2019-2020学年浙江省吴兴区八年级下期末数学试卷(有答案)(已审阅)
2019-2020学年八年级(下)期末数学试卷(含解析)

2019-2020学年八年级(下)期末数学试卷一、选择题(本大题共10小题,共40.0分)1. 把代数式根号外的因式移入括号内,则原式等于( ) A.B. C. D. 2. 用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( )A. (x −34)2=1716B. (x −34)2=12C. (x −32)2=134D. (x −32)2=114 3. 如图,▱ABCD 的周长为36cm ,△ABC 的周长为28cm ,则对角线AC 的长为( )A. 28cmB. 18cmC. 10cmD. 8cm4. 下面性质中,平行四边形不一定具备的是( )A. 对角互补B. 邻角互补C. 对角相等D. 对角线互相平分5. 下列说法错误的是( ) A. 必然事件的概率为1B. 数据1、2、2、3的平均数是2C. 连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上D. 如果某种活动的中奖率为40%,那么参加这种活动10次必有4次中奖6. 若x 1,x 2是方程2x 2+3x +1=0的两个根,则x 1+x 2的值是( )A. −3B. 32C. 12D. −32 7. 3、下列说法正确的是A. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2 C. 若a 、b 、c 是 △ABC 的三边,∠A =90°,则a 2+b 2=c 2D. 若a、b、c是△ABC的三边,∠C=90°,则a2+b2=c28.一个跳水运动员从10m高台上跳水,他每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),则运动员起跳到入水所用的时间是()A. −5sB. 2sC. −1sD. 1s9.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则|a|<0是不可能事件;④16的平方根是±4,用式子表示是√16=±4;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个10.如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a//b//c.若a与b之间的距离是3,b与c之间的距离是5,则正方形ABCD的面积是()A. 16B. 30C. 34D. 64二、填空题(本大题共4小题,共20.0分)11.分解因式:4x2−121=______.12.为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4569户数3421则关于这10户家庭的月用水量的中位数是______ ,平均数是______ ,众数是______ .13. 若m2+m−1=0,n2+n−1=0,且m≠n,则mn=______.14. 如图,四边形ABCD是矩形,AB=2,AD=√2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是______.三、计算题(本大题共1小题,共8.0分)15. 解下列方程:(7分)(1)(2)X(X+4)=3(X+4)四、解答题(本大题共8小题,共82.0分)16. 计算:(1)√18÷√23×√43.(2)√48÷√3−√12×√12+√24.(3)(1+√5)(1−√5)+(1+√5)2.(4)√12+|√3−2|+(π−3.14)0−√3−1.17. 课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=√3AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=√3AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)18. 现在要从甲、乙两名学生中选择一名学生去参加比赛,因甲乙两人的5次测试总成绩相同,所以根据他们的成绩绘制了尚不完整的统计图表进行分析.第1次第2次第3次第4次第5次甲成绩90708010060乙成绩709090a70请同学们完成下列问题:(1)a=______,x乙−=______;(2)请在图中完成表示乙成绩变化情况的折线;2=200,请你计算乙的方差;(3)S甲(4)可看出______将被选中参加比赛.(第1问和第4问答案可直接填写在答题卡的横线上) 19. 将一条长为20厘米的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形.要使这两个正方形的面积之和等于17平方厘米,那么这段铁丝剪成两段后的长度各是多少?20. 如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,△CDF的面积为4,射线CF与射线AB交于点N,且∠CNA=45°,连接EF,请直接写出线段EF的长.21. 根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解贵阳市19路公交车的运营情况,公交公司统计了某天19路公交车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天19路公交车平均每班的载客量;(3)如果一个月按30天计算,请估计19路公交车一个月的总载客量,并把结果用科学记数法表示出来.22. 如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且BE=DF.求证:AE=CF.23. 如图,花园围墙上有一宽1m的矩形门ABCD,量得门框对角线AC的长为2m.现准备打掉部分墙体,使其变为以AC为直径的圆弧形门,问要打掉墙体的面积是多少?(π≈3.14,√3≈1.73)【答案与解析】1.答案:B解析:本题考查二次根式的概念,由负数没有平方根求出a 的范围,判断出a −1为负数,将原式变形即可得到结果.注意a −1为负数,化简后的根式为负.∵ >0, ∴a −1<0, ∴故选B .2.答案:A解析:解:由原方程,得x 2−32x =12,x 2−32x +916=12+916, (x −34)2=1716,故选:A .化二次项系数为1后,把常数项−12移项,应该在左右两边同时加上一次项系数−32的一半的平方. 本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 3.答案:C解析:解:∵▱ABCD 的周长是36cm ,∴AB +AD =18m ,∵△ABC的周长是28cm,∴AB+BC+AC=28cm,∴AC=(AB+BC+AC)−(AB+AC)=28−18=10(cm).故选:C.平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=36,则AB+BC=18cm,而△ABC的周长=AB+BC+AC=28,继而即可求出AC的长.本题考查平行四边形的性质,解题关键是掌握平行四边形的周长为相邻两边之和的2倍,难度一般.4.答案:A解析:试题分析:根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;所以B、C、D正确.∵平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;∴B、C、D正确.故选A.5.答案:D解析:此题主要考查了概率的意义,正确掌握概率的意义是解题关键.直接利用概率的意义进而分别分析得出答案.解:A、必然事件的概率为1,正确,不合题意;B、数据1、2、2、3的平均数是2,正确,不合题意;C、连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,正确,不合题意;D、如果某种活动的中奖率为40%,那么参加这种活动10次不一定有4次中奖,故此选项错误,符合题意.故选:D.6.答案:D解析:解:根据题意得x1+x2=−32.故选:D.直接根据根与系数的关系求解.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.7.答案:D解析:解:A、勾股定理只限于在直角三角形里应用,故A可排除;B、虽然给出的是直角三角形,但没有给出哪一个是直角,故B可排除;C、在Rt△ABC中,直角所对的边是斜边,C中的斜边应为a,得出的表达式应为,故C也排除;D、符合勾股定理,正确.故选D.8.答案:B解析:解:设运动员起跳到入水所用的时间是xs,根据题意可知:−5(x−2)(x+1)=0,解得:x1=−1(不合题意舍去),x2=2,那么运动员起跳到入水所用的时间是2s.故选:B.根据每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),把ℎ=0代入列出一元二次方程,求出方程的解即可.可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.9.答案:B解析:解:①“明天降雨的概率是50%”表示明天降雨与不降雨可能性相同,此结论错误;②无理数是无线不循环的数,此结论错误;③若a为实数,则|a|<0是不可能事件,此结论正确;④16的平方根是±4,用式子表示是±√16=±4,此结论错误;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.此结论正确;故选:B.根据概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义逐一求解可得.本题主要考查概率的意义,解题的关键是掌握概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义.10.答案:C解析:解:作AE⊥直线b于点E,作CF⊥直线b于点F,∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADE+∠CDF=90°,∵AE⊥直线b,CF⊥直线b,∴∠AED=∠DFC=90°,∴∠ADE+∠DAE=90°,∴∠DAE=∠CDF,在△AED和△DFC中,{∠AED=∠DFC ∠DAE=∠CDF AD=DC,∴△AED≌△DFC(AAS),∴AE=DF,∵AE=3,CF=5,∠CFD=90°,∴DF=3,∴CD=√CF2+DF2=√52+32=√34,∴正方形ABCD的面积是:√34×√34=34,故选:C.先作辅助线AE⊥直线b于点E,CF⊥直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC 全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.11.答案:(2x+11)(2x−11)解析:解:原式=(2x+11)(2x−11),故答案为:(2x+11)(2x−11).根据平方差公式,可得答案.本题考查了因式分解,利用平方差公式是解题关键.12.答案:5吨;5.3吨;5吨解析:本题考查了众数、加权平均数及中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;利用加权平均数的计算方法求得其平均数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:表中数据为从小到大排列,5t和5t处在第5位、第6位,其平均数5t为中位数,平均数为:3×4+4×5+2×6+910=5.3吨,数据5t出现了四次最多为众数.故答案为:5吨,5.3吨,5吨.13.答案:−1解析:解:由题意可知:m、n是方程x2+x−1=0的两根,∴mn=−1.故答案为:−1.根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.14.答案:2√2−2解析:解:连接AE,∵∠ADE=90°,AE=AB=2,AD=√2,∴sin∠AED=ADAE,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=√2,∴阴影部分的面积是:(2×√2−45⋅π×22360−√2×√22)+(45⋅π×22360−√2×√22)=2√2−2,故答案为:2√2−2.根据题意可以求得∠BAE和∠DAE的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与△ADE的面积之差的和,本题得以解决.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.答案:解析:(1)用公式法解方程;(2)用因式分解法解方程。
