(完整word版)部编教材最新七年级数学上册复习提纲
(完整word版)北师大版七年级数学上册知识点总结

北师大版七年级数学上册知识点总结灵璧五中刘利第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章有理数及其运算1、有理数的分类正有理数有理数零有限小数和无限循环小数负有理数或 整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
(完整word版)初中数学知识点全总结(完美打印版)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
七年级数学上册期末复习资料(Word版)

七年级数学上册期末复习资料(2021最新版)作者:______编写日期:2021年__月__日-----------3.1一元一次方程及其解法①方程是含有未知数的等式。
②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。
③注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是1.④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
方程的解代入满足,方程成立。
⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。
a=b得:a+(-)c=b+(-)c2)等式两边同时乘以或除以同一个不为零的数,等式不变。
a=b得:a×c=b×c或a÷c=b÷c(c≠0)注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。
⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b (a≠0)的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)--------3.2一次方程的应用:(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;①解:设出未知数(注意单位),②根据相等关系列出方程,③解这个方程,④答(包括单位名称,检验)。
(word版)七年级数学上册第二章知识点总结,文档

第二章整式的加减整式的概念:单项式与多项式统称整式。
〔分母含有字母的代数式不是整式〕一、单项式:都是数或字母的积的式子叫做单项式。
单项式的系数:单项式中的数字因数。
2.单项式的次数:一个单项式中所有字母的指数的和。
注意①圆周率π是常数;②只含有字母因式的单项式的系数是1或-1,“1〞通常省略不写。
例:x2,-a2b等;③单项式次数只与字母指数有关。
例:23πa6的次数为。
④单项式的系数是带分数时,应化成假分数。
⑤单项式的系数包括它前面的符号。
例:-系数是。
⑥单独的一个数字是单项式,它的系数是它本身;非零常数的次数是0。
考点:1 .在代数式:2,3m3,22,m2,2b2,0中,单项式的个数有〔〕n3个个个个2.单项式-2ab4c2的系数与次数分别是〔〕3A.-2,6B.2,7C.2,6D.-2,7333.5ab2的系数是_____________.-1-4.判断以下式子是否是单项式,是的√,不是的打X2abx;a;5ab;x y;;xa61xx12;2;0;7 ;2(a1); 2 ;xy;;x-写出以下单项式的系数和次数-a的系数是______,次数是______;35ab2的系数是______,次数是______;a2bc3的系数是_____,次数是_____;x2y3的系数是_____,次数是_____;x2y的系数是______,次数是______;3xy2z3的系数是_____,次数是_____;53x2y的系数是_____,次数是______;6.如果2x b1是一个关于x的3次单项式,那么b=_______;假设-abm1是一个4次6单项式,那么m=_____;8xmy2是一个6次单项式,求2m10的值。
写出一个三次单项式__________,它的系数是_______;写一个系数为3,含有两个字母a,b的四次单项式_______。
知识点回忆单项式的定义:_________________________________叫做单项式。
(word完整版)初一数学上册完全辅导——第一章有理数精讲

初一数学上册重点知识学习参考第一章 有理数一、知识结构有理数: 按定义分 按符号分正整数 正整数 正有理数0 整数 有 正分数(含正有限小数负整数 理 0 和循环小数)有限小数 正分数 数 负整数分数 负有理数无限循环小数 负分数 负分数(含负有限小数和循环小数)注意:常见的不是有理数的数有π和有规律的但不循环的小数。
如:0.0100100010001000010000010000001……二、掌握要点1、了解有理数的概念(什么是有理数、有理数包含的范围有哪些、有理数之间的大小比较)。
(1)大于0的数叫做正数,如3、1.8、5%等。
(2)在正数前面加上负号“—”的数叫负数,即小于0的数,如-3、-2.5、-5%等。
