高中数学笔记总结高一至高三,很全
高中数学笔记总结【高一至高三_很全】.doc

高中数学第一章-集合①任何一个集合是它本身的子集,记为A A ;③ 空集是任何非空集合的真子集;如果 A ,同时 A ,那么 A=B.BB如果 A B, B C,那么 A C.Z ={ 全体整数} (×)s A= {0})3. ① {( x, y) | xy =0 , x∈ R, y∈ R}坐标轴上的点集.② {( x, y) | xy< 0 , x∈ R, y∈ R二、四象限的点集.③ {( x, y) | xy> 0 , x∈ R, y∈ R} 一、三象限的点集.4. ① n 个元素的子集有2n个. ② n 个元素的真子集有2 n ③ n 个元素的非空真子集有 2n- 2 个 .. 否命题逆命题.. 原命题逆否命题.② x 1且 y2,x y3,故:补 C U A{ x U , 且 x A}( 2)等价关系:A B0)的解可以根据各区间的符号确“或”、“且”、“非”些这叫词做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简和题命单逻辑联结词“或”、“且”、“非”构成的命是题复合命题。
( 2)“p 且 q”形式复合命题当P 与 q 同为真为时真,其他情况时为假;( 3)“p 或 q”形式复合命题当p 与 q 同为假时为否命题若┐p┐则 q假,其他情况时为真.( 原命题逆否命题)高中数学第二章-函数§ 02.函数知识要点函数三要素是定义域,对和则法应值域,而定义域和对是则法应起决定作用的要素,因为这二者确定后,域值也就相应得到确定,因此只有定义域和对二则法应者完全相同的函数才是同一函数 .y=f(x) 的单间区调.此时也说函数是这一区间上的单调函数( 2 ) f (x )f ( x) f (| x |) ,反之亦成立。
4 .如果 f ( x ) 是偶函数,则时有意,义则⑴偶函数: f ( x) f ( x)a,b )也是图象上一点.②满足 f ( x) f (x) ,或 f ( x) f ( x) 0 ,若 f ( x)0时,⑵奇函数: f (x)a, b )也是图象上一点.在 [1, 1) 上不是奇函数.②满足 f (x)例如:已知函数f( x)= 1+解: f ( x) 的值域是 f ( f (x))的定义域B , f ( x) 的值域R ,故 B R ,而A x | x 1 ,故 B A .2x 1| →| y |关于x轴对称.定义域 { x | x 3, x R}值域{ y | y2, y R} →值域x 前的系数之比.指数函数y a (a0 a1) 的图象和性质()过定点(,),即3log (M N ) log M log a N(以上 M 0, N 0, a 0,a 1,b 0, b 1,c 0, c 1,a , a ...a 0 且 1 )且M0时,M0 ,故取“—” .( a 0,a 1 )与y互为反函数.当a1,时y l o a g x的a值大,越越靠近x轴;当在( 0 , +∞)上是减函数log (M N ) log M log N注⑴:当 a,b 0,时log( a b) log( a) log( b) .⑵ :当时,取“ +”,当n是偶数时且0 M 0 时, M( a 0,a 1 )与 y log a x 互为反函数大于0 ,底数大于零且不等于1;④ 零指数幂的底数不等于零;⑤际实题问要考实虑意际等义f(-x)与f(x)之间的关系:① f(-x)=f(x)为偶;f(x)+f( -x)=0§03.数列知识要点等比数列的定义等比数列的通项等比数列的性质等比数列的前n项和a n a n 1 d ; aa p a q (m, n, p,q N * , m n p q)a =a+(n-1)d= a +(n-k)d=dn+a-d aa (1 q )a a q1aa n若 m+n=p+q 则m{ a }若{ k n}① a n a n 1d(n2,d 为常数 )③a n kn b ( n, kac ,是 a 、 b、 c 成等比的双非条件,即a、 b、 c 等比数列.ac ( ac > 0)→为a、 b、 c 等比数列的充分不必要.ac →为a、 b、 c 等比数列的必要不充分.ac 且 ac、、0 →a为 b c 等比数列的充要 .注意:任意两数 a 、 c 不一定有等比中项,除非有③ a n cq n ( c, q).log a(⑷数列{}a的前项和 S 与通项a 的关系:[ 注 ] :①a n a 1n 1 d nd a 1 d ( d 可为零也可不为零→为等差数列充要条件(即常数列项和S n An2 Bn2. ①等差数列依次每k项的和仍成等差数列,其公差为原公差的k 倍S , S③若等差数列的项数为2n 1n N代入 n到2n 1得到所求项数.a n 10n1; 5, 55,555 , ?4. 等比数列的前 n 项公式的常见:题用应和⑴ 生产部门中有增长率的总题问量产. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为 其中第n年产量为1 r .a(1 r ) n 1,且过年后总:为量产na 元,利息为r ,每月利息按复利计算,则每月的 a 元过n 个月后便成为a(1 r )⑶分期付款应用:题a分为期付款方式贷款为a元;m为m个月将款全部付清;r为年利率.5.数列常见的几种形式:(p、 q二为常阶数)x 2应对a,对应a),并二设根x , x② 若x x;③由初始值a ,a确定 c ,c121 2a n;④(公式法), c ,c 由 a ,aa c c P 1 2 1 2n 1 2⑴等差数列的前n和项为S,在d0时有最大值如,何确定使S取最大值的时n值,有两a n 10 ,成立的n;值二是由求此数列前n项可依照和等比数列前n项和的推倒导方法:错位相减求和. 例如: 1 ,3 ,...(2n 1))为同一常数。