2019-2020学年湖州市吴兴区八年级(下)期末数学试卷

2019-2020学年湖州市吴兴区八年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是()A. B.C. D.2.下列运算正确的是()A. √5+√3=√8B. √12−√3=2√3C. √3×√2=6D. √3÷√1=333.如图是外周边缘为正八边形的木花窗挂件,则这个八边形的每个内角为()A. 45°B. 100°C. 120°D. 135°4.某射击运动员在训练中射击了10次,成绩如图所示:下列结论正确的是()A. 众数是8,中位数是8B. 众数是8,中位数是8.5C. 平均数是8.2,方差是1.2D. 平均数是8,方差是1.25.2020年是国家脱贫攻坚战收官之年.据悉,2018年中央财政专项扶贫资金为1060.95亿元,2020年中央财政专项扶贫资金为1136亿元,设2018年到2020年中央财政专项扶贫资金年平均增长率为x,可列方程为()A. 1060.95(1+x%)2=1136B. 1060.95(1+x2)=1136C. 1060.95(1+2x)=1136D. 1060.95(1+x)2=11366.下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A. 3个B. 2个C. 1个D. 0个7.如图,平面直角坐标中,点A(1,2),将AO绕点A逆时针旋转90°,(x>0)上,则k的值为()点O的对应B点恰好落在双曲线y=kxA. 2B. 3C. 4D. 68.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E、F分别是AO、AD的中点,若AC=8,则EF=()A.B. 4C. 2D. 19.下列四边形不属于平行四边形的是()A. 菱形B. 矩形C. 梯形D. 正方形10.如图所示四个图形中,是平面直角坐标系的是()A.B.C.D.二、填空题(本大题共6小题,共24.0分)11.如果代数式√x+1意义,那么x的取值范围是______.x12.已知数据x1,x2,x3的平均数为a,方差为b,则数据2x1+3,2x2+3,2x3+3的标准差是______.13.关于y的方程2y2+3py−2p=0有一个根是y=2,则关于x的方程x2−3=p的解为______.14. 如图,线段AB 是直线y =5x +1的一部分,点A 的坐标为(0,1),点B 的纵坐标是6,曲线BC是双曲线y =k x 的一部分,点C 的横坐标是6.由点C 开始,不断重复曲线“A −B −C ”,形成一组波浪线.已知点P(18,m),Q(21,n)均在该组波浪线上,分别过点P ,Q 向x 轴作垂线段,垂足分别为D 和E ,则四边形PDEQ 的面积是______.15. 如图所示,AB =AC ,AD =AE ,∠BAC =∠DAE ,∠1=28°,∠2=30°,则∠3= ______ .16. 如图,函数y =k 1x (x >0)的图象与矩形OABC 的边BC 交于点D ,分别过点A ,D 作AF//DE ,交直线y =k 2x(k 2<0)于点F ,E.若OE =OF ,BD =2CD ,四边形ADEF 的面积为12,则k 1的值为______.三、解答题(本大题共8小题,共66.0分)17. (1)√3×√6−2√12+√24÷√3 (2)解不等式组{3x −8<x 1−x 2<1+2x 3−1(3)解方程:①(2x +1)2−3=2(2x +1)②y 2+2(√3+1)y +4√3=0③(xx+1)2+5(xx+1)+6=018.用适当的方法解下列方程:(1)2x2−8x=0.(2)x2−3x−4=0.求出抛物线的开口方向、对称轴、顶点坐标.(3)y=12x2−x+3(公式法).19.如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=12OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m−n+2=0.20. 如图1,△ABC和△ADE都是等边三角形.(1)求证:BD=CE;(2)如图2,若BD的中点为P,CE的中点为Q,请判断△APQ的形状,并说明理由.21. 为了解某小区群众对绿化建设的满意程度,对小区内居民进行了随机调查,居民在“非常满意、满意、一般和不满意“中必选且只能选一个,并将调查结果整理后绘制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名居民?(2)通过计算补全条形统计图;(3)若该小区一共有1350人,估计该小区居民对绿化建设“非常满意”的有多少人.22. 一块铁板的形状如图,已知CA⊥AB,CB⊥BD,且AC=30cm,AB=40cm,BD=120cm.求CD的长度.23. 将含有45°角的直角三角板ABC和直尺如图摆放在桌子上,然后分别过A、B两个顶点向直尺作两条垂线段AD,BE.(1)请写出图中的一对全等三角形并证明;(2)你能发现并证明线段AD,BE,DE之间的关系吗?24. 在初中阶段的函数学习中,我们经历了“确定函数的表达式--利用函数图象研究其性质--运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.学习了一次函数之后,现在来解决下面的问题:在y=a|x|+b中,下表是y与x的几组对应值.x…−3−2−10123…y…8m42n68…(1)求这个函数的表达式;(2)m=______,n=______;(3)在给出的平面直角坐标系xOy中,描出以上表格中各组对应值为坐标的点,并根据描出的点,画出该函数的图象.根据函数图象可得:①该函数的最小值为______;②写出该函数的另一条性质______;(4)已知直线y1=x+4与函数y=a|x|+b的图象交于两点,则当y1>y时,x的取值范围为______.。
2019—2020学年度第二学期期末考试八年级数学试题及答案

2019—2020学年度第二学期期末考试八年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷.2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3.答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.下列图形中,既是轴对称图形又是中心对称图形的是A .B.C.D.2.下列调查中,最适宜采用普查方式的是A.对科学通信卫星上某种零部件的调查B.对我国初中学生视力状况的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查3.与5是同类二次根式的是A.3B.10C.25D.154.下列分式中,最简分式是A.24aB.21aa+C.22a ba b-+D.2a aba b++5.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),下列事件中是必然事件的为A.两枚骰子朝上一面的点数和为6 B.两枚骰子朝上一面的点数均为偶数C.两枚骰子朝上一面的点数和不小于2 D.两枚骰子朝上一面的点数均为奇数6.已知反比例函数y=3x,下列结论中,不正确...的是A.图像必经过点(1,3)B.y随x的增大而减小C.图像在第一、三象限内D.若x>1,则0<y<37.小峰不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的玻璃,他带了两块碎玻璃,其编号应该是A.①,②B.①,④C.③,④D.②,③八年级数学试题第1页共6页八年级数学试题 第2页 共6页8.如图,在矩形ABCD 中,AB =3,BC =4,若点P 是AD 边上的一个动点,则点P 到矩形 的对角线AC 、BD 的距离之和为A .2.4B .2.5C .3D .3.6二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上).9. 使二次根式1x -有意义的x 的取值范围是 ▲ . 10.当x = ▲ 时,分式12x x +-的值为0. 11.若点A (1,m )在反比例函数2y x=的图像上,则m 的值为 ▲ . 12.比较大小:32 ▲ 23.(填“>”、“<”或“=”)13.一个不透明的盒子里装有黑、白两种球共40个(除颜色外其它均相同),小明将盒子里 的球搅匀后,从中随机摸出一个记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65124 178 302 481 599 1803 摸到白球的频率mn0.650.620.5930.6040.6010.5990.601请估计摸到白球的概率为 ▲ (精确到0.01).14.平行四边形ABCD 的对角线AC 、BD 相交于点O ,当AC 、BD 满足 ▲ 时,平行四边形ABCD 为菱形.15.实数a 、b 在数轴上对应点的位置如右图所示,化简2()a b a --的结果是 ▲ .16.如图,过点P (5,3)作PM ⊥x 轴于点M 、PN ⊥y 轴于点N ,反比例函数ky x=(0)x >的图像交PM 于点A 、交PN 于点B .若四边形OAPB 的面积为10,则k = ▲ .ABP MNOxy 第16题图ABCDP第8题图ba第15题图第7题图① ②③④八年级数学试题 第3页 共6页三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)计算:(1)282- (2)(32)(32)+-18.(本题满分6分)解方程:11322xx x-=--- 19.(本题满分6分) 先化简再求值:31(1)12x x x x -+-⋅--,其中x =3.20.(本题满分6分)关注“安全”是一个永恒不变的话题.某中学对部分学生就安全知识的了解程度,采取了随机抽样调查的方式,将收集到的信息分为4种类别:A.非常了解;B.基本了解;C.了解很少;D.不了解.请你根据统计图中所提供的信息解答下列问题.(1)接受问卷调查的学生共有 ▲ 人,扇形统计图中“了解很少”部分所对应扇形的圆心角为 ▲ °;(2)请补全条形统计图;(3)若该学校共有学生3000人,估计该学校学生中对安全知识达到 “非常了解”和“基 本了解”程度的总人数.ACB D50%扇形统计图10 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第4页 共6页21.