(3)数0既不是正数,也不是负数。
0除了表示一个也没有以外,是正数和负数的分界,是基准。
(4)在同一个问题中,分别用正数与负数表示的量具有相反的意义。
强调:用正数、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是他们的意义相反,如向东与向西、收入与支出;二是他们都是数量,而且是同类的量。
(5)正整数、0、负整数统称整数。
整数可以看作分母为1的分数。
(6)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
(7)把一些数放在一起,就组成了一个数的集合,简称“数集”。
所有有理数组成的数集叫“有理数集”,所有整数组成的数集叫“整数集”,所有负数组成的数集叫“负数集”……数集一般用圆圈或大括号表示,因为集合中的数是无限的。
(8)有理数可以按不同的标准进行分类,标准不同,分类结果也不同。
问:有理数可分为正数和负数两大类,对吗?为什么?有理数可分为整数和分数两大类,对吗?为什么?2、有理数与数轴上的点一一对应(数轴的三要素、怎样看数轴、掌握应用数轴来进行去绝对值符号的简单运算)。
(1)通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、正方向、单位长度原点——在直线上任取一点表示数0,这个点叫原点。
(部编人教版)初中七年级上册《道德与法治》重要知识点期末复习提纲梳理汇总

(部编人教版)初中七年级上册《道德与法治》重要知识点期末复习提纲梳理汇总第一单元成长的节拍第一课中学时代中学序曲1.中学时代的意义①为人的一生奠定了重要的基础。
②见证一个人从少年到青年的生命进阶。
2.成长礼物的含义①新的机会和可能,新的目标和挑战。
3.中学生活馈赠给我们哪些成长的礼物?①提供了发展自我的多种机会。
②新的目标和要求激发着我们的潜能,激励我们不断实现自我超越。
③有机会改变不完美的自己,重新塑造一个新的“我”。
4.面对中学生活新挑战我们应该如何做?我们要珍视当下,把握机遇、从点滴做起,为美好明天付出不懈努力。
少年有梦1.梦想的含义梦想是对未来美好生活的愿望2.青少年编织梦想的重要性①它是青少年时期重要的生命主题。
②它能不断激发我们生命的热情和勇气,让生活更有色彩。
③人类需要这样的梦想,才能不断进步和发展。
3.少年梦想的特点①是人类天真无邪、美丽可爱的愿望。
②与个人的人生目标紧密相连。
③与时代的脉搏紧密相连,与中国梦密不可分。
4.如何实现梦想①要付诸行动。
②需要努力,努力,是梦想与现实之间的桥梁。
③努力,需要立志。
努力,需要坚持。
努力也需要方法。
第二课学习新天地学习伴成长1.如何正确看待初中阶段的学习(1)地位中学阶段学习是我们的重要任务,(2)范围包括知识的获取、各种能力的培养以及学会如何做人。
(3)范围不局限在学校,我们所看、所听、所尝、所触、所做都是学习。
(4)表现不仅表现为接受和掌握,而且表现为探究、发现、体验和感悟。
(5)态度自觉、主动。
2.终生学习的重要性①学习伴随着我们成长。
②学习没有终点。
3.学习的重要性①学习不仅能让我们生存,而且能让我们的生活更加充实。
②学习能点亮我们心中的明灯,激发前进的动力。
③分享生命经验,获得成长,同时也可以帮助他人,服务社会,为幸福生活奠基。
享受学习1.如何体味学习①学习是辛苦的。
②学习是快乐的。
③学习是苦乐交织的。
当经历了学习的辛苦,获得成果时,能体味学习的美妙滋味。
(完整word版)人教版七年级数学上册知识点思维导图及总结

人教版七年级数学上册知识点思维导图及总结 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a -b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b -a)n , 当n 为正偶数时: (-a)n =a n 或 (a -b)n =(b -a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
人教版七年级数学上册专题复习 数轴上的动点问题讲义 含部分答案(word文档良心出品)

数轴上的运动问题在讲这个问题之前,我们先来看一道行程问题。
【题 1】甲乙两地相距 200 米,小明从甲地步行到乙地,用时 3 分钟,小明的平均速度为多少米每秒? 【分析】这个问题的本质,就是把实际生活中的问题剥离出来,抽象成了简单的数学问题,很多学生都会解;初学时,老师会画线段图,用线段的长度来将两点间的距离具象化,如下:小明甲地乙地【解法一】直接利用:速度=路程÷时间解决。
200 ÷180 =10 (米/秒)9【解法二】用方程解。
设速度为 x 米/ 秒,根据路程=时间×速度,得: 200 = 180x ,解得 x =10。
9如果在线段图上,用一个具体的数来表示甲地和乙地,从甲往乙的方向规定为正方向建立数轴,这个问题就转化为数轴上的运动问题了。
【题 2】如图,数轴上有两点 A 、B ,点 A 表示的数为0 ,点 B 表示的数为 200 ,一只电子蚂蚁 P 从 A 出发,以1个单位每秒的速度由 A 往 B 运动,到 B 点运动停止。