高一数学知识点总结大全(非常全面)

高一数学知识点总结大全(非常全面)很多同学在复习高一数学时,因为没有做过系统的总结,导致复习的效率不高。
下面是由编辑为大家整理的“高一数学知识点总结大全(非常全面)”,仅供参考,欢迎大家阅读本文。
高一数学知识点汇总1函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.u 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射高一数学知识点汇总2集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2)注意:讨论的时候不要遗忘了的情况。
高中数学笔记总结【高一至高三,很全】

高中数学知识点高中数学第一章-集合§01、集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式得解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号得使用、2.集合得表示法:列举法、描述法、图形表示法、集合元素得特征:确定性、互异性、无序性、集合得性质:①任何一个集合就是它本身得子集,记为;②空集就是任何集合得子集,记为;③空集就是任何非空集合得真子集;如果,同时,那么A = B、如果、[注]:①Z= {整数}(√) Z ={全体整数} (×)②已知集合S中A得补集就是一个有限集,则集合A也就是有限集、(×)(例:S=N; A=,则C s A= {0})③空集得补集就是全集、④若集合A=集合B,则C B A=,C A B =C S(C A B)=D (注 :C A B =)、3、①{(x,y)|xy =0,x∈R,y∈R}坐标轴上得点集、②{(x,y)|xy<0,x∈R,y∈R二、四象限得点集、③{(x,y)|xy>0,x∈R,y∈R} 一、三象限得点集、[注]:①对方程组解得集合应就是点集、例: 解得集合{(2,1)}、②点集与数集得交集就是、(例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4、①n个元素得子集有2n个、②n个元素得真子集有2n-1个、③n个元素得非空真子集有2n-2个、5、⑴①一个命题得否命题为真,它得逆命题一定为真、否命题逆命题、②一个命题为真,则它得逆否命题一定为真、原命题逆否命题、例:①若应就是真命题、解:逆否:a = 2且b = 3,则a+b = 5,成立,所以此命题为真、②、解:逆否:x + y =3x = 1或y = 2、,故就是得既不就是充分,又不就是必要条件、⑵小范围推出大范围;大范围推不出小范围、3.例:若、4.集合运算:交、并、补、5.主要性质与运算律(1)包含关系:,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2)等价关系:(二)含绝对值不等式、一元二次不等式得解法及延伸1、整式不等式得解法根轴法(零点分段法)从右向左,从上向下,奇穿偶回,零点讨论①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x得系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根得点(为什么?);④若不等式(x得系数化“+”后)就是“>0”,则找“线”在x轴上方得区间;若不等式就是“<0”,则找“线”在x轴下方得区间、x(自右向左正负相间)则不等式得解可以根据各区间得符号确定、特例①一元一次不等式ax>b解得讨论;②一元二次不等式ax2+box>0(a>0)解得讨论、2、分式不等式得解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)得形式,(2)转化为整式不等式(组)3、含绝对值不等式得解法(1)公式法:,与型得不等式得解法、(2)定义法:用“零点分区间法”分类讨论、(3)几何法:根据绝对值得几何意义用数形结合思想方法解题、4、一元二次方程根得分布一元二次方程ax2+bx+c=0(a≠0)(1)根得“零分布”:根据判别式与韦达定理分析列式解之、(2)根得“非零分布”:作二次函数图象,用数形结合思想分析列式解之、(三)简易逻辑1、命题得定义:可以判断真假得语句叫做命题。
高一到高三数学知识点

高一到高三数学知识点高中数学是学生学术生涯中的重要阶段,它不仅为大学及以后的数学学习打下基础,而且在逻辑思维、解决问题能力等方面对学生进行深入训练。
本文将系统梳理高一至高三的数学知识点,帮助学生更好地理解和掌握这一学科。
一、高一数学知识点概述高一数学是高中数学学习的基础阶段,主要目的是帮助学生适应高中数学的学习节奏和思维方式。
在这一年,学生将学习以下主要内容:1. 集合与函数的概念:集合是数学中的基础概念,学生需要理解集合的含义、分类以及基本操作。
函数作为高中数学的核心,学生需要掌握函数的定义、性质、运算和常见类型。
2. 指数与对数:指数和对数是初等数学的重要内容,涉及幂运算、根式、指数函数、对数函数等,这些知识点对于理解后续的数学概念至关重要。
3. 平面几何:包括点、线、面的基本性质,以及圆、椭圆、双曲线、抛物线等圆锥曲线的性质和方程。
4. 三角函数:三角函数是解决平面几何问题的重要工具,学生需要掌握正弦、余弦、正切等基本三角函数的性质和图像。
二、高二数学知识点概述高二数学在高一的基础上进一步深化和拓展,主要包括以下几个方面:1. 解析几何:通过坐标系来研究几何图形的性质,包括直线、圆、椭圆、双曲线、抛物线等的方程和性质。
2. 立体几何:研究空间图形的性质和计算,如棱柱、棱锥、圆柱、圆锥、球等的体积和表面积。
3. 概率与统计:介绍概率论的基本概念和原理,以及统计学的基础知识,包括数据的收集、整理、分析和解释。