(本题满分6分)如图,在□ABCD 中,∠BAD 的角平分线分别交BC 以及DC 的延长线于点E 、 F . (1)求证:BC =DF ;(2)若∠F =65°,求∠D 的度数.22.(本题满分6分)已知m 是3的整数部分,n 是3的小数部分. (1)m = ▲ ,n = ▲ ; (2)求代数式22m n - 的值.23.(本题满分8分)彭师傅检修一条长为900米的煤气管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长是原计划的1.2倍,结果提前3小时完成任务.彭师傅原计划每小时检修管道多少米?24.(本题满分8分)如图,点A (m ,4),B (n ,1)在反比例函数(0)ky x x =>的图像上,过点A 、B 分别作x轴的垂线,垂足为点C 和点D ,且CD =3. (1)求m 、n 的值,并写出反比例函数的表达式;(2)若直线AB 的函数表达式为(0)y ax b a =+≠,请结合图像直接写出不等式k ax b x+< 的解集.A B C D E F ABCDO xy八年级数学试题 第5页 共6页25.(本题满分10分)问题呈现:我们知道反比例函数(0)k y k x =≠的图像是双曲线,那么函数k y n x m =++(k 、m 、n 为常数且k ≠0)的图像还是双曲线吗?它与反比例函数(0)ky k x=≠的图像有怎样的关系呢?让我们一起开启探索之旅……探索思考:我们可以借鉴以前研究函数的方法,首先探索函数41y x =+的图像. (1)填写下表,并画出函数41y x =+的图像. ①列表:x … -5-3-20 1 3 … y……②描点并连线.(2)观察图像,写出该函数图像的两条不同类型的特征: ① ▲ ; ② ▲ . 理解运用:函数41y x =+的图像是由函数4y x=的图像向 ▲ 平移 ▲ 个单位,其对称中心的坐标为 ▲ .灵活应用:根据上述画函数图像的经验,想一想函数421y x =++的图像大致位置,并根据图像指出,当x 满足 ▲ 时,y ≥3.–1 –2 –3 –4 –5 –6 1 2 3 4 5 6 –1 –2 –3 –4 –5 –6 1 2 3 4 5 6 xy O八年级数学试题 第6页 共6页26.(本题满分10分) 在数学兴趣小组活动中,小悦进行数学探究活动.将边长为1的正方形ABCD 与边长为2的正方形AEFG 按图①位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.连接DG 、BE ,易得DG =BE 且DG BE ⊥(不需要说明理由).(1)如图②,小悦将正方形ABCD 绕点A 逆时针旋转,旋转角为α(30 º <α<180 º). (Ⅰ)连接DG 、BE ,求证:DG =BE 且DG BE ⊥.(Ⅱ)在旋转过程中,如图③连接BG 、GE 、ED 、DB ,求出四边形BGED 面积的最 大值.(2)如图④,分别取BG 、GE 、ED 、DB 的中点M 、N 、P 、Q ,连接MN 、NP 、PQ 、 QM ,则四边形MNPQ 的形状为 ▲ ,四边形MNPQ 面积的最大值是 ▲ .A B C D EF G 图① AB C DG E F图③ A B C D EF G MQ P N图④A BCD GEF 图②八年级数学试题 第7页 共6页八年级数学答题纸题号 1-8 9-16 17 18 19 20 21 22 23 24 25 26 总分得分一、选择题(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案二、填空题(本大题共8小题,每小题3分,共24分)9. 10. 11. 12. 13. 14. 15. 16. 三、解答题(本大题共有10小题,共72分) 17.(本题满分6分) (1) (2)18.(本题满分6分)19.(本题满分6分)20.(本题满分6分)(1)________;________.10 20 30 40ABCD5 类别人数条形统计图1530(3)21.(本题满分6分)(1)(2)22.(本题满分6分)(1)________;________.(2)23.(本题满分8分)AB CDEF八年级数学试题第8页共6页八年级数学试题 第9页 共6页24.(本题满分8分) (1)(2)25.(本题满分10分)探索思考:(1) ①x … -5-3-20 1 3 … y……② (2)①:________________________________________________________________; ②:________________________________________________________________.ABC DO xy–1 –2 –3 –4 –5 –6 12 3 45 6 –1–2 –3 –4 –5 –612 3 4 5 6 x y O理解运用:________________;________________;________________.灵活应用:__________________________________.26.(本题满分10分)(1)(Ⅰ)(Ⅱ)(2)________________;________________.ABCDGEF图②ABCDGEF图③八年级数学试题第10页共6页八年级数学试题 第11页 共6页八年级数学试题参考答案及评分细则一、选择题(每小题3分,共24分.) 1.D 2.A 3.C 4.B 5.C 6.B 7.D 8.A 二、填空题(每小题3分,共24分.)9.x ≥1 10.1- 11.2 12.>13.0.6014.AC ⊥BD15.b16.5三、解答题(本大题共有10小题,共72分) 17.解:(1)原式=222-=2. ················································································ 3分 (2)原式=92-=7. ··················································································· 3分 18.解:两边同乘以(2)x -1(1)3(2)x x =----2x = ································································································· 4分 检验:当2x =时,(2)x -=0 ································································· 5分 ∴2x =是原分式方程的增根,原分式方程无解. ······································· 6分 19.解:原式24112x x x x --=⋅-- 2x =+ ························································································ 4分 把3x =代入(2)x + 原式32=+5=. ·························································································· 6分 20.解:(1)60;90; ··············································································· 2分 (2)如图所示,就是我们所要补全的条件统计图; ······················· 4分 (3)30103000200060+⨯=(人) 答:该学校学生中对安全知识达到 “非常了解”和“基本了解”程度的 总人数为2000人. ········································································ 6分21.解:(1)∵四边形ABCD 为平行四边形1010 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第12页 共6页∴BA ∥CD ,AD =BC ···································································································· 1分 ∴∠BAF =∠F ∵AE 平分∠BAD ∴∠BAF =∠DAF∴∠DAF =∠F ··············································································································· 2分 ∴AD =DF∴BC =DF ······················································································································ 3分 (2)∵AD =DF∴∠F =∠DAF =65° ············································································ 5分 ∴∠D =50°. ····················································································· 6分 22.解:(1)1;31- ························································································ 2分 (2)原式()()m n m n =+⋅- ········································································ 3分 3(131)=⋅-+233=-. ··························································· 6分23.解:设彭师傅原计划每小时检修管道x 米,根据题意可得:90090031.2x x =+ ····················································································· 3分 解得:50x = ······················································································ 4分 经检验:50x =是原分式方程的解. ························································ 5分 答:彭师傅原计划每小时检修管道50米. ················································ 6分 24.