设运动时间为 t 。
(1)用含 t 的代数式表示电子蚂蚁 P 运动的距离; (2)用含 t 的代数式表示电子蚂蚁 P 表示的数;(3)用含 t 的代数式表示电子蚂蚁 P 到数 B 的距离。
(4)当电子蚂蚁运动多少时间后,点 P 为线段 AB 的三等分点?【分析】引入数轴后,其本质是把线段图换成了带方向带单位长度的直线,将有限的实际距离推广到了无限的距离问题。
所以,对于运动的点,处理的核心思想依然是路程=速度×时间。
其余的点的距离,利用数 轴上两点间距离公式解决。
(1)根据路程=速度×时间,有: AP = t ; (2) AP = t ,故点 P 表示的数为t ;(3)点 B 表示的数为 200,点 P 表示的数为t ,且 P 在 B 左边,故 PB = 200 - t 。
(4)若 P 为 AB 的三等分点,有两种情况:①AP=2PB ,即: t = 2 ⨯ (200 - t ),解得t = 400秒; 3②2AP=PB ,即: 2t = 200 - t ,解得t =200秒; 3现在,我们将【题 2】一般化,线段 AB 一般化为在数轴上的一条定长线段,便得到如下的题:【题 3】如图,数轴上有两点 A 、B ,点 A 表示的数为 a ,点 B 表示的数为b ,且数 A 和数 B 的距离为 200 个单位长度,一只电子蚂蚁 P 从 A 出发,以1个单位每秒的速度由 A 往 B 运动,到 B 点运动停止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版七年级数学上册第一章 有理数1.1 正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数.与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”).【说明】1.有理数由“符号”和“数值”两部分组成.(符号问题是我们在今后的学习中经常忘记的问题.)2.正数前面的符号可以省略,负数前面的符号不能省略.3.正数大于0,负数小于0,正数大于负数.4.0既不是正数,也不是负数.5.正、负数通常表示相反意义的量,这些量包括:向东与向西;收入与支出;盈利与亏损;(温度)零上与零下;(水位)上升与下降;高于与低于(水平面);(出口)增长与减少……例如:向东走2米,记作:+2米;那么向西走3米,记作—3米.6.用正负数表示加工允许误差 例如:①图纸上注明一个零件的直径是2.03.030+-Φmm ,表示零件的直径标准是30mm ,但是,在生产的过程中,由于生产工艺存在的误差,因此直径可以比30mm 大0.2mm ,也可以比30mm 小0.3mm.即零件的直径在29.7mm~30.2mm 之间都合格.但在这个范围以外的就不合格了.1.2 有理数1.2.1 有理数有理数的概念:整数和分数统称有理数.分类:(1)按定义分类: (2)按性质符号分类: ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0(掌握分类方法应注意两点:①不重复:即同一事物不能归纳到两个类别中;②不疏漏:即某一事物不能在所有类别中找不到.)【说明】1.整数分为正整数、0、负整数.2.分数分为正分数、负分数.13.无限循环小数是有理数,它可以化成分数.如0.333…=3阅读材料:教材95页《无限循环小数化分数》.4.无限不循环小数是无理数,如:π.5.没有最大的有理数,也没有最小的有理数.6.最大的负整数是-1,最小的正整数是1。
7.几个常见的概念:非负数:指正数和零;非正数:负数和零;1.2.2 数轴规定了原点、正方向、单位长度的直线叫做数轴;【说明】1.数轴有三要素:原点、正方向、单位长度。
2.数轴的画法:①先画一条水平的直线;②在直线的右边画箭头,表示正方向;③在直线上任取一点,作为原点,表示数0;④以适当的长度作为单位长度,在原点的左右两边分别标出刻度.3.数轴的性质:①数轴上的点与有理数一一对应关系;②正数都大于0,负数都小于0,正数大于负数;③数轴上的点表示的数从左往右依次增大,从右往左依次减小。
④数轴上到原点的距离相等的点有2个,一个在原点左边,一个在原点右边,他们互为相反数.4.利用数轴比较数的大小:数轴上的点表示的数,右边的总比左边大.5.数轴上点的移动用数形结合的思维方法,通过画图分析,解决问题.6.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法,同时也为下学期学习平面直角坐标系打下了坚实的基础.1.2.3 相反数只有符号不同的两个数叫做互为相反数。