4. 数列与数学归纳法:数列是一系列按照一定规律排列的数,学生需要掌握等差数列、等比数列的性质,以及数学归纳法的证明方法。
三、高三数学知识点概述高三数学是高中数学学习的最后阶段,内容更加深入和综合,主要包括:1. 微积分:微积分是高等数学的基础,包括极限、导数、积分等概念,学生需要理解微积分的基本思想和计算方法。
2. 复数:复数是实数的扩展,涉及复平面、复数的四则运算、模和辐角等概念。
3. 矩阵与行列式:矩阵是线性代数的基础,学生需要掌握矩阵的运算、行列式的性质和计算方法。
高中数学知识点总结(最全版)

高中数学知识点总结(最全版)第一章函数概念(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作、②函数的三要素:定义域、值域和对应法则、③只有定义域相同,且对应法则也相同的两个函数才是同一函数、(2)区间的概念及表示法①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做、注意:对于集合与区间,前者可以大于或等于,而后者必须,(前者可以不成立,为空集;而后者必须成立)、(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数、②是分式函数时,定义域是使分母不为零的一切实数、③是偶次根式时,定义域是使被开方式为非负值时的实数的集合、④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1、⑤中,、⑥零(负)指数幂的底数不能为零、⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集、⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出、⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论、⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义、(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的、事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值、因此求函数的最值与值域,其实质是相同的,只是提问的角度不同、求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值、②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值、③判别式法:若函数可以化成一个系数含有的关于的二次方程则在时,由于为实数,故必须有,从而确定函数的值域或最值、④不等式法:利用基本不等式确定函数的值域或最值、⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题、⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值、⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值、⑧函数的单调性法、(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种、解析法:就是用数学表达式表示两个变量之间的对应关系、列表法:就是列出表格来表示两个变量之间的对应关系、图象法:就是用图象表示两个变量之间的对应关系、(6)映射的概念①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作、②给定一个集合到集合的映射,且、如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象、(6)函数的单调性①定义及判定方法函数的性质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数、(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数、(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数、③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减、yxo(7)打“√”函数的图象与性质分别在、上为增函数,分别在、上为减函数、(8)最大(小)值定义①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得、那么,我们称是函数的最大值,记作、②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得、那么,我们称是函数的最小值,记作、(9)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数、(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数、(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)②若函数为奇函数,且在处有定义,则、③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反、④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数、第二章基本初等函数(Ⅰ)〖2、1〗指数函数【2、1、1】指数与指数幂的运算(1)根式的概念①如果,且,那么叫做的次方根、当