第二代测序技术

合集下载

二代测序法

二代测序法

二代测序法二代测序法是指第二代DNA测序技术,相对于第一代测序技术,它具有更高的通量、更快的速度、更低的成本和更高的准确性。

目前常用的二代测序技术主要包括Illumina、Ion Torrent和PacBio等。

一、Illumina二代测序技术Illumina公司是目前最为流行的二代测序平台之一,其基于桥式扩增(bridge amplification)和碱基荧光检测(base-by-base sequencing)原理进行DNA测序。

具体步骤如下:1.文库制备:将待测样本DNA片段通过随机引物PCR扩增得到文库。

2.芯片制备:将文库DNA片段固定在玻璃芯片上,并分成数百万个小区域。

3.桥式扩增:在每个小区域内进行PCR扩增,得到成千上万个同源重复DNA片段。

4.碱基荧光检测:通过加入不同颜色的荧光标记来区分四种碱基,并使用激光照射激发其发出荧光信号。

5.数据分析:将荧光信号转化为电信号并记录下来,通过计算机程序进行数据处理和分析,最终得到DNA序列。

Illumina二代测序技术具有高通量、高准确性和低成本等优点,适用于基因组、转录组和表观基因组等不同领域的研究。

二、Ion Torrent二代测序技术Ion Torrent公司是一家专门从事基于半导体芯片技术的DNA测序平台研发的公司。

其原理是通过碱基加入时产生的质子释放来检测DNA 序列。

具体步骤如下:1.文库制备:将待测样本DNA片段通过随机引物PCR扩增得到文库。

2.芯片制备:将文库DNA片段固定在半导体芯片上,并分成数百万个小区域。

3.碱基加入:在每个小区域内加入一种碱基,并检测质子释放信号。

4.数据分析:将质子释放信号转化为电信号并记录下来,通过计算机程序进行数据处理和分析,最终得到DNA序列。

Ion Torrent二代测序技术具有快速、简便和低成本等优点,适用于小规模的基因组和转录组测序研究。

三、PacBio二代测序技术PacBio公司是一家专门从事基于单分子实时测序技术的DNA测序平台研发的公司。

DNA第2代测序技术

DNA第2代测序技术

高通量测序技术在全基因组mRNA表达谱,microRNA表达 谱,ChIP-chip以及DNA甲基化等方面的应用。
• 2008年Mortazavi等人对小鼠的大脑、肝脏和骨骼肌进行 了RNA 深度测序。分析测得的序列,有大于90%的数据 显示落在已知的外显子中,而那些在已知序列之外的信息 通过数据分析展示的是从未被报道过的RNA剪切形式、3’ 端非翻译区、变动的启动子区域以及潜在的小RNA 前体。77年Sanger等发明的双脱氧核苷酸末端终止法和 Gilbert等发明的化学降解法,标志着第一代测序技术的诞 生。 • 尽管第一代测序技术已经帮助人们完成了从噬菌体基因组 到人类基因组草图等大量的测序工作,但由于其存在成本 高、速度慢等方面的不足,并不是最理想的测序方法。经 过不断的开发和测试,进入21世纪后,以Roche公司的 454技术、Illumina公司的Solexa技术和ABI公司的 SOLiD技术为标志的第二代测序技术诞生了。
图1. 454测序技术流程
• 454技术的主要缺点是无法准确测量同聚物 (homopolymer)的长度。例如当待测序列中出现Poly(A) 的情况下,测序反应中会一次加上多个T,而加入T的数 目只能从荧光信号的强度来推测,有可能造成结果不准确。 也正是因为这个原因,454技术主要的错误不是来自核苷 酸的替换,而是来自插入或缺失。 • 454技术最大的优势在于较长的读取长度,使得后继的序 列拼接工作更加高效、准确。
图2. Solexa测序技术流程
• Solexa技术的读取长度可以达到2×75bp,相比454技术, 其后续的序列拼接工作的计算量和难度均大大增加。 Solexa技术主要的错误来源是核苷酸的替换,而不是插 入或缺失,目前它的错误率大约在1-1.5 %之间。 • Solexa技术每个循环能获得20.5-25 Gb的测序结果,耗 时约9.5天。

