512垂线(1)导学案
人教版七年级数学下册5.1.2垂线(1) 导学案

集体备课导学案
学段初中年级七年级学科数学
单元
第5单元课题 5.1.2 垂线
(1)
课型新授
主备学校初审人终审人
主备人合作团队
课标
依据
理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。
教学目标1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2.掌握点到直线的距离的概念,并会度量点到直线的距离。
3.掌握垂线的性质,并会利用所学知识进行简单的推理。
教学
重点
垂线的定义及性质。
教学
难点
垂线的画法
导学环节课堂
流程
时
间
任务驱动
问题导学
学法
指导
知识
链接
呈现
目标
用小黑板呈现本节课的学习目标,并让学生诵读
自主学习温故
知新
4 1.如图,若∠1=60°,那么∠2=_______、
∠3=_______、∠4=_______
2.改变上图中∠1的大
小,若∠1=90°,请画出这
种图形,并求出此时∠2、
∠3、∠4的大小。
小组
内完
成。
2019人教版七年级数学下册第五章512垂线导学案无答案语文.doc

ABCDO O D C BA B a 5.1.2 垂线目标:1. 能记住垂线、垂线段及点到直线的距离的概念。
2. 能说出垂线的性质,并会利用垂线性质一进行简单的推理,利用垂线性质二解决生活中的实际问题。
3. 会用三角尺过一点画已知直线的垂线, 重点:记住垂线的定义及性质。
难点:会利用垂线性质一进行简单的推理和利用垂线性质二解决生活中的实际问题。
学习过程:一.创设情境,引入课题1、什么对顶角和邻补角,它们的性质是什么? 2.如图∠1=60°,那么∠2、∠3、∠4的度数 3. ∠1=90°,那么∠2、∠3、∠4的度数 二、合作探究,形成概念问题1: 垂线的认识 看课本P3完成下列题目 1)两条直线相交所成的四个角中,有一个角是______时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的_______,它们的交点叫_______.垂直是_____的一种特殊情形。
2) 直线AB,CD 互相垂直,记作:读作:用推理的过程表示垂线的定义:∵∠AOD =90°(已知)∴AB CD (垂线的定义)3)上面问题反过来,AB ⊥CD 那么可得怎样结论? 能写出推理过程吗?三、画图实践,探究垂线性质 垂线的性质一 问题2:点与直线有_____种位置关系,分别是_______和________ 1)探究过已知点画已知直线的垂线画法:让三角板的一条直角边与已知直线重合,沿直线移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则所画的直线为所求垂线。
2)探究垂线的性质:○1经过直线a 上一点P 画a 的垂线,可以画几条? ○2经过直线a 外一点B 画a 的垂线,可以画几条? 总结垂线性质1:3、对应练习:教材5页练习1、2(在书上完成) 垂线的性质二问题3: “已知直线l 和直线外一点P ,连接点P 到直线l 上各点O,A 1,A 2,A 3…,其中 PO ⊥l (我们称PO 为点P 到直线l 的垂线段)。
5.2画垂线(导学案)——四年级上册数学人教版

5.2画垂线(导学案)——四年级上册数学人教版今天我们要学习的内容是画垂线,这是四年级上册数学的一节重要课程。
我们将通过实例来理解垂直的概念,并学会如何画出垂线。
教学目标是让学生理解垂直的概念,学会画垂线,并能够运用垂线的知识解决实际问题。
在教学过程中,我会先通过一个实际情景引入,例如在白板上挂一幅画,然后提问:如何才能使得画正好垂直于地面呢?这样能够激发学生的思考,并引出垂直的概念。
接着,我会讲解垂直的定义,并通过示例来展示如何画出垂线。
在讲解过程中,我会强调垂线的特点,例如垂线是与水平线相交成90度的线。
