内插法计算小程序

合集下载

内插法的计算公式-内插法计算公式

内插法的计算公式-内插法计算公式

内插法(Interpolation Method)什么是内插法在通过找到满足租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值等于租赁资产的公平价值的折现率,即租赁利率的方法中,内插法是在逐步法的基础上,找到两个接近准确答案的利率值,利用函数的连续性原理,通过假设关于租赁利率的租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值与租赁资产的公平价值之差的函数为线性函数,求得在函数值为零时的折现率,就是租赁利率。

内插法原理数学内插法即“直线插入法”。

其原理是,若A(i1,b1),B(i2,b2)为两点,则点P(i,b)在上述两点确定的直线上。

而工程上常用的为i在i1,i2之间,从而P在点A、B之间,故称“直线内插法”。

数学内插法说明点P反映的变量遵循直线AB反映的线性关系。

上述公式易得。

A、B、P三点共线,则(b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直线斜率,变换即得所求。

内插法的具体方法求得满足以下函数的两个点,假设函数为线性函数,通过简单的比例式求出租赁利率。

以每期租金先付为例,函数如下:A表示租赁开始日租赁资产的公平价值;R表示每期租金数额;S表示租赁资产估计残值;n表示租期;r表示折现率。

通过简单的试错,找出二个满足上函数的点(a1,b1)(a2,b2),然后,利用对函数线性的假设,通过以下比例式求出租赁利率:内插法应用举例内插法在财务管理中应用很广泛,如在货币时间价值的计算中,求利率i,求年限n;在债券估价中,求债券的到期收益率;在项目投资决策指标中,求内含报酬率。

中级和CPA教材中都没有给出内插法的原理,很多同学都不太理解是怎么一回事。

下面我们结合实例来讲讲内插法在财务管理中的应用。

一、在内含报酬率中的计算内插法在内含报酬率的计算中应用较多。

内含报酬率是使投资项目的净现值等于零时的折现率,通过内含报酬率的计算,可以判断该项目是否可行,如果计算出来的内含报酬率高于必要报酬率,则方案可行;如果计算出来的内含报酬率小于必要报酬率,则方案不可行。

1.2第二章 内插法

1.2第二章 内插法

α
3 4 4.4 5
- z 00 z10 - z 00 z 01 z =z00+ (x - x 0 ) + (y - y 0 ) x1 - x 0 y1 - y 0
37 . -46 . 9.3-4.6 Z =4.6+ (13.4-10)+ (4.4-4)=5.8 n mile 5 4 20 10
第二节 变率内插
当函数是非线性函数时,如果用比例内 插计算将会导致一定的计算误差, 为了尽量减小该误差,则引进了变率内 插。
一. 变率单内插(一元函数) 利用表中给出的函数变化率进行内插。
dy y=y0+ (x-x0) dx
例2-2-1:用y=x2造表,求x=2.3时的y?
(1) 用比例内插 y=5.5 (2) 用x=2变率内插 y=4+4(2.3-2)=5.2 (3) 用x=3变率内插 y=9+6(2.3-3)=4.8 (4) 用y=x2直接计算 y=5.29
内插分类:
a:按使用目的:
正内插-已知引数求函
数;
反内插-已知函数求引数。
b:按引数的个数:
单内插、双内插、三内插 c:按函数的性质:
线性内插、变率内插、高次内插
第一节 比例内插(线性内插)
一.比例单内插(一元函数 y=f(x) )
1.比例正内插 已知 x 求 y。 引数 函数值
x0
x1 …
(2)求α=5′,h=13.4m时的D2?
α h 3 4 5 10 6.2 4.6 3.7 13.4 20 12.3 9.3 7.4
5.0
7 .4 - 3 .7 D1-D 0 D1=D0+ (h-h0)=3.7+ 20 - 10(13.4-10)=5.0n mile h1-h0

内插法表达公式(一)

内插法表达公式(一)