第二代测序技术介绍

第二代测序技术介绍

第二代测序技术介绍第二代测序技术,也被称为高通量测序技术,是指在测序过程中同时进行多个DNA分子的测序,从而大大提高了测序的速度和效率。

相对于第一代测序技术,第二代测序技术具有更高的通量、更低的成本和更快的速度,在基因组学、生物信息学、医学和生物学等领域有着广泛的应用。

Illumina(Solexa)测序是目前应用最广泛的第二代测序技术。

它基于细胞自组装技术,通过将DNA片段固定在玻璃基质上,并利用化学物质来控制DNA的扩增和添加荧光标记的核苷酸,实现对DNA片段的扩增和测序。

Illumina测序技术具有高通量、高准确性和低成本的特点,适用于基因组、转录组和表观组测序。

Ion Torrent测序是一种基于半导体技术的第二代测序技术。

它利用DNA聚合酶酶活性引发的质子释放来检测DNA的序列,并通过电信号的变化来记录测序结果。

相较于其他技术,Ion Torrent测序具有简单、快速和低成本的优点,适用于小型测序项目和临床应用。

454测序是第二代测序技术中的一种经典方法。

它基于乳酸菌酶(Luciferase)酶活性,将测序反应中的核苷酸加入到DNA链的末端,在光信号的测量下实现测序。

由于454测序采用的是无法扩增的方法,因此其通量较低,但在研究复杂序列、病毒学和微生物学等领域仍有一定的应用。

与第一代测序技术相比,第二代测序技术具有几个重要的优点。

首先,第二代测序技术可以同时测序多个DNA分子,大大提高了测序的通量和效率。

其次,第二代测序技术的成本更低,可以用于大规模的测序项目。

第三,第二代测序技术的速度更快,可以在较短的时间内完成测序。

最后,第二代测序技术对样本的要求更低,可以从少量样本中获取足够的DNA序列信息。

总之,第二代测序技术的出现和发展为生物信息学和基因组学领域的研究提供了巨大的机会和挑战。

通过不断的技术创新和优化,第二代测序技术将进一步推动基因组学和生物学等领域的发展,为人类健康和疾病研究提供更多的解决方案。

二代测序技术简介

二代测序技术简介

二代测序技术简介一、什么是二代测序技术?二代测序技术,也被称为高通量测序技术,是一种快速、高效的DNA 或RNA序列测定方法。

相比传统的Sanger测序技术,二代测序技术具有较高的测序效率和容量,能够同时测序数百万到数十亿个碱基对,大大提高了测序的速度和数据产量。

常用的二代测序技术包括Illumina 测序技术、Ion Torrent PGM 测序技术等。

二、Illumina二代测序技术的原理与过程1. 原理Illumina二代测序技术基于桥式扩增和碱基扩增的原理。

DNA样本经过打断、连接和PCR扩增等处理后,将单链DNA固定于特定表面上,并在每个DNA分子之间形成成千上万个桥式扩增复合物。

在模板DNA的存在下,通过逐个反复封闭、复制和荧光标记的方式,进行碱基的逐渐扩增,并利用荧光信号记录测序结果。

2. 过程(1)样本制备:包括DNA或RNA的提取、打断、连接和PCR扩增等步骤,以获得特定长度的DNA片段。

(2)文库构建:将DNA片段连接到Illumina测序芯片上的适配器上,并进行PCR扩增,形成DNA桥式扩增复合物。

(3)测序芯片加载:将DNA桥式扩增复合物置于测序芯片上,使得每个DNA分子都与芯片上的特定区域相结合。

(4)桥式扩增:通过逐个反复封闭、复制和荧光标记的方式进行碱基的逐步扩增,形成簇团。

(5)图像获取:利用高分辨率成像系统拍摄簇团的荧光信号。

(6)数据分析:将图像数据转化为碱基序列,通过比对和组装等算法,得到原始测序数据。

三、Illumina二代测序技术的优势和应用领域1. 优势(1)高通量:能够在较短时间内产生大规模的测序数据。

(2)高准确性:其错误率低于其他二代测序技术,能够提供高质量的测序结果。

(3)可扩展性:适用于不同规模的测序项目,从几个目标区域到整个基因组的测序,具有较高的灵活性。

(4)低成本:相对于传统的Sanger测序技术,具有更低的测序成本。

2. 应用领域(1)基因组学研究:能够对物种的基因组进行全面测序和变异分析,有助于揭示基因组结构和功能。

《2024年第二代测序技术的发展及应用》范文

《2024年第二代测序技术的发展及应用》范文

《第二代测序技术的发展及应用》篇一一、引言随着人类对生命科学研究的不断深入,测序技术作为生命科学研究的重要手段之一,其发展历程也经历了多次重大突破。

其中,第二代测序技术作为当前应用最广泛的测序技术之一,其发展及应用对于生命科学研究、医学诊断、药物研发等领域产生了深远的影响。

本文将重点介绍第二代测序技术的发展历程、原理、应用及未来展望。

二、第二代测序技术的发展历程及原理1. 发展历程第二代测序技术,又称高通量测序技术,自2005年问世以来,经历了从初期的小规模应用到现在的大规模商业化应用的历程。