解:(1)根据题意得:43m nn m =⎧⎨-=⎩·······································2分 解得:14m n =⎧⎨=⎩·································· 4分把(14),代入ky x= ∴4k =∴反比例函数的表达式为4y x=. ·························································· 6分 (2)01x <<或4x >. ········································································ 8分ABCO xy八年级数学试题 第13页 共6页25.解: (1)探索思考: ①列表:···························································································· 1分x … -5 -3 -2 0 1 3 … y…-1-2-4421…② ······································································································ 3分(2)①图像是中心对称图形; ········································································· 4分 ②当1x >-时,y 随着x 的增大减小. ························································ 5分 ③图像是轴对称图形 ④图像经过点(0,4) ⑤与x 轴没有交点…… (注:仅写两条即可) 理解运用:左;1;(1,0)-. ···················································································· 8分 灵活应用:13x -<≤. ························································································· 10分 26.解:(1) (Ⅰ)证明:∵正方形ABCD 和正方形AEFG∴AD =AB ,AE =AG ,∠BAD =∠GAE =90° ··············································· 1分 ∴∠DAG =∠BAE–1 –2 –3 –4 –5 –6 1 2 34 56 –1–2 –3 –4 –5 –612 3 4 5 6 xyO八年级数学试题 第14页 共6页在△DAG 和△BAE 中, DA BA DAG BAE GA EA =⎧⎪=⎨⎪=⎩∠∠ ∴△DAG ≌△BAE ·················································································· 2分 ∴DG =BE ···························································································· 3分 ∴∠DGA =∠BEA∵∠DGA +∠GHE =∠BEA +∠GAE ∴∠GHE =∠GAE =90°∴DG ⊥BE ···························································································· 4分 (Ⅱ)连接BE 、DG 相交点H ∵BE ⊥DG∴S 四边形BGED =S △BGE +S △BDE=1122GH BE DH BE ⋅+⋅ =12DG BE ⋅ =212BE ······························································································ 6分 当α=90°时BE 最大值=BA +AE =21+∴S 四边形BGED 的最大值为21(21)2+即为3222+. ········································· 8分(2)正方形;3224+. ······································································· 10分ABCDGEF图②ABCDG EF图③ HH。
2019-2020学年浙江省吴兴区八年级下期末数学试卷(有答案)(已纠错)

吴兴区第二学期期末测试(解析版)八年级数学一、选择题(本题有10小题,每小题3分,共30分。
每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.若式子有意义,则x 的取值范围是()A. B. C. D.正确答案:C试题解析:【分析】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x-1≥0,解得x≥1.故选C.2.下列图形中既是中心对称图形又是轴对称图形的是()A.B. C. D.正确答案:B试题解析:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:A.是轴对称图形,不是中心对称图形.故A不符合题意;B.是轴对称图形,也是中心对称图形.故B符合题意;C. 是轴对称图形,不是中心对称图形.故C不符合题意;D. 不是轴对称图形,是中心对称图形.故D不符合题意.故选B.3.下列计算正确的是()A.B. C. D.正确答案:D试题解析:【分析】此题考查二次根式的加法,先判断是否是同类二次根式,再合并同类二次根式.【解答】解:A.,故错误;B.,不是同类二次根式不能合并,故错误;C.,不是同类二次根式不能合并,故错误;D.,正确。
4,用反证法证明命题“三角形中必有一个内角小于或等于60度”时,应假设()A. 每一个内角都大于60度B. 每一个内角都小于60度C. 有一个内角大于60度D. 有一个内角小于60度正确答案:A试题解析:【分析】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.熟记反证法的步骤,然后进行判断即可.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即每一个内角都大于60°.故选A.5.如图,在平面直角坐标系中,点A是反函数图象上的点,过点A与x轴垂直的直线交x轴于点B,连结AO,若△ABO的面积为3,则k的值为()A.3B.-3C.6D.-6正确答案:D试题解析:【分析】本题考查了反比例函数系数k的几何意义,根据已知条件得到三角形ABO的面积=AB •OB,由于三角形ABC的面积=AB•OB=3,得到|k|=6,即可得到结论.【解答】解:∵三角形AOB的面积=AB•OB=3,∴|k|=6,∵k<0,∴k=-6,故选D6.湖州是“两山”理论发源地. 在一次学校组织的以“学习两山理论,建设生态文明”为主题的知识竞赛中,某班6名同学的成绩如下(单位:分):97,99,95,92,92,93,则这6名同学的成绩的中位数和众数分别为()A. 93分,92分B. 94分,92分C. 94分,93分D. 95分,95分正确答案:B试题解析:【分析】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.利用中位数和众数的定义求解.【解答】解:在这一组数据中92是出现次数最多的,故众数是92;将这组数据从小到大的顺序排列:92、92、93、95、97、99,处于中间位置的数是93,95,它们的平均数是94,那么由中位数的定义可知,这组数据的中位数是94.故选B.7.如果关于x的方程2x2-x+k=0(k为常数)有两个相等的实数根,那么k=()A. B. C. D.正确答案:A解:∵关于x的方程2x2-x+k=0(k为常数)有两个相等的实数根,∴△=(-1)2-8k=0,解得k=.故选A.先根据一元二次方程根与系数的关系列出关于k方程,求出k的值即可.本题考查的是根与系数的关系,熟知一元二次方程ax2+bx+c=0(a≠0)中,当△=0时,方程有两个相等的两个实数根是解答此题的关键.8.下列命题中,真命题是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形正确答案:C试题解析:解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;故选C.A、根据矩形的判定定理作出判断;B、根据菱形的判定定理作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断.本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.9.在平面直角坐标系内,A、B、C三点的坐标为(0,0)、(4,0)、(3,2),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限正确答案:C试题解析:【分析】考查平行四边形的性质,利用已知条件正确画图、数形结合,能起到事半功倍的作用.根据坐标与图形的性质和平行四边形的对边平行且相等可以画出草图,然后解答.【解答】解:现根据题意画出草图:A、B、C三点位置如图所示,要使四边形ABCD为平行四边形,则点D有三种可能,即分别以AB、AC、BC为对角线的平行四边形,故第四个顶点不可能在第三象限.故选C.10.新定义:若关于x的一元二次方程:与,称为“同族二次方程”.如2(x-3)2+4=0与3(x-3)2+4=0是“同族二次方程”.现有关于x的一元二次方程与是“同族二次方程”,那么代数式能取的最小值是()A. 2011B. 2013C. 2018D. 2023此题考查求代数式的值,二元一次方程组的解法,配方法.由“同族二次方程”,得出,可得方程组解得a、b的值,代入,配方可得.【解答】解:∵与是“同族二次方程”,∴,,∴,解得∴,∵最小值为0,∴最小值为2013,即最小值为2013.故选B.二、填空题(本题有6小题,每小题4分,共24分)11.一个四边形的外角和等于度.正确答案:360试题解析:【分析】此题考查了多边形的外角和,比较简单,只要识记多边形的外角和是360°即可.多边形外角和都等于360°,则四边形的外角和为360度.解:∵多边形外角和=360°,∴四边形的外角和为360度.故答案为360.12.甲、乙两位选手各10次射击成绩的平均数都是9.2环,方差分别是,,则选手发挥最稳定.正确答案:甲试题解析:【分析】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S2甲=0.015,S2乙=0.025,∴S2乙>S2甲∴成绩最稳定的是甲. 故答案为甲.13.如图1,在Rt△ABC中,∠ABC=90°,点D、E、F分别是AB、AC、BC边上的中点,连结BE、DF,已知BE=5,则DF=(图1)(图2)正确答案:5试题解析:此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.已知BE是Rt△ABC斜边AC的中线,那么;EF是△ABC的中位线,则.【解答】解:∵△ABC是直角三角形,BE是斜边的中线,∴,又∵DF是△ABC的中位线,∴,∴DF=BE=5.故答案为5.14.如图2,在平面直角坐标系中,已知A(-2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA’,则A’的坐标为正确答案:(2,3)试题解析:【分析】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,,A′C′=BC=3,可得结果.【解答】解:作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴点A′的坐标为(2,3).故答案为(2,3).15.如图,在△ABC中,D是AB上任意一点,E是BC的中点,过C作CF∥AB,交DE 的延长线于F, 连BF、CD,若∠FDB=30°,∠ABC=45°,BC=,则DF= .正确答案:4试题解析:【分析】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【解答】解:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四边形CDBF是平行四边形.作EM⊥DB于点M,∵四边形CDBF是平行四边形,,∴,DF=2DE,在Rt△EMB中,EM=BE•sin∠ABC=1,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=2,∴DF=2DE=4.故答案为4.16.将反比例函数()的图像绕着原点O顺时针旋转45°得到新的双曲线图像C1上的任意一点P到F的(如图1所示),直线⊥轴,F为轴上的一个定点。