内插法表达公式(一)内插法表达公式1. 什么是内插法表达公式?内插法表达公式是一种通过已知数据点之间的内插,来推导出函数的近似表达式的方法。

通过内插法,我们可以预测数据点之间的值,从而补充和扩展已知的数据。

2. 线性内插法线性内插法是一种简单而常用的内插法,它基于线性关系来进行内插。

线性内插法假设函数的值在已知数据点之间是线性变化的。

线性内插公式如下:f(x) = f(x1) + (f(x2) - f(x1)) * (x - x1) / (x2 - x 1)其中,(x1, f(x1))和(x2, f(x2))是已知的两个数据点,f(x)是在x1和x2之间进行内插得到的近似函数值。

举例说明:假设我们已知某商品的价格在2018年和2019年的销售数据点为(2018, 100)和(2019, 150),我们想要预测2020年的价格。

根据线性内插公式,我们可以得到:f(2020) = f(2019) + (f(2019) - f * (2020 - 2019) / (2019 - 2018)= 150 + (150 - 100) * (2) / (1)= 150 + 50= 200因此,我们可以预测2020年该商品的价格为200。

3. 拉格朗日插值法拉格朗日插值法是一种常用的多项式内插法,它通过构造一个满足已知数据点的函数来进行内插。

拉格朗日插值公式如下:f(x) = Σ(f(xi) * L(x)), i=0 to n其中,f(xi)是已知数据点的函数值,L(x)是插值基函数,n是已知数据点的个数。

举例说明:假设我们已知某商品的价格在2018年、2019年和2020年的销售数据点为(2018, 100),(2019, 150)和(2020, 200),我们想要预测2021年的价格。

根据拉格朗日插值公式,我们可以得到:f(2021) = f(2018) * L + f(2019) * L + f(2020) * L其中,L1(x),L2(x)和L3(x)是拉格朗日插值的基函数。

最新内插法的定义及计算公式

最新内插法的定义及计算公式

内插法的定义及计算公式内插法(Interpolation Method)什么是内插法在通过找到满足租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值等于租赁资产的公平价值的折现率,即租赁利率的方法中,内插法是在逐步法的基础上,找到两个接近准确答案的利率值,利用函数的连续性原理,通过假设关于租赁利率的租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值与租赁资产的公平价值之差的函数为线性函数,求得在函数值为零时的折现率,就是租赁利率。

内插法原理数学内插法即“直线插入法”。

其原理是,若A(i1,b1),B(i2,b2)为两点,则点P(i,b)在上述两点确定的直线上。

而工程上常用的为i在i1,i2之间,从而P在点A、B之间,故称“直线内插法”。

数学内插法说明点P反映的变量遵循直线AB反映的线性关系。

上述公式易得。

A、B、P三点共线,则(b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直线斜率,变换即得所求。

内插法的具体方法求得满足以下函数的两个点,假设函数为线性函数,通过简单的比例式求出租赁利率。

以每期租金先付为例,函数如下:A表示租赁开始日租赁资产的公平价值;R表示每期租金数额;S表示租赁资产估计残值;n表示租期;r表示折现率。

通过简单的试错,找出二个满足上函数的点(a1,b1)(a2,b2),然后,利用对函数线性的假设,通过以下比例式求出租赁利率:内插法应用举例内插法在财务管理中应用很广泛,如在货币时间价值的计算中,求利率i,求年限n;在债券估价中,求债券的到期收益率;在项目投资决策指标中,求内含报酬率。

中级和CPA教材中都没有给出内插法的原理,很多同学都不太理解是怎么一回事。

下面我们结合实例来讲讲内插法在财务管理中的应用。

一、在内含报酬率中的计算内插法在内含报酬率的计算中应用较多。

内含报酬率是使投资项目的净现值等于零时的折现率,通过内含报酬率的计算,可以判断该项目是否可行,如果计算出来的内含报酬率高于必要报酬率,则方案可行;如果计算出来的内含报酬率小于必要报酬率,则方案不可行。