其发展主要得益于大规模并行测序技术的突破和生物信息学技术的进步。

2. 原理第二代测序技术基于大规模并行测序原理,通过将待测序列的DNA分子进行大规模的扩增和测序,从而实现高通量、高精度的测序。

其主要步骤包括DNA文库构建、桥式PCR扩增和碱基识别等。

三、第二代测序技术的应用1. 生命科学研究第二代测序技术在生命科学研究中得到了广泛应用。

例如,通过对基因组、转录组等数据的测序和分析,研究人员可以了解基因的表达、变异、互作等信息,为基因疾病的研究提供重要依据。

此外,第二代测序技术还可以用于物种进化分析、基因组拼接等领域。

2. 医学诊断第二代测序技术在医学诊断中也有着重要的应用。

例如,通过对患者肿瘤组织的基因组测序,可以了解肿瘤的基因突变情况,为肿瘤的个性化治疗提供重要依据。

此外,第二代测序技术还可以用于病原体检测、遗传病诊断等领域。

3. 药物研发第二代测序技术在药物研发中也具有重要作用。

通过对药物的靶点进行基因组或转录组分析,可以了解靶点的结构和功能信息,为新药设计和研发提供重要参考。

此外,第二代测序技术还可以用于药物临床试验中患者入组标准的制定等环节。

四、第二代测序技术的挑战与展望1. 挑战尽管第二代测序技术已经取得了巨大的成功,但仍面临着一些挑战。

例如,随着测序数据的不断增长,如何进行高效的数据分析和解读成为了一个重要问题。

(完整版)二代测序内容

(完整版)二代测序内容

二代测序:第二代测序技术的核心思想是边合成边测序(Sequencing by Synthesis),即通过捕捉新合成的末端的标记来确定DNA的序列,现有的技术平台主要包括Roche/454FLX、Illumina/Solexa Genome Analyzer和Applied Biosystems SOLID system。

DNA测序(DNA sequencing)作为一种重要的实验技术,在生物学研究中有着广泛的应用。

早在DNA双螺旋结构(Watson and Crick,1953)被发现后不久就有人报道过DNA测序技术,但是当时的操作流程复杂,没能形成规模。

随后在1977年Sanger发明了具有里程碑意义的末端终止测序法,同年A.M.Maxam和W.Gilbert发明了化学降解法。

Sanger法因为既简便又快速,并经过后续的不断改良,成为了迄今为止DNA测序的主流。

然而随着科学的发展,传统的Sanger测序已经不能完全满足研究的需要,对模式生物进行基因组重测序以及对一些非模式生物的基因组测序,都需要费用更低、通量更高、速度更快的测序技术,第二代测序技术(Next-generation sequencing)应运而生。

这三个技术平台各有优点,454 FLX的测序片段比较长,高质量的读长(read)能达到400bp;Solexa测序性价比最高,不仅机器的售价比其他两种低,而且运行成本也低,在数据量相同的情况下,成本只有454测序的1/10;SOLID测序的准确度高,原始碱基数据的准确度大于99.94%,而在15X覆盖率时的准确度可以达到99.999%,是目前第二代测序技术中准确度最高的。

虽然第二代测序技术的工作一般都由专业的商业公司来完成,但是了解测序原理、操作流程等会对后续的数据分析有很重要的作用,下文将以Illumina/Solexa Genome Analyzer 测序为例,简述第二代测序技术的基本原理、操作流程等方面。

二代测序原理及应用

二代测序原理及应用

二代测序原理及应用1 什么是二代测序二代测序(Second Generation Sequencing,SGS),也被称为高通量测序,是目前被广泛采用的DNA测序技术。

它可以同时测序物种的大量DNA,一次性对一个样本中的基因组进行完整的测序,从而减少了人力费用和时间消耗,已被用于功能基因组研究,种质工程,染色体计数等方面。

2 二代测序原理二代测序技术又称为“随机扫描(Random Scanning)”测序技术,是基于“产生克隆,扩增特定序列,随机扫描和高通量凝胶电泳”的原理。

其中,产生DNA克隆是根据基因组上的特定序列产生DNA片段的一种连锁反应,生成大量的同一序列的大量分子克隆;扩增特定序列是将特定的DNA片段的模板分子,新的DNA复制含有该特定序列的DNA片段;随机扫描是指,由DNA测序仪扫描得到的不同的DNA Sequence;高通量凝胶电泳是指把经过克隆和扩增完成后的独特片段,通过凝胶电泳分析,比对出序列。