浙江省湖州市吴兴区十学校2024届数学八年级第二学期期末学业水平测试试题含解析

浙江省湖州市吴兴区十学校2024届数学八年级第二学期期末学业水平测试试题 考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.某班30名学生的身高情况如下表:身高()m 1.65 1.58 1.70 1.72 1.76 1.80人数 3 4 6 7 6 4则这30名学生身高的众数和中位数分别是( )A .7,1.71m mB .1.72,1.70m mC .1.72,1.71m mD .1.72,1.72m m2.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”(190,43°) 表示图中承德的位置,“数对”(160,238°) 表示图中保定的位置,则与图中张家口的位置对应的“数对”为A .(176,145°)B .(176,35°)C .(100,145°)D .(100,35°)3.在同一平面直角坐标系中,函数y =ax 2+bx 与y =﹣bx +a 的图象可能是( )A .B .C .D .4.如图,在▱ABCD 中,AB =6,BC =8,∠BCD 的平分线交AD 于点E ,交BA 的延长线于点F ,则AE +AF 的值等于( )A .2B .3C .4D .65.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,3,33==AO BO ,则菱形ABCD 的面积是( )A .18B .183C .36D .3636.如图,△ABC 中,D 、E 分别是AB 、AC 上点,DE∥BC,AD=2,DB=1,AE=3,则EC 长( )A .23 B .1 C .32 D .67.已知ABC ∆,如图,4AC =,5AB =,90C ∠=︒,AC 的垂直平分DE 交AB 于点E ,则DE 的长为()A .3B .2.5C .2D .1.58.直线与轴、轴所围成的直角三角形的面积为( )A .B .C .D .9.把函数y x =与2y x =的图象画在同一个直角坐标系中,正确的是( )A .B .C .D .10.满足下列条件的三角形中,不是直角三角形的是( )A .三内角的度数之比为1∶2∶3B .三内角的度数之比为3∶4∶5C .三边长之比为3∶4∶5D .三边长的平方之比为1∶2∶311.在三角形纸片ABC 中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC 相似的是( ) A . B . C . D .12.如图,过点A 的一次函数的图象与正比例函数2y x =的图象相交于点,B 则这个一次函数的解析式是( )A . 3y x =-+B .23y x =-+C .23y x =-D .3y x =--二、填空题(每题4分,共24分)13.在▱ABCD 中,如果∠A+∠C=140°,那么∠B= 度.14.在□ABCD 中,∠A =105º,则∠D =__________.15. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若ab=8,大正方形的面积为25,则小正方形的边长为_____.16.若112a b-=,则422a ab ba ab b+---的值是________17.若直角三角形的两边分别为1分米和2分米,则斜边上的中线长为_________.18.使21x-有意义的x的取值范围是______.三、解答题(共78分)19.(8分)如图,长方形ABCD中,点P沿着边按B C D A→→→.方向运动,开始以每秒m个单位匀速运动、a 秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动,在运动过程中,ABP∆的面积S与运动时间t的函数关系如图所示.(1)直接写出长方形的长和宽;(2)求m,a,b的值;(3)当P点在AD边上时,直接写出S与t的函数解析式.20.(8分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段AB,使AB=5;(2)在图②中画一个以格点为顶点,面积为2的正方形ABCD.21.(8分)如图,平面直角坐标系中,一次函数142y x =-+的图象1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点()3C m ,. (1)求m 的值及2l 的解析式;(2)求AOC BOC S S -的值;(3)一次函数1y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.22.(10分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:① 小宇的分析是从哪一步开始出现错误的?② 请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(10分)化简:(1)22414a a ++- (2)222222x y x xy x xy y x y ⎛⎫-÷- ⎪+++⎝⎭ 24.(10分)今年5月19日为第29个“全国助残日”我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界). 捐款额(元) 频数百分比 510x < 37.5% 1015x <7 17.5% 1520x < ab 2025x < 1025% 2530x < 615% 总计100% (1)填空:a =________,b =________.(2)补全频数分布直方图.(3)该校有2000名学生估计这次活动中爱心捐款额在1525x <的学生人数.25.(12分)如图,直线y =kx +b (k ≠0)与两坐标轴分别交于点B 、C ,点A 的坐标为(﹣2,0),点D 的坐标为(1,0).(1)求直线BC 的函数解析式.(2)若P (x ,y )是直线BC 在第一象限内的一个动点,试求出△ADP 的面积S 与x 的函数关系式,并写出自变量x 的取值范围.(3)在直线BC 上是否存在一点P ,使得△ADP 的面积为3?若存在,请直接写出此时点P 的坐标,若不存在,请说明理由.26.如图,已知直线AB 的函数解析式为28y x =-+,直线与x 轴交于点A,与y 轴交于点B .(1)求A 、B 两点的坐标;(2)若点P(m ,n)为线段AB 上的一个动点(与A 、B 不重合),过点P 作PE ⊥x 轴于点E ,PF ⊥y 轴于点F ,连接EF ; ①若△PAO 的面积为S ,求S 关于m 的函数关系式,并写出m 的取值范围;②是否存在点P ,使EF 的值最小?若存在,求出EF 的最小值;若不存在,请说明理由.参考答案一、选择题(每题4分,共48分)1、D【解题分析】根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的顺序排列,中间的一个数字(或两个数字的平均数)叫做这组数据的中位数.【题目详解】解:由图可得出这组数据中1.72m 出现的次数最多,因此,这30名学生身高的众数是1.72m ;把这一组数据按从小到大的顺序排列,中间的两个数字是1.72m、1.72m,因此,这30名学生身高的中位数是1.72m.故选:D.【题目点拨】本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.2、A【解题分析】根据题意,画出坐标系,再根据题中信息进行解答即可得.【题目详解】建立坐标系如图所示,∵“数对”(190,43°) 表示图中承德的位置,“数对”(160,238°) 表示图中保定的位置,∴张家口的位置对应的“数对”为(176,145°),故选A.【题目点拨】本题考查了坐标位置的确定,解题的关键是明确题意,画出相应的坐标系.3、B【解题分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【题目详解】解:A、对于直线y=-bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意;B、对于直线y=-bx+a来说,由图象可以判断,a>0,b<0;而对于抛物线y=ax2+bx来说,图象开口向上,对称轴x=-2b a>0,在y 轴的右侧,符合题意,图形正确; C 、对于直线y=-bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线y=ax 2+bx 来说,对称轴x=-2b a <0,应位于y 轴的左侧,故不合题意;D 、对于直线y=-bx+a 来说,由图象可以判断,a >0,b <0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意.故选:B .【题目点拨】此题主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a 、b 的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.4、C【解题分析】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD=BC=8,CD=AB=6,∴∠F=∠DCF ,∵∠C 平分线为CF ,∴∠FCB=∠DCF ,∴∠F=∠FCB ,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C5、B【解题分析】先求出菱形对角线的长度,再根据菱形的面积计算公式求解即可.【题目详解】∵四边形ABCD 是菱形,∴BD=2BO ,AC=2AO ,∵∴BD=63,AC=6, ∴菱形ABCD 的面积=12×AC×BD=12×63×6=183. 故选B.【题目点拨】此题主要考查菱形的对角线的性质和菱形的面积计算. 6、C【解题分析】试题解析:∵D 、E 分别是AB 、AC 上点,DE //BC , ∴AD AE BD EC= ∵AD =2,DB =1,AE =3,∴·31322AE BD EC AD ⨯=== 故选C.7、D【解题分析】根据中位线的性质得出//DE BC ,1=2DE BC ,然后根据勾股定理即可求出DE 的长. 