别是牛顿第一定律、牛顿第二定律和牛顿第三定律。
牛顿第一定律,也被称为惯性定律,其内容是:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
这一定律揭示了物体具有惯性,即保持原有运动状态的特性。
牛顿第二定律描述了物体的加速度与作用在它上面的力以及物体的质量之间的关系。
其表达式为 F = ma,其中 F 表示合力,m 是物体的质量,a 是加速度。
这一定律表明,力是改变物体运动状态的原因,而且力越大,加速度越大;质量越大,加速度越小。
牛顿第三定律指出:相互作用的两个物体之间的作用力和反作用力总是大小相等,方向相反,且作用在同一条直线上。
二、牛顿运动定律在日常生活中的应用(一)行走与跑步当我们行走或跑步时,脚向后蹬地,地面会给我们一个向前的反作用力,正是这个力推动我们前进。
根据牛顿第三定律,我们施加给地面的力和地面给我们的反作用力大小相等、方向相反。
而我们能够加速、减速或改变方向,是因为我们通过肌肉的力量改变了施加在地面上的力的大小和方向,从而改变了地面给我们的反作用力,进而改变了我们的运动状态,这也体现了牛顿第二定律。
(二)车辆的启动与制动汽车的启动是一个典型的牛顿第二定律的应用。
发动机提供的牵引力使得汽车产生向前的加速度,从而使汽车从静止开始加速运动。
而在制动时,刹车系统施加一个阻力,产生一个向后的加速度,使汽车逐渐减速直至停止。
(三)体育运动在体育运动中,牛顿运动定律也无处不在。
例如,篮球运动员投篮时,手臂对篮球施加一个力,根据牛顿第二定律,篮球获得一个加速度飞出去。
而在足球比赛中,运动员踢球的力量越大,球获得的加速度就越大,飞行的速度和距离也就越远。
(四)电梯的运行当我们乘坐电梯时,如果电梯向上加速运动,我们会感觉到身体变重,这是因为电梯对我们的支持力大于我们的重力。
人教版2019高中物理4.5牛顿运动定律的应用(共34张PPT)

=2ax
牛顿第二定律F合=ma,确定了运动和力的关系,使我们能够把物
体的运动情况与受力情况联系起来。
重力 弹力 摩擦力
F合=ma 桥梁
v=v0+at
两类动力学问题
1.两类动力学问题 第一类:已知受力情况求运动情况。 第二类:已知运动情况求受力情况。 2. 解题关键 (1)两类分析——物体的受力分析和物体的运动分析; (2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相 互联系的桥梁.
01
从受力确定运动情况
知识要点
已知物体受力情况确定运动情况,指的是在受力情况已知的条件下, 要求判断出物体的运动状态或求出物体的速度、位移等。
处理这类问题的基本思路是: 先分析物体受力情况求合力, 据牛顿第二定律求加速度, 再用运动学公式求所求量(运动学量)。
【例题】:运动员把冰壶沿水平冰面投出,让冰壶在冰面上自由滑行,在不与其他冰 壶碰撞的情况下,最终停在远处的某个位置。按比赛规则,投掷冰壶运动员的队友, 可以用毛刷在冰壶滑行前方来回摩擦冰面,减小冰面的动摩擦因数以调节冰壶的运动。 (1)运动员以3.4 m/s的速度投掷冰壶,若冰壶和冰面的动摩擦因数为0.02,冰壶能 在冰面上滑行多远?g 取 10 m/s2。 (2)若运动员仍以3.4 m/s的速度将冰壶投出,其队友在冰壶自由滑行10m后开始在 其滑行前方摩擦冰面,冰壶和冰面的动摩擦因数变为原来的90%,冰壶多滑行了多少 距离?