然后,我会让学生进行随堂练习,例如在纸上画出一条线段,并画出与它垂直的垂线。
我会对学生的练习进行点评,并给出正确的答案。
在板书设计上,我会用大的字体写出“垂直”和“垂线”这两个关键词,并用箭头和角度符号来表示垂线与水平线的相交关系。
对于作业设计,我会布置一道题目:在纸上画出两条线段,并画出与它们垂直的垂线。
答案应该是两条线段的垂线分别与它们相交成90度。
在课后反思中,我认为这节课学生对于垂直和垂线的概念有了初步的理解,但在画垂线的过程中,有些学生还存在着一些困难。
在今后的教学中,我将继续通过实例和练习,让学生更好地理解和掌握垂线的画法。
我还会进行一些拓展延伸,例如让学生思考:在实际生活中,垂线有哪些应用呢?这样能够让学生更好地理解数学与生活的联系。
重点和难点解析:在上述教学过程中,我认为有几个重点和难点需要特别关注。
是垂直概念的引入,是垂线的画法,是学生对垂线应用的理解。
关于垂直概念的引入,我通过挂画的情景来让学生直观地感受垂直的概念。
这个情景能够引起学生的兴趣,并激发他们的思考。
在引入垂直概念时,我会强调垂线与水平线相交成90度的特点,并引导学生通过观察和讨论来理解这一特点。
关于垂线的画法,这是本节课的重点也是难点。
我会通过示例来展示如何画出垂线,并强调垂线的特点。
在讲解过程中,我会特别注意垂线与线段的关系,以及垂线的起点和终点。
5.2画垂线(导学案)2023-2024学年数学四年级上册-人教版

5.2画垂线(导学案)20232024学年数学四年级上册人教版我今天要给大家讲解的是人教版四年级上册数学教材中的第五章第二节内容——画垂线。
一、教学内容二、教学目标通过本节课的学习,我希望同学们能够掌握垂线的定义和画法,理解垂线在实际问题中的应用,培养大家的空间想象能力和解决问题的能力。
三、教学难点与重点本节课的重点是垂线的定义和画法,难点在于理解垂线在实际问题中的应用。
四、教具与学具准备五、教学过程1. 实践情景引入:请大家拿出一张白纸,用直尺和铅笔在白纸上画一条直线,然后在这条直线上任意选取一个点,用直尺从这个点画一条垂线。
2. 讲解垂线的定义:垂线是与另一条直线相交,且交角为90度的直线。
请大家观察自己画的垂线,是否符合这个定义。
3. 讲解垂线的性质:在同一平面内,垂线段是最短的。
请大家思考一下,为什么垂线段是最短的。
4. 讲解垂线的画法:画垂线的方法有两种,一种是利用三角板,另一种是利用直尺和圆规。
请大家根据自己的学具,选择合适的方法画出垂线。
5. 例题讲解:请大家在白纸上画出一个长方形,然后在这个长方形上任意选取一个点,用直尺从这个点画一条垂线。
6. 随堂练习:请大家在自己的练习本上,按照题目要求,画出垂线。
六、板书设计板书设计如下:垂线的定义:与另一条直线相交,且交角为90度的直线。
垂线的性质:在同一平面内,垂线段是最短的。
垂线的画法:利用三角板或直尺和圆规。
七、作业设计作业题目:1. 请大家在白纸上画出一个三角形,然后在这个三角形上任意选取一个点,用直尺从这个点画一条垂线。
答案:1. (略)八、课后反思及拓展延伸课后反思:通过本节课的学习,大家是否已经掌握了垂线的定义和画法,以及垂线在实际问题中的应用?如果还有不清楚的地方,请及时复习和巩固。
拓展延伸:大家可以思考一下,除了在平面几何中,垂线在现实生活中还有哪些应用?例如,在建筑、工程、艺术等领域。
重点和难点解析一、垂线的定义和性质垂线的定义是本节课的核心,它与另一条直线相交,且交角为90度。
5.1.2垂线(1) 任晓丽

2、判断题.(1)两条直线互相垂直,则所有的邻补角都相等.(
(2)两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂 直.( ) (3)两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ).