【题目详解】 DE 垂直平分AC ,DE ∴为ACB ∆中BC 边上的中位线,∴//DE BC ,1=2DE BC 在Rt ACB ∆中, 22543BC =-=,1.5DE ∴=.故选D .【题目点拨】本题考查了三角形的线段长问题,掌握中位线的性质、勾股定理是解题的关键.8、C【解题分析】 先根据一次函数图象上的坐标特征和坐标轴上点的坐标特征确定直线与两条坐标轴的交点坐标,然后根据三角形的面积公式求解.【题目详解】解:把x=0代入得y=-1,则直线与y 轴的交点坐标为(0,-1); 把y=0代入得2x-1=0,解得x=2,则直线与x 轴的交点坐标为(2,0), 所以直线与x 轴、y 轴所围成的三角形的面积=×2×1=1. 故选:C .【题目点拨】本题考查了一次函数图象上点的坐标特征,直线与坐标轴的交点问题,掌握求直线与坐标轴的交点是解题的关键. 9、D【解题分析】根据正比例函数解析式及反比例函数解析式确定其函数图象经过的象限即可.【题目详解】解:函数y x =中10k =>,所以其图象过一、三象限,函数2y x =中20k =>,所以其图象的两支分别位于第一、三象限,符合的为D 选项.故选D.【题目点拨】本题综合考查了一次函数与反比例函数的图象,熟练掌握函数的系数与其图象经过的象限的关系是解题的关键. 10、B【解题分析】试题解析:A 、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;B 、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;C 、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;D 、因为1+2=3,所以是直角三角形.故选B .11、D【解题分析】解:三角形纸片ABC 中,AB =8,BC =4,AC =1.A .44182AB ==,对应边631842AC AB ==≠,则沿虚线剪下的涂色部分的三角形与△ABC 不相似,故此选项错误;B.338AB=,对应边633848ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.22163AC==,对应边631843ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.22142BC==,对应边411822BCAB===,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.12、A【解题分析】根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【题目详解】解:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组32bk b=⎧⎨+=⎩,解得31bk=⎧⎨=-⎩,则这个一次函数的解析式为y=-x+3,故选:A.【题目点拨】此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一次函数的特点,来列出方程组,求出未知数,即可写出解析式.二、填空题(每题4分,共24分)13、1.【解题分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=1°.故答案为1.14、75︒【解题分析】根据平行四边形的对角相等的性质即可求解.【题目详解】解:在□ABCD中,//AB CD180A D∴∠+∠=︒∠A=105º,∴180********D A∠=︒-∠=︒-︒=︒故答案为:75︒【题目点拨】本题考查平行四边形的性质,利用平行四边形对角相等的性质是解题的关键.15、3【解题分析】由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【题目详解】由题意可知:中间小正方形的边长为:a-b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×12ab+(a-b)2=25,∴(a−b)2=25-16=9,∴a-b=3,故答案为3.【题目点拨】本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.16、2-5. 【解题分析】 解:∵1a ﹣1b =2,∴a ﹣b =﹣2ab ,∴原式=42a b ab a b ab -+--()()=244ab ab ab ab -+--=25ab ab -=﹣25.故答案为﹣25.17、1分米. 【解题分析】分2是斜边时和2是直角边时,利用勾股定理列式求出斜边,然后根据直角三角形斜边上的中线等于斜边的一半解答.【题目详解】2是斜边时,此直角三角形斜边上的中线长=12×2=1分米,2是直角边时,斜边此直角三角形斜边上的中线长=122分米,综上所述,此直角三角形斜边上的中线长为1分米.故答案为1分米. 【题目点拨】 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,难点在于分情况讨论.18、1x >【解题分析】根据二次根式的被开方数是非负数和分式的分母不等于零进行解答.【题目详解】 解:依题意得:201x -≥且x-1≠0, 解得1x >.故答案为:1x >.【题目点拨】0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、解答题(共78分)19、(1)长方形的长为8,宽为1;(2)m=1,a=1,b=11;(3)S与t的函数解析式为448(811)226(1113)t tSt t-+≤≤⎧=⎨-+<≤⎩.【解题分析】(1)由图象可知:当6≤t≤8时,△ABP面积不变,由此可求得长方形的宽,再根据点P运动到点C时S△ABP=16,即可求出长方形的长;(2)由图象知当t=a时,S△ABP=8=12S△ABP,可判断出此时点P的位置,即可求出a和m的值,再根据当t=b时,S△ABP=1,可求出AP的长,进而可得b的值;(3)先判断S与t成一次函数关系,再用待定系数法求解即可.【题目详解】解:(1)从图象可知,当6≤t≤8时,△ABP面积不变,∴6≤t≤8时,点P从点C运动到点D,且这时速度为每秒2个单位,∴CD=2(8-6)=1,∴AB=CD=1.当t=6时(点P运动到点C),由图象知:S△ABP=16,∴12AB•BC=16,即12×1×BC=16.∴BC=8.∴长方形的长为8,宽为1.(2)当t=a时,S△ABP=8=12×16,此时点P在BC的中点处,∴PC=12BC=12×8=1,∴2(6-a)=1,∴a=1.∵BP=PC=1,∴m=BPa=44=1.当t=b时,S△ABP=12AB•AP=1,∴12×1×AP=1,AP=2.∴b=13-2=11.故m=1,a=1,b=11.(3)当8≤t≤11时,S关于t的函数图象是过点(8,16),(11,1)的一条线段,可设S =kt +b ,∴816114k b k b +=⎧⎨+=⎩,解得448k b =-⎧⎨=⎩,∴S =-1t +18(8≤t ≤11). 同理可求得当11<t ≤13时,S 关于t 的函数解析式为S=-2t +26(11<t ≤13).∴S 与t 的函数解析式为448(811)226(1113)t t S t t -+≤≤⎧=⎨-+<≤⎩. 【题目点拨】本题是一次函数的综合题,重点考查了动点问题的函数图象和用待定系数法求一次函数的解析式,弄清题意,抓住动点运动中的几个关键点,读懂图象所提供的信息是解题的关键.20、(1)详见解析;(2)详见解析.【解题分析】(1)利用勾股定理即可解决问题.(2)利用数形结合的思想,画一个边长为2的正方形即可.【题目详解】解:(1)线段AB 如图所示.(2)正方形ABCD 如图所示.【题目点拨】本题考查作图﹣应用与设计,勾股定理等知识,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题.21、(1)m=2;2l 的解析式为:32y x =;(2)8;(3)k 的值为12-或32或1 【解题分析】(1)将点C 坐标代入142y x =-+即可求出m 的值,利用待定系数法即可求出l 2的解析式; (2)根据一次函数142y x =-+,可求出A (8,0),B (0,4),结合点C 的坐标,利用三角形面积的计算公式即可求出AOC BOC S S -的值;(3)若1l ,2l ,3l 不能围成三角形,则有三种情况,①当l 1∥l 3时;②当l 2∥l 3时;③当l 3过点C 时,根据得出k 的值即可.【题目详解】解:(1)将点()3C m ,代入142y x =-+得1342m =-+,解得m=2, ∴C (2,3)设l 2的解析式为y=nx ,将点C 代入得:3=2n ,∴32n =, ∴2l 的解析式为:32y x =; (2)如图,过点C 作CE ⊥y 轴于点E ,作CF ⊥x 轴于点F ,∵C (2,3)∴CE=2,CF=3,∵一次函数142y x =-+的图象1l 分别与x ,y 轴交于A ,B 两点, ∴当x=0时,y=4,当y=0时,x=8,∴A (8,0),B (0,4),∴OA=8,OB=4,∴1111834282222AOC BOC OA CF OB CE S S =⋅-⋅=⨯-⨯-⨯⨯=(3)①当l 1∥l 3时,1l ,2l ,3l 不能围成三角形,此时k=12-; ②当l 2∥l 3时,1l ,2l ,3l 不能围成三角形,此时k=32; ③当l 3过点C 时,将点C 代入1y kx =+中得:321k =+,解得k=1,综上所述,k 的值为12-或32或1. 【题目点拨】 本题考查了两直线的交点,要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.22、解:(1)D 错误(2)众数为1,中位数为1.(2)①小宇的分析是从第二步开始出现错误的.②1278(颗)【解题分析】分析:(1)条形统计图中D 的人数错误,应为20×10%. (2)根据条形统计图及扇形统计图得出众数与中位数即可.(2)①小宇的分析是从第二步开始出现错误的;②求出正确的平均数,乘以260即可得到结果.解:(1)D 错误,理由为:∵共随机抽查了20名学生每人的植树量,由扇形图知D 占10%,∴D 的人数为20×10%=2≠2.(2)众数为1,中位数为1.(2)①小宇的分析是从第二步开始出现错误的. ②44586672x 5.320⨯+⨯+⨯+⨯==(棵). 估计260名学生共植树1.2×260=1278(颗) 23、(1)2a a -;(2)2x. 【解题分析】(1)根据平方差公式和提公因式法,对分式进行化简即可(2)利用完全平方公式和平方差公式,进行化简,再对括号里面的分式进行通分约分,再把除法转化为乘法,即可解答【题目详解】(1)原式2122a a a =+=-- 或:原式22242a a a a a +==--(2)原式()()()2222x y x y x xy x y x y x y x y x x y x+---=÷=⋅=+++- 【题目点拨】此题考查分式的化简求值,掌握运算法则是解题关键24、(1)14a =,35%b =;(2)详见解析;(3)估计这次活动中爱心捐款额在1525x <的学生有1200人【解题分析】(1)先根据5≤x<l0的频数及其百分比求出样本容量,再根据各组频数之和等于总人数求出a 的值,继而由百分比的概念求解可得;(2)根据所求数据补全图形即可得;(3)利用200060%1200⨯=可以求得.【题目详解】(1)样本容量=3÷0.75%=40,∴14a =,35%b =.(2)补图如下.