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根、②式子叫做根式,这里叫做根指数,叫做被开方数、当为奇数时,为任意实数;当为偶数时,、③根式的性质:;当为奇数时,;当为偶数时,、(2)分数指数幂的概念①正数的正分数指数幂的意义是:且、0的正分数指数幂等于0、②正数的负分数指数幂的意义是:且、0的负分数指数幂没有意义、注意口诀:底数取倒数,指数取相反数、(3)分数指数幂的运算性质① ②③【2、1、2】指数函数及其性质(4)指数函数函数名称指数函数定义0101函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,、奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低、〖2、2〗对数函数【2、2、1】对数与对数运算(1)对数的定义①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数、②负数和零没有对数、③对数式与指数式的互化:、(2)几个重要的对数恒等式,,、(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中…)、(4)对数的运算性质如果,那么①加法:②减法:③数乘:④⑤ ⑥换底公式:【2、2、2】对数函数及其性质(5)对数函数函数名称对数函数定义函数且叫做对数函数图象0101定义域值域过定点图象过定点,即当时,、奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高、(6)反函数的概念设函数的定义域为,值域为,从式子中解出,得式子、如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成、(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域、(8)反函数的性质①原函数与反函数的图象关于直线对称、②函数的定义域、值域分别是其反函数的值域、定义域、③若在原函数的图象上,则在反函数的图象上、④一般地,函数要有反函数则它必须为单调函数、〖2、3〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数、(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象、幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限、②过定点:所有的幂函数在都有定义,并且图象都通过点、③单调性:如果,则幂函数的图象过原点,并且在上为增函数、如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴、④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数、当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数、⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方、〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式、②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式、③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便、(3)二次函数图象的性质①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是、②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,、③二次函数当时,图象与轴有两个交点、(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布、设一元二次方程的两实根为,且、令,从以下四个方面来分析此类问题:①开口方向:②对称轴位置:③判别式:④端点函数值符号、①k<x1≤x2 ②x1≤x2<k ③x1<k<x2 af(k)<0 ④k1<x1≤x2<k2 ⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2 f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2 此结论可直接由⑤推出、(5)二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令、(Ⅰ)当时(开口向上)①若,则②若,则③若,则xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)①若,则②,则xy0>aOabx2-=pqf(p)f(q)(Ⅱ)当时(开口向下)①若,则②若,则③若,则xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)①若,则②,则、xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
高一到高三数学知识点总结

高一到高三数学知识点总结高一到高三数学知识点总结在现实学习生活中,相信大家一定都接触过知识点吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
还在为没有系统的知识点而发愁吗?下面是店铺为大家收集的高一到高三数学知识点总结,欢迎阅读与收藏。
高一到高三数学知识点总结1空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