3、填空题. (1)如图 1,OA⊥ OB,OD⊥ OC,O 为垂足,若∠ AOC=35° ,则∠ BOD=________. (2)如图 3,直线 AB、CD 相交于点 O,若∠ EOD=40° BOC=130° ,∠ ,那么射线 OE 与 直线 AB 的位置关系是_________. B
图1 图2 C 【定义】当两条直线 AB、CD 所构成的四个角有一个角为_____时,直线 AB、CD 互相垂直。 用几何语言记作“_______________” ,他们的交点 O 叫做_______。 我们把其中一条直线叫做另一条直线的________。 注:垂线的定义有以下两种含义: A A C 1 D C B (1) ∵ AB⊥ CD ∴ ___________(垂线的定义) 1 B D
襄阳市樊城区
上课时间:
中七年级数学学科课堂导学案
年 月 日 星期:
第
周
第
课时
备课组长签字:
蹲点领导签字:
课题: 5.1.2 垂线(第一课时)
课型:自学+展+评 (新授课)
主备人:任晓丽
复备人:
学习目标: 1、通过继续研究两条直线相交认识垂直和垂线,知道垂直是直线相交中的特殊位置关系并能用符号表示; 2、在探究中我将学会用三角尺或量角器画一条直线的垂线的方法;并归纳出垂线的基本性质; 3、在学习活动中形成良好的情感、合作交流、主动参与的意识,在独立思考的同时能够倾听他人意见。 一、明确目标( (在教师的设疑、创景下,学生解读学习目标,从而基本明晰 活动 2:过直线 AB 上一点 P,求作直线 CD,使得 AB⊥CD,这样的垂线有_______条。 学习任务。 ) 活动 3:过直线 AB 外一点 P,求作直线 CD,使得 AB⊥CD,这样的垂线有_______条。 P 如图,若两条直线的夹角∠1=60°,那么∠2=_______、∠3=_______、 D P ∠4=_______ P P A B A B P B O A 由 2,3 我们可归纳垂线的性质:在同一平面内,过一点有且只有______条直线与 P C 二、思考探究(阅读课本 P3-5)回答问题: .. 已知直线垂直。 . 1.垂直、垂线定义 3.练一练:P5 练习 ) 如图 1,直线 AB 与 CD 相交于点 O,现我们将直线 CD 绕着点 O 旋转,当∠BOD 为_____时(如图 2) ,其他三个角也都为_______. D D A . C
初中数学华师大版七年级上册《512垂线》教案

5.1.2垂线教学设计师:取出两条纸条a、b,将它们钉在一起,固定其中的一根纸条a,转动另一根纸条b。
问题1:当a与b所成锐角α为30°时,其余的角分别为多少?问题2:分别为多少?问题3:纸条b与a成90º的位置有几个?此时,纸条b与a所在的直线有什么位置关系?一、垂线的定义师:如图(1),直线AB与CD相交于点O,我们将直线CD绕着点O旋转,使∠BOD为直角(如图(2)所示),当两条直线AB、CD所构成的四个角中有一个为直角时,其他三个角也都成为直角。
此时,直线AB、CD互相垂直,记作“AB⊥CD”,它们的交点O叫做垂足。
我们把其中的一条直线叫做另一条直线的垂线。
几何语言:直线AB是CD的垂线(或者说直线CD是AB的垂线)证明过程:反过来,因为∠AOC=90°,师:在日常生活中,我们经常可以看到线线互相垂直的图形。
二、画垂线试一试:经过直线AB外一点P,按下图的两种方法,画出垂直于直线AB的直线。
第一步:将三角尺的一条直角边放在已知直线AB上;第二步:推动三角尺,让三角尺的另一条直角边经过已知的点P;第三步:沿着直角边经过已知点画直线.如图,你能经过直线AB上一点P,画出垂直于直线AB的直线吗?师:这样的垂线能画多少条呢?过一点有且只有一条直线与已知直线垂直.一条直线有无数条垂线.三、垂线段在右图所示的方格纸中,点A是直线l外的一点,AB与直线l垂直,点B为垂足。
点A与直线l上各点的距离长短不一,我们可以发现其中最短的应该是线段AB。
线段AB叫做点A到直线l的垂线段。
四、垂线的性质从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
例如线段AB的长短就是点A到直线l的距离。
师:体育课上是怎样测量跳远成绩的?你知道其中的原因吗?垂线段最短。
做一做:如图,小海龟位于图中点A处,按下述口令移动:前进3格;向右转90°,前进5格;向左转90°,后退6格;最后向右转90°,前进1格.用粗线将小海龟经过的路线描出来,看一看是什么图形。
人教版七年级数学下册 5-1-2 垂线(第一课时) 教案