(3)200060%1200⨯=(人).答:估计这次活动中爱心捐款额在1525x <的学生有1200人.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25、(1)243y x =-+;(2)S =﹣x +6(0<x <6);(3)点P 的坐标是(3,2),P ′(9,﹣2). 【解题分析】(1)设直线BC 的函数关系式为y =kx +b (k ≠0),把B 、C 的坐标代入求出即可;(2)求出y =﹣23x +4和AD =3,根据三角形面积公式求出即可; (3)把S =3代入函数解析式,求出x ,再求出y 即可.【题目详解】解:(1)设直线BC 的函数关系式为y =kx +b (k ≠0),由图象可知:点C 坐标是(0,4),点B 坐标是(6,0),代入得:460b k b =⎧⎨+=⎩, 解得:k =﹣23,b =4, 所以直线BC 的函数关系式是y =﹣23x +4; (2)∵点P (x ,y )是直线BC 在第一象限内的点,∴y >0,y =﹣23x +4,0<x <6, ∵点A 的坐标为(﹣2,0),点D 的坐标为(1,0),∴AD =3,∴S △ADP =12×3×(﹣23x +4)=﹣x +6, 即S =﹣x +6(0<x <6);(3)当S =3时,﹣x +6=3,解得:x =3,y =﹣23×3+4=2, 即此时点P 的坐标是(3,2),根据对称性可知当当P 在x 轴下方时,可得满足条件的点P′(9,﹣2).【题目点拨】本题考查了用待定系数法求一次函数的解析式和一次函数图象上点的坐标特征,能正确求出直线BC 的解析式是解此题的关键.26、(1)A (4,0),B (0,8);(2)S =﹣4m +16,(0<m <4);(3,理由见解析 【解题分析】试题分析:(1)根据坐标轴上点的特点直接求值,(2)①由点在直线AB 上,找出m 与n 的关系,再用三角形的面积公式求解即可;②判断出EF 最小时,点P 的位置,根据三角形的面积公式直接求解即可.试题解析:(1)令x=0,则y=8,∴B (0,8),令y=0,则﹣2x+8=0,∴x=4,∴A (4,0),(2)∵点P (m ,n )为线段AB 上的一个动点,∴﹣2m+8=n ,∵A (4,0),∴OA=4,∴0<m <4∴S △PAO =12OA×PE=12×4×n=2(﹣2m+8)=﹣4m+16,(0<m <4); (3)存在,理由如下:∵PE ⊥x 轴于点E ,PF ⊥y 轴于点F ,OA ⊥OB ,∴四边形OEPF 是矩形,∴EF=OP ,当OP ⊥AB 时,此时EF 最小,∵A (4,0),B (0,8),∴∵S △AOB=12OA×OB=12AB×OP ,∴OP=OA OB AB ⨯==,∴EF 最小 【题目点拨】主要考查了坐标轴上点的特点,三角形的面积公式,极值的确定,解本题的关键是求出三角形PAO 的面积.。
浙江省湖州市吴兴区2019-2020学年八年级下学期数学期末考试试卷及参考答案

浙江省湖州市吴兴区2019-2020学年八年级下学期数学期末考试试卷一、选择题(本题有10小题,每小题3分,共30分)1. 以下四个商标中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .2. 下列等式中,成立的是( )A .B .C .D .3. 若一个多边形的内角和等于1800度,则这个多边形是( )A . 十二边形B . 十边形C . 九边形D . 八边形4. 对甲、乙、丙、丁四名选手进行射击测试,每人射击10次,平均成绩均为9.5环,且他们的方差如下表所示:选手甲乙丙丁方差1.560.602.500.40则在这四个选手中,成绩最稳定的是( )A . 甲B . 乙C . 丙.D . 丁5. 受新冠肺炎疫情影响,某企业生产总值从1月份的300万元,连续两个月降至260万元,设每月平均下降率为x ,则可列方程( )A .B .C .D .6. 在四边形ABCD 中,AB ∥CD ,再添加下列其中一个条件后,四边形ABCD 不一定是平行四边形的是( )A . AB =CD B . AD =BC C . AD ∥BC D . ∠A =∠C7. 若点A (﹣3, ),B (﹣2, ),C (1, )都在反比例函数的图象上,则, , 的大小关系是( )A .B .C .D .8. 如图,DE ,NM分别是△ABC ,△ADE 的中位线,NM 的延长线交BC于点F ,则S :S 等于( )A . 1: 5B . 1:4C . 2:5 D . 2:79. 如图,菱形纸片ABCD的边长为a ,∠ABC=60°, 将菱形ABCD沿EF ,GH 折叠,使得点B ,D 两点重合于对角线BD上一点P ,若 ,则六边形AEFCHG面积的是()A .B .C .D .10. 如图,已知直线、 经过坐标原点O ,且与x 轴所夹锐角为15°,与y 轴所夹锐角为30°.在直线 和之间依次构造正方形、正方形、正方形、正方形……点、点、点、点 、点 …依次落在直线 上,点 、点 、点 、点 …依次落在直线 上,且 ,则点 的坐标为( )△DM N 四边形M FCEA .B .C .D .二、填空题(本题有6小题,每小题4分,共24分)11. 代数式有意义时,x 应满足的条件是________.12. 已知一组数据5,4,x ,3,9的平均数为5,则x 的值是________。
2019-2020学年浙江省湖州市吴兴区八年级(下)期末数学试卷 解析版

2019-2020学年浙江省湖州市吴兴区八年级(下)期末数学试卷一.选择题(共10小题)1.以下四个商标中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.2.下列等式中,成立的是()A.()2=5B.=﹣3C.4﹣3=1D.+=3.若一个多边形的内角和等于1800度,则这个多边形是()A.十二边形B.十边形C.九边形D.八边形4.对甲、乙、丙、丁四名选手进行射击测试,每人射击10次,平均成绩均为9.5环,且他们的方差如下表所示:选手甲乙丙丁方差 1.560.60 2.500.40则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁5.受新冠肺炎疫情影响,某企业生产总值从元月份的300万元,连续两个月降至260万元,设平均降低率为x,则可列方程()A.300(1+x)2=260B.300(1﹣x2)=260C.300(1﹣2x)=260D.300(1﹣x)2=2606.在四边形ABCD中,AB∥CD,再添加下列其中一个条件后,四边形ABCD不一定是平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A=∠C7.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y18.如图,DE、NM分别是△ABC、△ADE的中位线,NM的延长线交BC于点F,则S△DMN:S四边形MFCE等于()A.1:5B.1:4C.2:5D.2:79.如图,菱形纸片ABCD的边长为a,∠ABC=60°,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P,若AE=2BE,则六边形AEFCHG面积的是()A.a2B.a2C.a2D.a210.如图,已知直线l1、l2经过坐标原点O,且l1与x轴所夹锐角为15°,12与y轴所夹锐角为30°.在直线l1和l2之间依次构造正方形A1B1C1A2、正方形A2B2C2A3,正方形A3B3C3A4正方形A4B4C4A5…点A1、点A2、点A3、点A4、点A5…依次落在直线l1上,点B1、点B2、点B3、点B4…依次落在直线12,上,且A1B1=1,则点B2020的坐标为()A.(22018,22018)B.(22017,22017)C.(22018,22018)D.(22018,22018)二.填空题(共6小题)11.代数式有意义时,x应满足的条件是.12.已知一组数据5,4,x,3,9的平均数为5,则x的值是.13.已知x=1是方程x2+mx﹣3=0的一个根,则m的值为.14.已知反比例函数y=,是当y<2时,x的取值范围是.15.如图,在平面直角坐标系中,点O为坐标原点,等边△ABO的边OB和菱形CDEO的边EO均在x轴上,点C在AO上,S△ABD=4,反比例函数y=(k>0)的图象经过A点,则k的值为.16.在矩形ABCD中,AB=2,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点B的对应点为点F.(1)若点F恰好落在AD边上,则AD=.(2)延长AF交直线CD于点P,若PD=CD,则AD的值为.三.解答题(共8小题)17.二次根式计算(1)2+(﹣).(2)(1﹣)2+÷.18.解下列一元二次方程(1)x2﹣25=0.(2)x2﹣4x﹣5=0.19.如图,在5×5的方格纸中,每个小正方形的边长为1个单位长度,△ABC的顶点都在格点上.请回答下列问题:(1)求AC的长;(2)在图中找一格点D,使得A,B,C,D四点构成的四边形是平行四边形.20.如图,在矩形ABCD中,过对角线BD的中点O作垂线EF,与边AD,BC分别交于点E,F,连接BE,DF.(1)求证:四边形EBFD是菱形;(2)若AD=8,AB=4,求四边形EBFD的周长.21.在推进湖州市新冠疫情防控活动中,某社区为了了解居民掌握新冠防控知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.179277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区从左往右第四组居民成绩的中位数,以及A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩达到优秀的人数.(3)请选择2个合适的统计量,分析A,B哪个小区的居民对新冠防控知识掌握得更好.22.如图,一轮船以40km/h的速度由西向东航行,在途中点C处接到台风警报,台风中心点B正以20km/h的速度由南向北移动.已知距台风中心200km的区域(包括边界)都属于受台风影响区.当轮船接到台风警报时,测得BC=500km,BA=300km.(假定轮船不改变航向).(1)如果这艘轮船不改变航向,经过11小时,轮船与台风中心相距多远?此时,轮船是否受到台风影响?(2)如果这艘轮船受到台风影响,请求出轮船受到台风影响一共经历了多少小时?23.已知,在等腰直角三角形ABC中,BA=AC,∠BAC=90°,点D为BC边上一动点,点E,F分别为AB、BC边上的动点,且BE=AF.(1)如图1,当点D为BC中点时,试说明DE和DF的关系,并说明理由;(2)在(1)的条件下,如图2,当点E为AB中点时,判断四边形AEDF的形状,并说明理由;(3)如图3,过点A作BC的平行线,交DF的延长线于点G,且满足AG=BC=4.若D点从B点出发,以1个单位长度每秒的速度向终点C运动,连结AD.设点D的运动时间为t秒(0≤t≤4),在点D的运动过程中,图中能否出现全等三角形?若能,请直接写出整数t的值和对应全等三角形的对数;若不能,请说明理由.24.已知反比例函数y1=(m>0,x>0)和y2=﹣(x<0),过点P(0,1)作x轴的平行线1与函数y1,y2的图象相交于点B,C.(1)如图1,若m=6时,求点B,C的坐标;(2)如图2,一次函数y3=kx﹣交l于点D.①若k=5,B、C、D三点恰好满足其中一点为另外两点连线的中点,求m的值;②过点B作y轴的平行线与函数y3的图象相交于点E.