高一到高三数学知识点总结2(一)导数第一定义设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量△y = f(x0 + △x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即导数第一定义(二)导数第二定义设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化△x ( x - x0 也在该邻域内 ) 时,相应地函数变化△y = f(x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为f(x0) ,即导数第二定义(三)导函数与导数如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。
高中数学必考知识点归纳整理

高中数学必考知识点归纳整理高中数学必考知识点必修一:1、集合与函数的概念 (部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2选修1--1:重点:高考占30分1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)理科:选修2—1、2—2、2—3选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。
高中数学知识点全总结笔记

高中数学知识点全总结笔记高中数学是学习数学的重要阶段,覆盖了很多知识点。
在学习中,对知识点进行正确的梳理和归纳是起到良好记忆效果和非常重要的一步。
本文以高中数学知识点为主,全面总结如下:一、代数:代数是数学分支学科之一,包括尤其关于二元一次方程、多项式、公式、余弦定理、正弦定理等概念。
其中,最基本的概念是二元一次方程,它是以两个未知数的一次方程的形式表达的,其求解的方式有解析法和因式分解法等。
多项式是一种简单的数学表达式,由变量、常数和未知数的连乘而形成的,其特征是多项式的项数可以任意增加,可以表达复杂的函数,其中也包括常用的各种幂函数。
公式是一种数学关系,用数字、变量和运算符表示,常用于求解一些特定的问题,其中最重要的特征是它可以简洁地表达复杂的数学问题。
另外,还有余弦定理和正弦定理,是数学中三角函数的重要概念,用来计算三角形内外角、相邻边和对边的关系。
二、几何:几何也是数学中的一个重要分支学科,主要涉及到形状、空间几何、点、直线、圆等概念。
其中,形状是最基本的概念,可以采用多种形式表达,比如多边形、圆形等,其信息可以通过边、角、周长、面积等参数表示。
空间几何是几何中的一个重要概念,主要涉及到空间几何形体的推广、空间几何关系的探索等内容。
点、直线、圆等概念也是几何中的重要概念,主要涉及到点之间的距离、直线的斜率、圆的半径等内容。
三、概率论:概率是数学中的一个重要分支学科,主要涉及到概率的定义、概率公式、独立性和联合概率等概念。
其中,概率的定义是理解概率的基础,其公式由几个基本公式构成,如概率的加法定理、乘法定理等,独立性和联合概率是概率论中重要的概念,可以用来计算不同事件的发生概率。
四、数列:数列是数学中的一个重要分支学科,包括等差数列、等比数列、指数数列等概念。
其中,等差数列指其相邻两项之差相等的数列,其特征是每一项都是上一项加上一个常数倍的数,它的等差可以用算法求出,等差数列的前几项之和也可求出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学知识点高中数学第一章-集合§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾: (一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集.例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅)4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②,且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B AB A A B B AB U ⊆⇔=⇔=⇔=C (二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法根轴法(零点分段法)从右向左,从上向下,奇穿偶回,零点讨论①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx(自右向左正负相间) 则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论.0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax 有两相异实根 )(,2121x x x x <有两相等实根ab x x 221-==无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x <<∅∅2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
2、逻辑联结词、简单命题与复合命题: “或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。
3、“或”、 “且”、 “非”的真值判断(1)“非p ”形式复合命题的真假与F 的真假相反;(2)“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假; (3)“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。