内插法的定义及计算公式

内插法的定义及计算公式

内插法的定义及计算公式内插法是一种利用已知数据点之间的关系,推断未知数据点的方法。

它通过根据已知数据点之间的线性或非线性关系来估计未知点的数值。

内插法广泛应用于数值分析、统计学、物理学、工程学等领域。

内插法的计算公式根据已知数据点之间的关系不同而有所差异。

下面将介绍常用的线性内插法和拉格朗日内插法。

线性内插法:线性内插法是内插法中最简单的一种方法,它假设未知点之间的关系是线性的。

线性内插法常用于数据点较少,且变化趋势较为简单的情况。

给定两个已知数据点$(x_0,y_0)$和$(x_1,y_1)$,要估计在$x$处的函数值$y$,根据线性内插法,我们可以使用以下公式:$$y = y_0 + \frac{(y_1 - y_0)}{(x_1 - x_0)}(x - x_0)$$拉格朗日内插法:拉格朗日内插法是一种使用多项式插值的内插法,它通过构造一个通过已知数据点的多项式函数来估计未知点的函数值。

拉格朗日内插法可以适用于各种不规则的数据分布情况。

假设给定$n+1$个已知数据点$(x_i,y_i)$,其中$i=0,1,2,...,n$,要求在$x$处的函数值$y$。

拉格朗日内插法的计算公式如下:$$L(x) = \sum_{i=0}^{n} y_i \cdot l_i(x)$$其中,$L(x)$是通过拉格朗日多项式定义的插值函数,$l_i(x)$是拉格朗日基函数,定义如下:$$l_i(x) = \prod_{j=0,j \neq i}^{n} \frac{(x - x_j)}{(x_i -x_j)}$$通过以上公式,我们可以将已知数据点代入计算,得到$L(x)$的数值。

在实际应用中,还有许多其他类型的内插法,如牛顿内插法、样条内插法等。

每种内插法都适用于特定的数据情况,需根据实际问题选择合适的方法进行计算。

总结起来,内插法是一种通过已知数据点之间的关系来推断未知点数值的方法。

具体的计算公式根据数据点的特点和问题的需求而有所不同,线性内插法和拉格朗日内插法是常用的两种内插法。

内插法怎么用

内插法怎么用

内插法怎么用导言:内插法是数值分析中常用的插值技术。

在实际问题中,往往需要根据给定的离散数据点,通过内插法计算出其他位置的数据点的值。

内插法的应用广泛,例如在地理信息系统中用于生成高程图,计算机图形学中用于图像处理,以及金融领域中用于补充缺失的数据点等等。

本文将介绍两种常见的内插法:线性插值和拉格朗日插值。

一、线性插值线性插值是一种简单但常用的内插法。

它基于两个已知数据点,通过线性关系推算中间点的值。

具体步骤如下:1. 确定两个已知数据点(x1, y1)和(x2, y2),其中x1 < x2。

2. 根据已知数据点构建线性插值函数:y = y1 + (x - x1) * (y2 - y1) / (x2 - x1)其中,y为待求的中间点的值,x为中间点的横坐标。

3. 将待求的中间点的横坐标代入插值函数,计算出中间点的纵坐标。

例如,已知数据点(0, 0)和(2, 4),求横坐标为1的中间点的纵坐标。

根据线性插值公式,代入已知数据点的值和待求的中间点的横坐标:y = 0 + (1 - 0) * (4 - 0) / (2 - 0)= 1 * 4 / 2= 2因此,在横坐标为1的位置上,中间点的纵坐标为2。

线性插值的优点是计算简单快捷,而缺点是插值精度相对较低。

二、拉格朗日插值拉格朗日插值是一种更精确的内插法,它利用多项式插值的思想。

具体步骤如下:1. 确定多个已知数据点(x1, y1),(x2, y2),...,(xn, yn),其中x1 < x2 < ... < xn。

2. 根据已知数据点构建拉格朗日插值多项式:L(x) = y1 * L1(x) + y2 * L2(x) + ... + yn * Ln(x)其中,L(x)为待求中间点的值,Li(x)为拉格朗日基函数。

拉格朗日基函数的定义为:Li(x) = (x - x1) * (x - x2) * ... * (x - xi-1) * (x - xi+1) * ... * (x - xn) / ((xi - x1) * (xi - x2) * ... * (xi - xi-1) * (xi - xi+1) * ... * (xi - xn))3. 将待求的中间点的横坐标代入拉格朗日插值多项式,计算出中间点的纵坐标。