或者说:如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数;【说明】1.正数的相反数是负数;负数的相反数是正数;0的相反数是0.2.相反数的代数意义:互为相反数的两个数相加,和为0.3.相反数的几何意义:互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等.4.相反数的读法:-(-2)读作负2的相反数.从数轴上看-2的相反数是2,因此-(-2)=2.5.一般地,数a 的相反数是-a.6.有关相反数的化简,遵循符号法则:同号得正,异号得负.1.2.4 绝对值在数轴上表示数a 的点到原点的距离叫做数a 的绝对值.【说明】1.几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离.2.代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a 表示如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a即: 如果a >0,那么a =a ;如果a <0,那么a =-a ;如果a=0,那么a =0.3.绝对值等于a (a ≠0)的数有两个,一个在原点左边,一个在原点右边,它们互为相反数.例如:|a|=2,则22-==a a 或(2±=a ).4.|a|是重要的非负数,即|a|≥0;5.理解:0a 1a a>⇔= ; 0a 1a a<⇔-=;6.两个负数比较大小,绝对值大的反而小.7.理解几个特殊的绝对值所表示的意义:若|b a ||b ||a |+=+,则ab ≥0;(表示a 、b 同号或至少其中一个为0).若|b a ||b ||a |+=-,则ab ≤0;(表示a 、b 异号或至少其中一个为0).若|b a ||b a |-=+,则ab=0;(表示a 、b 至少其中一个为0).1.3 有理数的加减法1.3.1 有理数的加法加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;③一个数同0相加,仍得这个数。
【说明】1.进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.加法的交换律:两个数相加,交换加数的位置,和不变.加法的结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加.1.3.2有理数的减法减法法则:减去一个数等于加上这个数的相反数.【说明】1. “两变”:一是减法变为加法;二是减数变为其相反数.2.有理数减法常见的错误:①没有注意结果的符号;尤其是当结果为负时,往往会忘记“-”;②仍用小学计算的习惯,不把减法变加法;③只改变运算符号,不改变减数的符号,没有把减数变成它的相反数.几个正数或负数的和称为代数和.加减混合运算可以统一为加法运算,写成代数和的形式.例如:)++=-+.cba-b(cac+可以读作:a加b减c,也可以ba-读作:a,b,-c的代数和.有理数加减混合运算:先把减法变成加法,再按有理数加法法则进行运算.1.4 有理数的乘除法1.4.1 有理数的乘法乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.倒数的定义:乘积是1的两个有理数互为倒数.若ab=1,则a和b互为倒数.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.乘法运算律:乘法交换律:两个数相乘,交换因数的位置,积相等.用字母表示为:ab=ba.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.用字母表示为:(ab)c=a(bc).乘法交换律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用字母表示为:a(b+c) =ab+ac.【说明】1.常见错误仍是符号问题,做题时,先定符号,再定值.2.求一个数的倒数的方法:①求一个分数的倒数,就是把这个分数的分子、分母颠倒位置. ②求一个整数的倒数:可以把整数看成是分母为1的分数,再把分子、分母颠倒位置. ③带分数要先画成假分数,再将分子、分母颠倒位置.1.4.2 有理数的除法除法法则:除以一个数不等于0的数,等于乘这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.【说明】1.除法法则可以把除法转化为乘法.2.有理数除法的一般步骤:①确定商的符号;②把除数化为它的倒数;③利用乘法计算结果.有理数的加减乘除混合运算:先乘除,后加减.1.5 有理数的乘方1.5.1 乘方求几个相同因数a的运算叫做乘方,记做“n a”.其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,n a表示的意义是n个a相乘的积,不是n乘以a,乘方的结果叫做幂.【说明】1.负数的偶数次方是正数,负数的奇数次方是负数.用字母表示:若a<0,则a2n>0;a2n-1<0(n是正整数).2.正数的任何次方都是正数,0的任何正整数次幂都是0.用字母表示:若a>0,则a n>0;0n=0(n是正整数).3.互为相反数的两个数,偶次幂相等,奇次幂仍互为相反数.用字母表示为:a2n=(-a)2n(n是正整数);a2n-1=-(-a)2n-1(n是正整数).有理数的混合运算的运算顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行.【说明】1.初学时,可以先画出运算顺序框图,理清运算顺序.2.进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算.3.