(1)交换原命题的条件和结论,所得的命题是逆命题; (2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题. 5、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题⇔逆否命题) ①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
6、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。
若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q.7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。
高中数学第二章-函数§02. 函数 知识要点一、本章知识网络结构:性质图像反函数F:A →B对数对数函数指数函数具体函数一般研究函数定义二、知识回顾: (一) 映射与函数 1. 映射与一一映射 2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.(二)函数的性质 ⒈函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性正确理解奇、偶函数的定义。
必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数)(x f 为奇函数或偶函数的必要不充分条件;(2))()(x f x f =-或)()(x f x f -=-是定义域上的恒等式。
2.奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形。
反之亦真,因此,也可以利用函数图象的对称性去判断函数的奇偶性。
3.奇函数在对称区间同增同减;偶函数在对称区间增减性相反. 4.如果)(x f 是偶函数,则|)(|)(x f x f =,反之亦成立。
若奇函数在0=x 时有意义,则0)0(=f 。
7. 奇函数,偶函数: ⑴偶函数:)()(x f x f =-设(b a ,)为偶函数上一点,则(b a ,-)也是图象上一点. 偶函数的判定:两个条件同时满足①定义域一定要关于y 轴对称,例如:12+=x y 在)1,1[-上不是偶函数. ②满足)()(x f x f =-,或0)()(=--x f x f ,若0)(≠x f 时,1)()(=-x f x f . ⑵奇函数:)()(x f x f -=-设(b a ,)为奇函数上一点,则(b a --,)也是图象上一点. 奇函数的判定:两个条件同时满足▲xy ①定义域一定要关于原点对称,例如:3x y =在)1,1[-上不是奇函数. ②满足)()(x f x f -=-,或0)()(=+-x f x f ,若0)(≠x f 时,1)()(-=-x f x f . 8. 对称变换:①y = f (x ))(轴对称x f y y -=−−−→−②y =f (x ))(轴对称x f y x -=−−−→−③y =f (x ))(原点对称x f y --=−−−→−9. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:在进行讨论.10. 外层函数的定义域是内层函数的值域. 例如:已知函数f (x )= 1+xx-1的定义域为A ,函数f [f (x )]的定义域是B ,则集合A 与集合B 之间的关系是 .解:)(x f 的值域是))((x f f 的定义域B ,)(x f 的值域R ∈,故R B ∈,而A {}1|≠=x x ,故A B ⊃.11. 常用变换:①)()()()()()(y f x f y x f y f x f y x f =-⇔=+. 证:)()(])[()()()()(y f y x f y y x f x f x f y f y x f -=+-=⇔=- ②)()()()()()(y f x f y x f y f x f y xf +=⋅⇔-=证:)()()()(y f yxf y y x f x f +=⋅=12. ⑴熟悉常用函数图象:例:||2x y =→||x 关于y 轴对称. |2|21+⎪⎭⎫⎝⎛=x y →||21x y ⎪⎭⎫ ⎝⎛=→|2|21+⎪⎭⎫ ⎝⎛=x y▲xy▲xy(0,1)▲xy(-2,1)|122|2-+=x x y →||y 关于x 轴对称.⑵熟悉分式图象: 例:372312-+=-+=x x x y ⇒定义域},3|{R x x x ∈≠, 值域},2|{R y y y ∈≠→值域≠x 前的系数之比. (三)指数函数与对数函数22122212122222121)()()(b x b x x x x x b x b x x f x f x ++++-=+-+=-)(A B ⊃▲x y23指数函数)10(≠>=a a a y x 且的图象和性质a>10<a<1图 象y=1y=1性 质(1)定义域:R (2)值域:(0,+∞)(3)过定点(0,1),即x=0时,y=1(4)x>0时,y>1;x<0时,0<y<1 (4)x>0时,0<y<1;x<0时,y>1. (5)在 R 上是增函数 (5)在R 上是减函数对数函数y =log a x 的图象和性质:对数运算:()na n a a a cb a b b a Na n a a n a a a aa a a a a a a a cb aN N Na M nM M n M N M NMN M N M n a1121log log ...log log 1log log log log log log log 1log log log log log log log log )(log 32log )12)1(=⋅⋅⋅⇒=⋅⋅===±=-=+=⋅-推论:换底公式:(以上10且...a a ,a 1,c 0,c 1,b 0,b 1,a 0,a 0,N 0,M n 21≠≠≠≠ )注⑴:当0, b a 时,)log()log()log(b a b a -+-=⋅.