5.1 相交线5.1.2 垂线(第一课时)教学反思教学目标1.理解垂线的概念.2.理解垂线的性质——在同一平面内,过一点有且只有一条直线垂直于已知直线.3.会用三角尺或量角器过一点画一条直线的垂线.教学重难点重点:两条直线互相垂直的概念、性质和画法.难点:过一点作已知直线的垂线.课前准备相交线模型、多媒体课件教学过程导入新课导入一:教师:在前面我们学习了两条直线相交形成了四个角,这四个角会产生4对邻补角和2对对顶角.你们还记得它们的定义吗?学生回答,老师纠正.教师:如果两条直线相交,形成的四个角中有一个角是直角时,这两条直线有怎样的特殊关系?日常生活中有没有这方面的实例呢?今天我们就来研究这个问题.(板书课题:5.1.2垂线(第一课时))导入二:教师:同学们观察教室里的课桌面相邻的两边,黑板面相邻的两边,方格纸的横线和竖线……这些给大家什么印象?学生回答,教师指出:“垂直”这两个字对大家并不陌生,在小学,我们已经学习过“垂直”,对于“垂直”的知识我们已经了解了一些.今天,我们就在原有知识的基础上,继续探究“垂直”.(板书课题:5.1.2垂线(第一课时))设计意图通过生活中我们经常见到的现象引出垂直,通过新问题来激发学生的学习兴趣.探究新知探究点一:认识垂线和垂直教师:拿出相交线模型,如图1,演示模型,提问学生:固定木条a,转动木条b,当b的位置发生变化时,什么量随之发生变化?学生:当b 的位置变化时,a,b 所形成的四个夹角的度数随之发生变化. 教师:在b 转动的过程中,当a ,b 所形成的夹角∠α=90°时(如图2所示),木条a 与b 所形成的其他三个角的度数是多少?为什么?图2学生:另外三个角也是90°.教师:这种特殊的位置关系,即∠α=90°时,我们就说a 与b 互相垂直.我们身边存在大量的形如两条直线相互垂直的实例,请同学们举一些例子.学生发言,教师肯定.教师追问:根据前面的活动,你们能说出什么样的两条直线互相垂直吗? 师生活动鼓励学生大胆发表自己的见解,学生可能会说两条直线相交所构成的四个角都是直角时,两条直线互相垂直,这时可以引导学生认识到:两直线相交所构成的四个角中,只要有一个角是直角,就可以得出其他三个角也是直角.教师总结并板书垂直的概念:两条直线相交所构成的角中有一个角是直角时,我们就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.教师强调:“互相垂直”与“垂线”的区别与联系:“互相垂直”是指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名.如果两条直线“互相垂直”,那么其中一条直线必定是另一条直线的“垂线”;如果一条直线是另一条直线的“垂线”,那么它们必定“互相垂直”.设计意图垂直是两条直线相交的特殊情形,两条直线垂直所形成的四个角之间的关系,需要由“邻补角和为180°”“对顶角相等”得出.相交线模型的演示与有关问题的引导,使学生对垂直的认识由感性上升到理性,从而加深学生对垂直的理解.教师:许多几何图形都可以用符号来表示,例如,角用“∠”表示,三角形用“△”表示等等,垂直也有它自己的符号.教师:垂直用符号“⊥”表示,如图3所示,直线AB 垂直于直线CD ,垂足为O ,就可记为“AB ⊥CD ,垂足为O ”.(教师板书)图3教师:根据垂直的定义,结合图3,当AB⊥CD时,∠AOD是多少度?学生:∠AOD=90°.教师:我们如何用几何推理语言来描述这个结论.学生大胆发言,教师引导并板书:因为AB⊥CD,所以∠AOC=90°(垂直的定义).教师:把这个推理倒过来,当∠AOC=90°,直线AB,CD具备什么特殊的位置关系?学生:垂直.教师:如何用几何推理语言描述这个结论.学生发言,教师板书:因为∠AOC =90°,所以AB⊥CD(垂直的定义).设计意图教学中在明确给出垂直的定义后,借助图形用符号语言来表示,让学生从文字语言、图形语言、符号语言等不同角度来认识垂直,实现了三种语言之间的转化,在此过程中,培养了学生用几何语言表达问题的能力,增强了学生的符号感.探究点二:垂线的画法及性质教师:根据垂直的定义,我们知道要想画垂线,必须有直角,我们的学习用具中有存在直角的吗?学生:三角尺、量角器中存在直角.教师:现在我们就开始研究用三角尺和直尺或者量角器画垂线的方法,出示课本探究.如图4所示.(1)用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?(2)经过直线l上一点A画l的垂线,这样的垂线能画出几条?(3)经过直线l外一点B画l的垂线,这样的垂线能画出几条?(1) (2)图4学生独立尝试,小组合作交流,完成下面填空和思考:1.垂线的画法:第一步:靠,即三角尺的一条直角边紧靠;第二步:过,即三角尺的另一条直角边过;第三步:画,即画出垂线.2.(1)与直线l垂直的直线能画条.(2)经过直线上一点能画条直线与已知直线垂直.(3)经过直线外一点能画条直线与已知直线垂直.教师在学生合作交流的基础上组织两名学生用三角尺演示第(2)(3)问,并展示上述填空.教师:如果把(2)(3)两条结论合并在一起,你们认为应该怎样表达.