进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力.1.5.2 科学记数法把一个大于10的数表示成a×10n次方的形式(其中a是整数数位只有一位的数,n是正整数),使用的就是科学记数法.【说明】1.a的取值范围是: 1≤a<10.2.n比整数位数小1.3.采用移动小数点儿的方法来确定a和n的值比较好,具体方法是:将小数点儿向左移动,小数点的位置移到它的前面只有1位整数为止,小数点儿移动了几位,n就等于几.将小数点儿后面的0去掉,剩下的部分就等于a.1.5.3 近似数近似数:与实际数据接近的数.从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字.【说明】1.测量工具(如千分尺、螺旋测微器等)测量出来的数值都是近似数.2.北京时间是确数.3.合格率、市场占有率等是近似数.4.考查近似数与有效数字同时考是一个难点.例如:159620000保留三位有效数字是:1.60×108. 1.2×104精确到千位.【补充知识】幻方:在一个由若干个排列整齐的数组成的正方形中,图中任意一行、一列以及对角线的几个数的和相等,具有这种性质的图表叫做幻方.我国古代称为“河图”、“洛书”,又叫“纵横图”.将1-9这九个数填入33⨯的方格中,使每一行,每一列以及两条对角线上的数的和都是15.填写技巧(如图所示):①将要填写的九个数字从小到大依次排列,将中间数5填在方格正中间.②将中间数两边的两个数4和6填在其中一条对角线上,并求出这三个数的和.③观察33⨯的方格的四个角,如果填的四个角上的数是偶数,则将剩下的两个偶数填在另外两个角上,如果填的是奇数,则将剩下的奇数填在另外两个角上.④最后在根据每一行三个数的和,填上其余几个方格.数列:将数字按照某种规律排列在一起组成的数的队列叫做数列.数列中的每一个数叫做项,排在第几个数位上的数就叫做第几项.例如:数列1,4,7,10,13,16,19,22…中,4排在第2个数位上,是第2项;13排在第5个数位上,是第5项.常见的数列有:① 0,1,2,3,4,5,6,7,8… (自然数列)② 1,3,5,7,9,11,13,15… (奇数列)③ 2,4,6,8,10,12,14,16… (偶数列)④ 1,2,3,5,8,13,21,34… (后一项是它前面两项的和)⑤ 1,21-,3,41-,5,61-,7,81-… ⑥ 2,6,12,20,30,42,56… (相邻两个数的乘积)⑦2,4,8,16,32,64,128… (后一项是前一项的2倍)等差数列像上面的①自然数列、②奇数列、③偶数列等,后一个数与前一个数之差相等,按照这样的规律排列的数列叫做等差数列.后一个数与前一个数的差叫做公差,用字母d 表示.排在第一个的数叫做首项,用1a 表示;排在第n 个数的数叫做第n 项,用n a 表示.前n 等比数列:后一个数与前一个数的比值相等,按照这样的规律排列的数列叫做等比数列.第二章整式2.1整式单项式:由数字或字母的乘积表示的式子叫做单项式.单项式的系数:单项式中的数字因数叫做单项式的系数.单项式的次数:单项式中所以字母的指数之和叫做单项式的次数.例如:单项式x2y3次数是(x的指数)2+(y的指数)3的和,次数为5.多项式:几个单项式的和叫做多项式.其中的每一个单项式叫做项,不含字母的项叫做常数项.多项式的次数:多项式中次数最高的项的次数叫做多项式的次数.【补充知识】1.代数式的书写:①.代数式中出现的乘号,通常写作“.”或省略不写.②数字与字母相乘时,数字写在字母前面.③除法运算写成分数形式.④带分数要化成假分数.2.把一个多项式的各项的位置按照其中某一字母的指数大小顺序由高到低进行排列,就叫做这个多项式按这个字母的降幂排列.例如:5x2+3x-2x3-1按x的降幂排列,可以写成:-2x3+5x2+3x-1.按照其中某一字母的指数大小顺序由低到高进行排列,就叫做这个多项式按这个字母的升降幂排列.若x2+3x-2x3-1按x的升降幂排列,则可以写成:-1+3x+5x2-2x3.2.2 整式的加减同类项:所含字母相同,相同字母的指数也相同的项叫做同类项.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.去括号:如果括号外的因数是正数,去括号时,括号里的每一项都不变符号;如果括号外的因数是负数,去括号时,括号里的每一项都要变符号.添括号:如果括号外是“+”,所添括号里的每一项都不变符号;如果括号外是“—”,所添括号里的每一项都要改变符号.顺口溜:去括号,看符号:是“+”号,不变号;是“-”号,全变号.整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.【说明】1.去括号是错误比较多的,常见的有:括号前面是“-”,括号内有两项或多项时,去括号时,第一项知道变号,但后面的一项往往就忘记变号了.而最后的一项常出现的是常数项.2.括号前面的数字不为1,去括号时,要将括号外的数字先乘到括号里面去,然后再去括号.括号外的数字要同括号里的每一个数字都相乘.【补充知识】一、用分离系数法进行整式的加减运算整式的加减可以归结为合并同类项。