3 二代测序技术应用二代测序技术可以更精确,更快速地测序一个物种的全部 DNA,它可以特异性地测序变异位点,并具有自动化扩增,高通量以及低成本等特点,可以替代传统的单基因、低通量测序方法,应用于人类基因组学、基因克隆,转基因动植物研究,比较基因组学,物种的系统分类以及多种人类疾病的基因组学研究等。

最近,二代测序技术在病毒分离,基因组大变异,噬菌体基因组等方面的应用也日益增多,为提高病毒分离、基因表达分析和生物科学研究等场合提供了新的研究手段,也为疾病的早期筛查和诊断奠定了基础。

4 优势二代测序技术的优势在于,其使用了一种模块化的设计,使两个相同片段的测序完全同步,从而降低了批量测序的时间。

除此之外,二代测序技术还支持多重测序,如多家样本同时测序。

此外,因为它允许突变的检测,所以经常被用于噬菌体及病毒测序,基因表达分析以及精细调控网络等研究。

总之,二代测序技术已经成为基因组测序行业的主导技术。

高通量测序:第二代测序技术详细介绍

高通量测序:第二代测序技术详细介绍

Sanger 测序大家都比较了解,是先将基因组DNA 片断化,然后克隆到质粒载体上,再转化大肠杆菌。

对于每个测序反应,挑出单克隆,并纯化质粒DNA。

每个循环测序反应产生以ddNTP 终止的,荧光标记的产物梯度,在测序仪的96 或384 毛细管中进行高分辨率的电泳分离。

当不同分子量的荧光标记片断通过检测器时,四通道发射光谱就构成了测序轨迹。

在新一代测序技术中,片断化的基因组DNA 两侧连上接头,随后运用不同的步骤来产生几百万个空间固定的PCR 克隆阵列(polony)。

每个克隆由单个文库片段的多个拷贝组成。

之后进行引物杂交和酶延伸反应。

由于所有的克隆都是系在同一平面上,这些反应就能够大规模平行进行。

同样地,每个延伸所掺入的荧光标记的成像检测也能同时进行,来获取测序数据。

酶拷问和成像的持续反复构成了相邻的测序阅读片段。

Solexa 高通量测序原理--采用大规模并行合成测序法(SBS, Sequencing-By-Synthesis)和可逆性末端终结技术(Reversible Terminator Chemistry)--可减少因二级结构造成的一段区域的缺失。

--具有高精确度、高通量、高灵敏度和低成本等突出优势--可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究----将接头连接到片段上,经 PCR 扩增后制成 Library 。

----随后在含有接头(单链引物)的芯片( flow cell )上将已加入接头的 DNA 片段变成单链后通过与单链引物互补配对绑定在芯片上,另一端和附近的另外一个引物互补也被固定,形成“桥”----经30伦扩增反应,形成单克隆DNA簇----边合成边测序(Sequencing By Synthesis)的原理,加入改造过的DNA 聚合酶和带有4 种荧光标记的dNTP。

这些dNTP是“可逆终止子”,其3’羟基末端带有可化学切割的基团,使得每个循环只能掺入单个碱基。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二代测序技术
--以Illumina/Solexa Genome Analyzer为例
1.概述
DNA测序(DNA sequencing)作为一种重要的实验技术,在生物学研究中有着广泛的应用。

早在DNA双螺旋结构(Watson and Crick,1953)被发现后不久就有人报道过DNA测序技术,但是当时的操作流程复杂,没能形成规模。

随后在1977年Sanger发明了具有里程碑意义的末端终止测序法,同年A.M.Maxam和W.Gilbert发明了化学降解法。

Sanger法因为既简便又快速,并经过后续的不断改良,成为了迄今为止DNA测序的主流。

然而随着科学的发展,传统的Sanger 测序已经不能完全满足研究的需要,对模式生物进行基因组重测序以及对一些非模式生物的基因组测序,都需要费用更低、通量更高、速度更快的测序技术,第二代测序技术(Next-generation sequencing)应运而生。