学生发言,教师引导得出垂线的性质并板书.垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直.设计意图在本环节的教学中有两个重要的任务,除了让学生掌握垂线的性质外,还应让学生在探究性质的过程中,掌握过一点作已知直线的垂线的方法,它是几何作图中的一种常用的基本作图,需要学生熟练掌握.虽然学生在小学已经接触过垂线的作法,但要在各种情境中熟练作图,对学生来说也是一个难点,尤其是过已知点作线段的垂线.因此在这一环节的教学中应给予学生充分的机会来感受、体会、总结、训练垂线的作法,教师也可以在此基础上演示总结用三角尺过一点画已知直线的垂线的方法:一靠,即三角尺的一条直角边紧靠已知直线也就是与已知直线重合;二过,即三角尺的另一条直角边过已知点;三画,即画出垂线.使学生能够顺利突破难点.新知应用例1 判断下列语句是否正确?(1)两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( )(2)若两条直线相交构成的四个角相等,则这两条直线互相垂直.( )(3)一条直线的垂线只能画一条.( )(4)过一点可以任意画已知直线的垂线.( )答案:(1)正确(2)正确(3)错误(4)错误师生活动教师读题,学生抢答.设计意图考查学生由角的关系来判断两直线的位置关系,强化对垂直概念的理解..或线段AB的垂线.图5师生活动找三位同学在黑板上板演,其他同学自己动手画图,画完之后请同学们点评.(1) (2) (3)图6教师引导学生归纳:画一条射线或线段的垂线,就是画它们所在直线的垂线.设计意图训练学生在各种情境中熟练作图,通过此练习,给学生充分的机会来感受、体会、总结、训练在各种条件下垂线的作法.课堂练习(见导学案“当堂达标”)参考答案1.C2.B3.D4.B5.C6.D7. 垂直 AB ⊥CD DOB BOC COA 8.30° 9.解:OD ⊥OE.理由:∵ OD 平分∠BOC ,∴ ∠COD =12∠BOC.∵ OE 平分∠AOC ,∴ ∠COE =12∠AOC. ∴ ∠EOD =∠COD+∠COE=12(∠BOC+∠AOC)=12×180°=90°,即OD ⊥OE.10.解:(1)∠AOD =120°.(2)∠AOD =110°.(3)猜想∠AOD 与∠BOC 互补.理由如下:如题图①,∵ ∠AOD =∠AOC+∠COD =∠AOC+90°,∠BOC =∠AOB-∠AOC =90°-∠AOC ,所以∠AOD+∠BOC =180°,即∠AOD 与∠BOC 互补.(见导学案“课后提升”)参考答案1.解:∵ OE 平分∠BOD ,∴ ∠DOE =∠BOE. ∵ ∠AOD ∶∠DOE =4∶1,∴ ∠AOD ∶∠DOE ∶∠BOE =4∶1∶1.又∵ ∠AOB =180°,∴ ∠DOE =∠BOE =180°×16=30°,∴ ∠COB =∠COD-∠DOE-∠BOE =180°-30°-30°=120°. 又∵ OF 平分∠COB ,∴ ∠COF =∠BOF =12∠COB =60°,∴ ∠AOF =∠AOB-∠BOF =180°-60°=120°. (此题解法多种,只提供一种)2.解:有可能有三个或两个或一个.如图7所示.课堂小结1.本节课主要学习了两条直线互相垂直、垂线以及垂足的概念和垂线的一条性质.2.会用三角尺或量角器过一点画已知直线、射线、线段的垂线.3.要关注三种语言,即文字语言、图形语言、符号语言之间的转化.布置作业教材第8页习题5.1第3,4,5题板书设计。
七年级下第五章512垂线导学案

课题:5.1.2 垂线(2)【学习目标】1•经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,培养学生用几何语言准确表达的能力。
2. 了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离。
【自主学习】1•上学期我们学习过“什么什么最短”的几何知识,还记得吗? _____________________ 。
2•思考课本P5图5.1-8中提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?3•自学课本P5-6页的内容后,你能解决2中提出的问题吗?若不能,有哪方面的困惑?【合作探究】1 •问题转化如果把小河看成是直线L,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田P,另一个端点就是直线L上的某个点。
那么最短渠道问题会变成是怎样的数学问题?(提示:用数学眼光思考:在连接直线L外一点P与直线L上各点的线段中,哪一条最短?)2. 学具感受自制学具:在硬纸板上固定木条L , L外有一点P,另一根可以转动的木条a一端固定在点P,使木条a与L相交,左右摆动木条a,会发现它们的交点A随之变化,线段PA长度也随之变化.观察:当PA最短时,直线a与L的位置关系如何?用三角尺检验一下。