内插法的计算公式

内插法的计算公式

内插法的计算公式在数学和金融等领域,内插法是一种常用的计算方法,它能够帮助我们在已知数据点之间估算未知的值。

内插法的应用场景广泛,比如在金融领域用于计算债券的收益率,在工程领域用于估算不同条件下的测量值等。

接下来,让我们详细了解一下内插法的计算公式及其原理。

内插法,简单来说,就是在一组已知的数据点之间,通过建立某种数学关系,来推测出位于这些数据点之间的未知数据。

其核心思想是假设数据之间存在某种线性或非线性的关系,并基于这种假设进行计算。

我们先从线性内插法说起。

线性内插法是内插法中最简单也最常用的一种形式。

假设我们有两个已知数据点(x1, y1) 和(x2, y2),现在要估算位于 x1 和 x2 之间的某个 x 值所对应的 y 值。

线性内插法的计算公式为:y = y1 +((x x1) (y2 y1) /(x2 x1))为了更好地理解这个公式,我们通过一个具体的例子来说明。

假设某商品的价格在 1 月份为 100 元,2 月份为 120 元。

现在我们想知道在1 月 15 日时该商品的价格。

在这里,x1 = 1(代表 1 月份),y1 = 100;x2 = 2(代表 2 月份),y2 = 120;x = 15(代表 1 月 15 日)。

将这些值代入公式:y = 100 +((15 1) (120 100) /(2 1))= 100 +(05 20) = 110 元。

所以,通过线性内插法,我们估算出 1 月 15 日该商品的价格约为110 元。

除了线性内插法,还有非线性内插法,比如二次内插法和三次内插法等。

二次内插法假设数据之间的关系是二次函数形式。

其计算公式相对复杂,需要先根据三个已知数据点确定二次函数的系数,然后再代入要估算的 x 值计算出对应的 y 值。

三次内插法则假设数据之间的关系是三次函数形式,计算过程更为繁琐。

在实际应用中,选择哪种内插法取决于数据的特点和精度要求。

如果数据呈现出明显的线性趋势,那么线性内插法通常就能够满足需求。

最新内插法的定义及计算公式

最新内插法的定义及计算公式

最新内插法的定义及计算公式1.线性插值:线性插值是最简单和最常用的内插方法之一、它基于线性函数的性质,假设两个相邻数据点之间的关系是线性的。

设已知数据点为(x1,y1)和(x2,y2),要估算的未知数据点为(x,y)。

线性插值公式如下:y=y1+(x-x1)*(y2-y1)/(x2-x1)2.多项式插值:多项式插值是通过一个多项式函数来逼近已知数据点的曲线形状。

该方法假设未知数据点之间的关系可以用多项式函数来表示。

设已知数据点为(x1, y1),(x2, y2),...,(xn, yn),要估算的未知数据点为(x, y),多项式插值公式如下:y = P(x) = a0 + a1 * (x - x1) + a2 * (x - x1) * (x - x2)+ ... + an * (x - x1) * (x - x2) * ... * (x - xn-1)其中,a0, a1, a2, ..., an为多项式的系数,可以通过求解线性方程组来确定。

3.样条插值:样条插值使用分段多项式来逼近已知数据点的曲线形状。

该方法假设未知数据点之间的关系可以用不同的多项式函数段来表示。

设已知数据点为(x1, y1),(x2, y2),...,(xn, yn),要估算的未知数据点为(x, y),样条插值公式如下:y = S(x) = Si(x) = ai + bi * (x - xi) + ci * (x - xi)^2 + di * (x - xi)^3其中,Si(x)表示第i段多项式,ai, bi, ci, di为每个多项式的系数,可以通过求解线性方程组来确定。

不同的样条插值方法具有不同的限制条件,如自然边界条件、固定边界条件等,这些限制条件有助于确保插值结果的平滑和连续性。

以上是最新内插法的几种常见形式,它们在实际应用中具有广泛的适用性。

根据具体问题的特点和数据的性质,选择合适的内插方法能够提高估算的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档