第二代测序技术的核心思想是边合成边测序(Sequencing by Synthesis),即通过捕捉新合成的末端的标记来确定DNA的序列,现有的技术平台主要包括Roche/454 FLX、
Illumina/Solexa Genome Analyzer和Applied Biosystems SOLID system。

这三个技术平台各有优点,454 FLX的测序片段比较长,高质量的读长(read)能达到400bp;Solexa测序性价比最高,不仅机器的售价比其他两种低,而且运行成本也低,在数据量相同的情况下,成本只有454测序的1/10;SOLID测序的准确度高,原始碱基数据的准确度大于99.94%,而在15X覆盖率时的准确度可以达到99.999%,是目前第二代测序技术中准确度最高的。

虽然第二代测序技术的工作一般都由专业的商业公司来完成,但是了解测序原理、操作流程等会对后续的数据分析有很重要的作用,下文将以Illumina/Solexa Genome Analyzer 测序为例,简述第二代测序技术的基本原理、操作流程等方面。

2.基本原理
Illumina/Solexa Genome Analyzer测序的基本原理是边合成变测序。

在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。

3.操作流程
1)测序文库的构建(Library Construction)
首先准备基因组DNA(虽然测序公司要求样品量要达到200ng,但是Gnome Analyzer系统所需的样品量可低至100ng,能应用在很多样品有限的实验中),然后将DNA随机片段化成几百碱基或更短的小片段,并在两头加上特定的接头(Adaptor)。

如果是转录组测序,则文库的构建要相对麻烦些,RNA片段化之后需反转成cDNA,然后加上接头,或者先将RNA反转成cDNA,然后再片段化并加上接头。

片段的大小(Insert size)对于后面的数据分析有影响,可根据需
要来选择。

对于基因组测序来说,通常会选择几种不同的insert size,以便在组装(Assembly)的时候获得更多的信息。

2)锚定桥接(Surface Attachment and Bridge Amplification)
Solexa测序的反应在叫做flow cell的玻璃管中进行,flow cell又被细分成8个Lane,每个Lane的内表面有无数的被固定的单链接头。

上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。

3)预扩增(Denaturation and Complete Amplification)
添加未标记的dNTP 和普通Taq 酶进行固相桥式PCR 扩增,单链桥型待测片段被扩增成为双链桥型片段。

通过变性,释放出互补的单链,锚定到附近的固相表面。

通过不断循环,将会在Flow cell 的固相表面上获得上百万条成簇分布的双链待测片段。

4)单碱基延伸测序(Single Base Extension and Sequencing)
在测序的flow cell中加入四种荧光标记的dNTP 、DNA 聚合酶以及接头引物进行扩增,在每一个测序簇延伸互补链时,每加入一个被荧光标记的dNTP 就能释放出相对应的荧光,测序仪通过捕获荧光信号,并通过计算机软件将光信号转化为测序峰,从而获得待测片段的序列信息。

从荧光信号获取待测片段的序列信息的过程叫做Base Calling,Illumina公司Base Calling所用的软件是Illumina’s Genome Analyzer Sequencing Control Software and Pipeline Analysis Software。

读长会受到多个引起信号衰减的因素所影响,如荧光标记的不完全切割。

随着读长的增加,错误率也会随之上升。

5)数据分析(Data Analyzing)
这一步严格来讲不能算作测序操作流程的一部分,但是只有通过这一步前面的工作才显得有意义。

测序得到的原始数据是长度只有几十个碱基的序列,要通过生物信息学工具将这些短的序列组装成长的Contigs甚至是整个基因组的框架,或者把这些序列比对到已有的基因组或者相近物种基因组序列上,并进一步分析得到有生物学意义的结果。

(注:图片引自Elaine R. Mardis (2008) Next-Generation DNA Sequencing Methods Annu. Rev. Genomics Hum. Genet. 9:387–402)
4.讨论
目前Solexa测序的读长能达到75bp,这个大小比传统的Sanger测序要短得多,也比Applied Biosystems 公司的SOLID测序要短,但是Solexa测序的优势是能够获得海量的数据,并且价格低廉,按相同的数据量来算,Solexa测序要比其他测序技术便宜很多。

75bp的长度肯定是不适合直接用来分析的,测序得到的reads需要拼接之后才能有实际的用途,这就要求有强大的生物信息学分析能力作为支撑。

和传统的测序技术相比,Solexa测序的错误率也相对较高,并且测序错误倾向于分布在read后面的碱基中,如何区分测序错误和真正的DNA多态性也是一个大问题。

相关文档
最新文档