F 370
θmFf g 【解析】物体受力分析如图所示 由牛顿第二定律,可得:
Fcosθ-µFN=ma
FN
FN+Fsinθ=mg
4s末的速度 4s内的位移
典例分析
汽车轮胎与公路路面之间必须要有足够大的动摩擦因数,才能保证汽车 安全行驶。为检测某公路路面与汽车轮胎之间的动摩擦因数,需要测试 刹车的车痕。测试汽车在该公路水平直道上以54 km/h的速度行驶时,突 然紧急刹车,车轮被抱死后在路面上滑动,直至停下来。量得车轮在公 路上摩擦的痕迹长度是17.2 m,则路面和轮胎之间的动摩擦因数是多少? 取 g=10 m/s2。
牛顿定律在实际物体运动中的应用

牛顿定律在实际物体运动中的应用牛顿定律是经典力学的基础,它给出了物体运动的定量描述和解释。
在日常生活中,我们经常能够观察到各种各样的物体运动,而牛顿定律正是帮助我们理解和预测这些运动的规律。
牛顿第一定律,也被称为惯性定律,表明物体在没有受到外力作用时保持静止或匀速直线运动。
这个定律的一个典型应用是汽车的制动。
当汽车行驶时,一旦制动器起作用,汽车的惯性迫使它保持原有的速度和方向,直到制动力使其停下来。
这个例子展示了牛顿第一定律中的惯性特性。
牛顿第二定律是描述物体受力后加速度的关系的定律。
它可以表示为 F = ma,其中 F 是物体所受到的合力,m 是物体的质量,a 是物体的加速度。
这个定律可以广泛应用于许多领域,比如工程学和体育运动。
例如,在工程学中,我们可以通过应用牛顿第二定律来设计更安全和稳定的建筑物和桥梁。
通过计算建筑物所受到的外力和结构的质量,我们可以预测和避免结构的崩塌和失效。
在体育运动中,牛顿第二定律也有广泛的应用。
例如,射击项目中的空气枪运动,射手需要通过控制手臂的加速度来控制枪管的稳定性和射击的准确性。
牛顿第三定律也被称为作用-反作用定律,它指出任何两个物体之间的作用力和反作用力大小相等、方向相反。
这个定律可以解释很多日常生活中的现象,如摩擦力、浮力等。
摩擦力是由于两个物体接触而产生的一种力,它的大小与物体之间的压力和物体间表面的粗糙程度有关。
按照牛顿第三定律,当一个物体受到另一个物体的作用力时,它同时也会对第二个物体施加相等大小、方向相反的反作用力。
这就是为什么当我们在地上行走时,我们能够推动地面并向前移动。
我们的脚施加了向后的力,地面也会施加向前的反作用力,从而推动我们向前移动。
此外,牛顿定律还被广泛用于天文学研究中。
天体运动是牛顿力学的重要应用领域之一。
通过牛顿的万有引力定律,我们可以解释和预测行星、卫星等天体的运动轨迹和相互作用。
这项发现不仅是当代科学的重要里程碑,也为行星科学和宇宙学提供了深入的理论基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律的应用一、矢量性1. 如图所示,装有架子的小车,用细线拖着小球在水平地面上运动,已知运动中,细线偏离竖直方向θ=30°,则小车在做什么运动?求出小球的加速度。
2.如图所示,质量为m=4kg的物体静止在水平地面上,与水平地面间的动摩擦因数μ=0.5,在外力F=20N的作用下开始运动,已知力F与水平方向夹角θ=37°,(sin37°=0.6,cos37°=0.8,g=10m/s2)。
求物体运动的加速度。
3.如图所示,在倾角为37°的固定斜面上静置一个质量为5 kg的物体,物体与斜面间的动摩擦因数为0.2.求:(sin37°=0.6,cos37°=0.8,g=10m/s2)。
(1)物体所受的摩擦力;(2)物体沿斜面下滑过程中的加速度。
二、独立性4.力F1单独作用在物体A上时产生加速度a1大小为5m/s2。
力F2单独作用在物体A上时产生加速度a2大小为2m/s2。
那么F1和F2同时作用在物体A上时产生的加速度为A.5m/s2B.2m/s2 C.8m/s2D.6m/s2三、瞬时性5.质量为M的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块,其加速度为a,当拉力方向不变,大小变为2F时,木块的加速度为a′,则A.a′=aB.a′<2a C.a′>2a D.a′=2a6.如图所示,位于光滑固定斜面上的小物块P受到一水平向右的推力F的作用.已知物块P沿斜面加速下滑.现保持F的方向不变,使其减小,则加速度A.一定变小B.一定变大C.一定不变D .可能变小,可能变大,也可能不变7. 一重球从高h 处下落,如图所示,到A 点时接触弹簧,压缩弹簧至最低点位置B 。