⑵:当0 M 时,取“+”,当n 是偶数时且0 M 时,0 n M ,而0 M ,故取“—”. 例如:xx x a a a log 2(log 2log 2 ≠中x >0而2log x a 中x ∈R ).⑵xa y =(1,0≠a a )与x y a log =互为反函数. 当1 a 时,x y a log =的a值越大,越靠近x 轴;当10 a 时,则相反.(四)方法总结⑴.相同函数的判定方法:定义域相同且对应法则相同. ⑴对数运算:a>10<a<1图象y=log a xOyxa>1a<1x=1性质(1)定义域:(0,+∞)(2)值域:R(3)过点(1,0),即当x=1时,y=0(4))1,0(∈x 时0<y),1(+∞∈x 时 y>0)1,0(∈x 时 0>y),1(+∞∈x 时0<y(5)在(0,+∞)上是增函数在(0,+∞)上是减函数()na n a a a cb a b b a Na n a a n a a a aa a a a a a a a cb aN N Na M nM M n M N M NMN M N M n a1121log log ...log log 1log log log log log log log 1log log log log log log log log )(log 32log )12)1(=⋅⋅⋅⇒=⋅⋅===±=-=+=⋅-推论:换底公式:(以上10且...a a ,a 1,c 0,c 1,b 0,b 1,a 0,a 0,N 0,M n 21≠≠≠≠ )注⑴:当0, b a 时,)log()log()log(b a b a -+-=⋅.⑵:当0 M 时,取“+”,当n 是偶数时且0 M 时,0 n M ,而0 M ,故取“—”. 例如:x x x a a a log 2(log 2log 2 ≠中x >0而2log x a 中x ∈R ). ⑵x a y =(1,0≠a a )与x y a log =互为反函数.当1 a 时,x y a log =的a 值越大,越靠近x 轴;当10 a 时,则相反.⑵.函数表达式的求法:①定义法;②换元法;③待定系数法.⑶.反函数的求法:先解x,互换x 、y ,注明反函数的定义域(即原函数的值域).⑷.函数的定义域的求法:布列使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等. ⑸.函数值域的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.⑹.单调性的判定法:①设x 1,x 2是所研究区间内任两个自变量,且x 1<x 2;②判定f(x 1)与f(x 2)的大小;③作差比较或作商比较.⑺.奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;③f(-x)/f(x)=1是偶;f(x)÷f(-x)=-1为奇函数.⑻.图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转、伸缩变换;③利用反函数的图象与对称性描绘函数图象.高中数学 第三章 数列考试内容: 数列.等差数列及其通项公式.等差数列前n 项和公式. 等比数列及其通项公式.等比数列前n 项和公式. 考试要求:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,井能解决简单的实际问题.§03. 数 列 知识要点1. ⑴等差、等比数列:等差数列等比数列 定义 d a a n n =-+1)0(1≠=+q q a a nn 递推公式 d a a n n +=-1;md a a n m n +=-q a a n n 1-=;m n m n q a a -=通项公式 d n a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(0,,* k n N k n ∈))0( k n k n k n k n a a a a G +-+-±=(0,,* k n N k n ∈)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+= ()⎪⎩⎪⎨⎧≥--=--==)2(111)1(111q q qa a qq a q na S n n n 重要性质,,,,(*N q p n m a a a a q p n m ∈+=+),,,,(*q p n m N q p n m a a a a q p n m +=+∈⋅=⋅数列 数列的定义 数列的有关概念 数列的通项 数列与函数的关系项 项数 通项等差数列 等差数列的定义 等差数列的通项 等差数列的性质 等差数列的前n 项和等比数列等比数列的定义 等比数列的通项 等比数列的性质 等比数列的前n 项和等差数列 等比数列定义常数)为(}{1d a a P A a n n n =-⇔⋅+常数)为(}{1q a a P G a nn n =⇔⋅+ 通项公式 n a =1a +(n-1)d=k a +(n-k )d=dn +1a -d k n k n n q a q a a --==11求和公式n d a n d d n n na a a n s n n )2(22)1(2)(1211-+=-+=+=⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q qq a a q q a q na s n n n中项公式 A=2b a + 推广:2n a =m n m n a a +-+ ab G =2。