3. 画图验证(1) 画直线L,在L外取一点P;(2) 过P点出P0丄L,垂足为0;(3) 点A1,A2,A3…… 在L上,连接PA、PA2、PA3……;⑷用度量法比较线段P0、PA1、PA2、PA3……的大小,.得出线段_________ 最小。
4. 归纳结论.连接直线外一点与直线上各点的所有线段中,简单说成: .5. 知识类比(1) 垂线段与垂线有何区别联系?(2) 垂线段与线段有何区别与联系?6. 解决问题:此时你会解决课本P5图5.1-8中提出的问题吗?在图形中画出“最短渠道”的位置。
7. 探究“点到直线的距离”?定义:(1)学习课本P6第二段内容回答什么叫“点到直线的距离”?默写一遍:叫做点到直线的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O D
C
B
A
课题:5.1.2 垂线(1)
陈发宝
【学习目标】
1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念, 培养学生用几何语言准确表达的能力。
2.了解垂直概念,能说出垂线的性质,会用三角尺或量角器过一点画一条直线的垂线. 【前置学习】
1.如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ 2.改变上图中∠1的大小,若∠1=90°,请画出这种图形,并求出此时∠2、∠3、∠4的大小。
【学习探究】
1.阅读课本P 3的内容,回答上面所画图形中两条直线的关系是__________,知道两条直线互相________是两条直线相交的特殊情况。
2. 用语言概括垂直定义
两条直线相交,所成四个角中有一个角是_____时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。
3.垂直的表示方法:
垂直用符号“⊥”来表示,若“直线AB 垂直于直线CD , 垂足为O”,则记为__________________,并在图中任意一个角处作上直角记号,如下图。
4.垂直的推理应用:
(1)∵∠AOD=90°( )
∴AB ⊥CD ( ) (2)∵ AB ⊥CD ( )
∴ ∠AOD=90° ( ) 5.垂直的生活应用
观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线思考这些给大家什么印象?找一找:在你身边,还能发现哪些“垂直”的实例?
【画图实践】
1.用三角尺或量角器画已知直线L 的垂线.
(1)已知直线L ,画出直线L 的垂线,能画几条? L
小组内交流,明确直线L 的垂线有_________条,即存在,但位置有不______性。
(2)怎样才能确定直线L 的垂线位置呢?
在直线L 上取一点A,过点A 画L 的垂线, 能画几条?再经过直线L 外一点B 画直线L 的
垂线,这样的垂线能画出几条?
E
(3)
O D C
B
A (2)
O D C
B
A (1)
O
D
C B
B .
.
L
L
A
从中你能得出什么结论? ____________________________________________ 2、变式训练,请完成课本P 5练习第2题的画图。
画完图后,归纳总结:画一条射线或线段的垂线, 就是画它们所在______的垂线. 【反思总结】
本节课你你有那些收获?还有什么疑难需老师或同学帮助解决? 【自我检测】(有困难同学可以选做) (一)、判断题.
1.两条直线互相垂直,则所有的邻补角都相等.( )
2.一条直线不可能与两条相交直线都垂直.( )
3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )
4.两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ). (二)、填空题.
1.如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________.
2.如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.
3.如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.
(三)、解答题.
1.已知钝角∠AOB,点D 在射线OB 上.
(1)画直线DE ⊥OB (2)画直线DF ⊥OA,垂足为F.
2.已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.
3.你能用折纸方法过一点作已知直线的垂线吗?
E O
D
C B
A。