那么重球从A至B 的运动过程中: A 、速度一直减小B 、速度先增加后减小C、在B处加速度可能为零D 、加速度方向先竖直向下再竖直向上8. (1)如图(A)所示,一质量为m 的物体系于长度分别为1L ,2L 的两根细线上,1L 的一端悬挂在天花板上,与竖直方向夹角为θ,2L 水平拉直,物体处于平衡状态。
现将2L 线剪断,求剪断瞬时物体的加速度。
9. 如图所示,木块A 、B用一轻弹簧相连,竖直放在木块C 上,C 静置于地面上,它们的质量之比是1:2:3,设所有接触面都光滑。
当沿水平方向迅速抽出木块C 的瞬间,A 、B 的加速度分别是A a ,B a 各多大?四、同体性10.一人在井下站在吊台上,用如图所示的定滑轮装置拉绳把吊台和自己提升上来.图中跨过滑轮的两段绳都认为是竖直的且不计摩擦.吊台的质量m=15kg,人的质量为M=55kg,起动时吊台向上的加速度是a=0.2m /s 2,求这时人对吊台的压力.(g=9.8m/s 2)五、两类问题11.如图,一个人用与水平方向成︒37的力F =20N 推一个静止在水平面上质量为2kg 的物体,物体和地面间的动摩擦因数为0.25。
(6.037sin =︒)求 (1)物体的加速度多大。
(2)3s 末物体的位移多大。
(3)5S 后撤去F物体还能运动多远。
12.如图所示,质量为4kg 的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到大小为20N,与水平方向成=37°角的斜向上的拉力F 作用时沿水平面做匀加速运动,物体运动10s 后撤去拉力F 。
求(1)10s 内物体的位移是多大?(2)撤去拉力后物体在水平面上还能滑行的最大距离。
(g =10m/s2,sin37°=0.6,co s37°=0.8)13.质量为m的物体放在倾角为θ的固定斜面上,物体与斜面间的动摩擦因数为,如果沿水平方向加一个力F ,使物体沿斜面向上以加速度a 做匀加速直线运动,如图所示,则F 应为多大?14.质量为m 的人站在与水平面成θ角的电梯上,当电梯以加速度a 向上做匀加速运动时,人对电梯的压力和人对电梯地板的摩擦力分别为多少?15.某登山索道与水平方向的夹角为37°,当载人的车厢加速向上运动时,人对厢底的压力为其体重的1.25倍,人与车厢保持相对静止,如图所示.那么车厢对人的摩擦力是人体重的A .41倍;B .45倍;C .31倍;D .34倍.16.如图所示,倾角为θ的斜面固定在升降机上,质量为m 的物体静止在斜面上,当升降机以加速度a 竖直向上加速运动时,物体保持与斜面相对静止,则此时物体受到的支持力和摩擦力分别为多少?17. 如图所示,在倾角θ=37°的足够长的固定斜面上,有一质量m=1kg 的物体,物体与斜面间动摩擦因数μ=0.2.物体受到沿平行于斜面向上的轻细线的拉力F=9.6N 的作用,从静止开始运动,经2s 绳子突然断了.求绳断后多长时间物体速度大小为22m/s .(结果保留两位有效数字,已知sin37°=0.6,g 取10m/s2)六、等时圆18.如图1所示, ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d点为最低点。
每根杆上都套有一个小滑环(图中未画出),三个滑环分别从a 、b 、c处释放(初速为0),用t 1、t 2、t3依次表示各滑环到达d所用的时间,则A .t1<t2<t3 B.t1>t2>t3 C.t3>t1>t2 D.t1=t2=t 319.如图,ab 、cd 是竖直平面内两根固定的光滑细杆,a 、b、c、d位于同一圆周上,圆周半径为R ,b点为圆周的最低点,c点为圆周的最高点.现有两个小滑环A 、B 分别从a 、c 处由静止释放,滑环A 经时间t 1从a 点到达b点,滑环B 经时间t 2从c 点到达d 点;另有一小球C 从b 点以初速度v 0=错误!沿bc 连线竖直上抛,到达最高点时间为t 3,不计一切阻力与摩擦,且A 、B 、C 都可视为质点,则t 1、t2、t 3的大小关系为: A.t 2>t 1>t3 B.t 1=t 2>t 3C.t1=t 2=t 3 D .A 、B 、C 三物体的质量未知,因此无法比较七、连接体问题20. 两个物体A 和B,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A对物体B 的作用力等于____________ 拓展:若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则A对B 作用力等于 。
21. 用质量为m 、长度为L 的绳沿着光滑水平面拉动质量为M的物体,在绳的一端所施加的水平拉力为F, 如图14所示,求: (1)物体与绳的加速度;(2)绳中各处张力的大小(假定绳的质量分布均匀,下垂度可忽略不计。
)22.如图所示,已知水平木板的表面光滑,A 、B 的质量分别为m、M ,A 、B 间由细绳连接。
由静止释放B,不计定滑轮的摩擦及空气阻力,求图14FmM图1释放B的瞬间:(1)A 、B 的加速度大小 (2)绳子对A的拉力大小23.A、B 两物体的质量分别为m=2kg 、M=3kg,固定斜面的倾角为θ=37°,与斜面之间的动摩擦因数μ=0.5,最大静摩擦力可视为等于滑动摩擦力。
忽略定滑轮质量及其摩擦力。
开始时令各物体都处于静止状态,绳被拉直。
如图所示,然后释放B 。
求:(g =10m/s 2)(1)A 物体运动的加速度a 的大小和方向 (2)绳子对B 的拉力F T24.1 如图2-3所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的21,即a =21g ,则小球在下滑的过程中,木箱对地面的压力为多少?24.2如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量 为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时, 竿对“底人”的压力大小为( )A.(M +m)g B.(M +m )g -ma C.(M+m)g +ma D.(M -m )g25. 两重叠在一起的滑块置于固定的倾角为θ的斜面上,如图所示,滑块A 、B的质量分别为M 和m,A 与斜面间的动摩擦因数为μ1,B 与A 之间的动摩擦因数为μ2。
已知两滑块保持相对静止,由静止开始从斜面加速滑下,滑块B 所受的摩擦力为________________。
八、分离临界26. 一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g=匀加速向下移动。
求经过多长时间木板开始与物体分离。
图2-3θBAMm27.如图所示,在光滑水平面上放着紧靠在一起的A、B 两物体,B 物体的质量是A物体质量的2倍,B 物体受到水平向右的恒力F B =2N,A 物体受到的水平力F A =(9-2t)N,(t 的单位是s)。
从t=0开始计时,则下列说法中正确的是 A.A 物体3s 末时的加速度是初始时的5/11 B.B 物体始终做匀加速直线运动 C .t=4.5s 时,A 物体的速度为零D.t>4.5s 后,A 、B 两物体的加速度方向相反28.如图11所示,细线的一端固定于倾角为450的光滑楔形滑块A 的顶端P处,细线的另一端拴一质量为m 的小球。
当滑块至少以加速度a = 向左运动时,小球对滑块的压力等于零,当滑块以a=2g 的加速度向左运动时,线中拉力T= 。
九、滑动临界29. 如图所示,光滑水平面上放置质量分别为m和2m 的四个木块,其中两个质量为m 的木块间用可伸长的轻绳相连,木块间的最大静摩擦力是μmg.现用水平拉力F 拉其中一个质量为2m的木块,使四个木块以同一加速度运动,则轻绳对m的最大拉力为A. B .C. D. 3μmg30.1木板M 静止在光滑水平面上,木板上放着一个小滑块m ,与木板之间的动摩擦因数μ,为了使得m 能从M上滑落下来,求下列各种情况下力F 的大小范围。
30.2如图所示,A、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B与地面间的动摩擦因数为μ2。
最大静摩擦力等于滑动摩擦力,重力加速度为g 。
现对A施加一水平力F,则 A.当F <2μmg 时,A、B 都相对地面静止 B.当F =52μmg 时,A 的加速度为13μg C.当F >3μmg 时,A 相对B 滑动 D .无论F 为何值,B的加速度不会超过12μg53mg μ43mg μ23mg μ aAP450图11 m FMF Mm十、质点组牛顿第二定律31.如图所示,斜面体M始终处于静止状态,当物体m 沿斜面下滑时有A.匀速下滑时,M对地面压力等于(M+m)gB.加速下滑时,M对地面压力小于(M+m)gC.减速下滑时,M对地面压力大于(M+m)gD.M对地面压力始终等于(M+m)g十一、传送带32.11.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查。