当m值取不大于的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.2019-2020学年浙江省湖州市吴兴区八年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.以下四个商标中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念判断.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,不是中心对称图形;C、不是轴对称图形,不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:D.2.下列等式中,成立的是()A.()2=5B.=﹣3C.4﹣3=1D.+=【分析】根据二次根式的性质对A、B进行判断;利用二次根式的加减法对C、D进行判断.【解答】解:A、原式=5,所以A选项的计算正确;B、原式=3,所以B选项的计算错误;C、原式=,所以C选项的计算错误;D、与不能合并,所以D选项的计算错误.故选:A.3.若一个多边形的内角和等于1800度,则这个多边形是()A.十二边形B.十边形C.九边形D.八边形【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180=1800,解得n=12,所以这个多边形是十二边形.故选:A.4.对甲、乙、丙、丁四名选手进行射击测试,每人射击10次,平均成绩均为9.5环,且他们的方差如下表所示:选手甲乙丙丁方差 1.560.60 2.500.40则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵2.50>1.56>0.60>0.40,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.5.受新冠肺炎疫情影响,某企业生产总值从元月份的300万元,连续两个月降至260万元,设平均降低率为x,则可列方程()A.300(1+x)2=260B.300(1﹣x2)=260C.300(1﹣2x)=260D.300(1﹣x)2=260【分析】根据该企业元月份及经过两个月降低后的生产总值,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意,得:300(1﹣x)2=260.故选:D.6.在四边形ABCD中,AB∥CD,再添加下列其中一个条件后,四边形ABCD不一定是平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A=∠C【分析】根据平行四边形的判定定理判断即可.【解答】解:A、∵AB∥CD,若AB=CD,则四边形ABCD是平行四边形,故A选项不符合题意;B、∵AB∥CD,若AD=BC,则四边形ABCD可能是等腰梯形,不一定是平行四边形,故B选项符合题意;C、∵AB∥CD,若AD∥BC,则四边形ABCD是平行四边形,故C选项不符合题意;D、∵AB∥CD,若∠A=∠C,则四边形ABCD是平行四边形,故D选项不符合题意;故选:B.7.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1【分析】分别计算出自变量为﹣3、﹣2和1对应的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣3时,y1=﹣=1;当x=﹣2时,y2=﹣=;当x=1时,y3=﹣=﹣3,所以y3<y1<y2.故选:B.8.如图,DE、NM分别是△ABC、△ADE的中位线,NM的延长线交BC于点F,则S△DMN:S四边形MFCE等于()A.1:5B.1:4C.2:5D.2:7【分析】过N作NH⊥DE于H,过A作AP⊥BC于P交DE于G,得到NM∥AG,根据三角形中位线定理得到DE∥BC,得到AG=PG,求得NM=AG=PG,根据三角形和平行四边形的面积即可得到结论.【解答】解:过N作NH⊥DE于H,过A作AP⊥BC于P交DE于G,∴NM∥AG,∵DE是△ABC的中位线,∴DE∥BC,∴AG=PG,∵M是DE的中点,∴DM=ME=DE,∵NM∥AG,AN=DN,∴==,∴NM=AG=PG,∵DM=ME,∴S△DMN:S四边形MFCE===1:4.故选:B.9.如图,菱形纸片ABCD的边长为a,∠ABC=60°,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P,若AE=2BE,则六边形AEFCHG面积的是()A.a2B.a2C.a2D.a2【分析】由菱形的性质可得AC⊥BD,∠BAD=120°,AB=BC=a,AE=,BE=a,∠ABD=30°,由折叠的性质可得EF⊥BP,∠BEF=∠PEF,BE=EP=a,可证△BEF是等边三角形,△GDH是等边三角形,四边形AEPG是平行四边形,可得AG=EP=a,即可求DG的长,由面积和差关系可求解.【解答】解:如图,连接AC,∵四边形ABCD是菱形,∠ABC=60°,AE=2BE,∴AC⊥BD,∠BAD=120°,AB=BC=a,AE=,BE=a,∠ABD=30°,∴AC=AB=BC=a,BD=a,∵将菱形ABCD沿EF,GH折叠,∴EF⊥BP,∠BEF=∠PEF,BE=EP=a,∴EF∥AC,∴,∴BE=BF,∴△BEF是等边三角形,∴∠BEF=60°=∠PEF,∴∠BEP=∠BAD=120°,∴EH∥AD,同理可得:△GDH是等边三角形,GP∥AB,∴四边形AEPG是平行四边形,∴AG=EP=a,∴DG=a,∴六边形AEFCHG面积=S菱形ABCD﹣S△BEF﹣S△GDH=•a•a﹣×(a)2﹣×(a)2=a2,故选:C.10.如图,已知直线l1、l2经过坐标原点O,且l1与x轴所夹锐角为15°,12与y轴所夹锐角为30°.在直线l1和l2之间依次构造正方形A1B1C1A2、正方形A2B2C2A3,正方形A3B3C3A4正方形A4B4C4A5…点A1、点A2、点A3、点A4、点A5…依次落在直线l1上,点B1、点B2、点B3、点B4…依次落在直线12,上,且A1B1=1,则点B2020的坐标为()A.(22018,22018)B.(22017,22017)C.(22018,22018)D.(22018,22018)【分析】根据一次函数,得出OB1、OB2等的长度,继而得知B1、B2等点的坐标,从中找出规律,进而可求出点B2020的坐标.【解答】解:∵l1与x轴所夹锐角为15°,12与y轴所夹锐角为30°,∴l1与12所夹锐角为45°,12与x轴所夹锐角为60°,∴△A1B1O,△A2B2O,△A3B3O,…都是等腰直角三角形,∴B1O=20,B2O=21,B3O=22,…,B n O=2n﹣1,∴点B2020的坐标为(22020﹣1×,22020﹣1×),即(22018,22018).故选:A.二.填空题(共6小题)11.代数式有意义时,x应满足的条件是x≥﹣8.【分析】根据二次根式的被开方数是非负数得到x+8≥0.【解答】解:由题意,得x+8≥0,解得x≥﹣8.故答案是:x≥﹣8.12.已知一组数据5,4,x,3,9的平均数为5,则x的值是4.【分析】根据算术平均数的定义先列出算式,再进行求解即可.【解答】解:∵5,4,x,3,9的平均数为5,∴(5+4+x+3+9)÷5=5,解得:x=4,则x的值是4;故答案为:4.13.已知x=1是方程x2+mx﹣3=0的一个根,则m的值为2.【分析】将x=1,代入方程x2+mx﹣3=0得到有关m的方程,求出m的值即可.【解答】解:∵x=1是方程x2+mx﹣3=0的一个根,∴将x=1,代入方程x2+mx﹣3=0得:1+m﹣3=0,∴m=2,故答案为:2.14.已知反比例函数y=,是当y<2时,x的取值范围是x>3或x<0.【分析】根据题目中的函数解析式和反比例函数的性质,可以得到当y<2时,x的取值范围.【解答】解:∵反比例函数y=,∴当y<2时,x>3或x<0,故答案为:x>3或x<0.15.如图,在平面直角坐标系中,点O为坐标原点,等边△ABO的边OB和菱形CDEO的边EO均在x轴上,点C在AO上,S△ABD=4,反比例函数y=(k>0)的图象经过A点,则k的值为4.【分析】连接OD,由△OAB是等边三角形,得到∠AOB=60°,根据平行线的性质得到∠DEO=∠AOB=60°,推出△DEO是等边三角形,得到∠DOE=∠ABO=60°,得到OD∥AB,求得S△BDO=S△BOD,推出S△AOB=S△ABD=4,过A作AH⊥OB于H,由等边三角形的性质得到OH=BH,求得S△OAH=2,于是得到结论.【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OA,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠ABO=60°,∴OD∥AB,∴S△ADO=S△BOD,∵S四边形ABOD=S△BDO+S△ABD=S△ADO+S△AOB,∴S△AOB=S△ABD=4,过A作AH⊥OB于H,∴OH=BH,∴S△OAH=2,∵反比例函数y=(x>0)的图象经过点B,∴k的值为4,故答案为:4.16.在矩形ABCD中,AB=2,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点B的对应点为点F.(1)若点F恰好落在AD边上,则AD=4.(2)延长AF交直线CD于点P,若PD=CD,则AD的值为2或2.【分析】(1)由矩形的性质得出AD∥BC,AD=BC,由折叠的性质得出∠BAE=∠F AE,由平行线的性质得出∠F AE=∠BEA,推出∠BAE=∠BEA,得出AB=BE,即可得出结果;(2)①当点F在矩形ABCD内时,连接EP,由折叠的性质得出BE=EF,∠B=∠AFE =90°,AB=AF,由矩形的性质和E是BC的中点,得出AB=CD=2,BE=CE=EF,∠C=∠EFP=90°,由HL证得Rt△EFP≌Rt△ECP,得出FP=CP,由PD=CD,可得CP=FP=PD=1,AP=3,由勾股定理即可求出AD;②当点F在矩形ABCD外时,连接EP,由折叠的性质得出BE=EF,∠B=∠AFE=90°,AB=AF,由矩形的性质和E是BC的中点,得出AB=CD=2,BE=CE=EF,∠C=∠EFP=90°,由HL证得Rt△EFP≌Rt△ECP,得出CP=PF,由PD=CD,可得PD =1,CP=3=PF,由勾股定理得出AP2﹣PD2=AD2,即(AF+PF)2﹣12=AD2,即可求出AD.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC,AD=BC,由折叠的性质可知,∠BAE=∠F AE,如图1所示:∵AD∥BC,∴∠F AE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,∵E是BC的中点,∴BC=2AB=4,∴AD=4,故答案为:4;(2)①当点F在矩形ABCD内时,连接EP,如图2所示:由折叠的性质可知,BE=EF,∠B=∠AFE=90°,AB=AF,∵四边形ABCD是矩形,E是BC的中点,∴AB=CD=2,BE=CE=EF,∠C=∠EFP=90°,在Rt△EFP和Rt△ECP中,,∴Rt△EFP≌Rt△ECP(HL),∴FP=CP,∵PD=CD,∴CP=FP=PD=1,AP=AF+FP=1+2=3,∴AD===2;②当点F在矩形ABCD外时,连接EP,如图3所示:由折叠的性质可知,BE=EF,∠B=∠AFE=90°,AB=AF=3,∵四边形ABCD是矩形,E是BC的中点,∴AB=CD=2,BE=CE=EF,∠C=∠EFP=90°,在Rt△EFP和Rt△ECP中,,∴Rt△EFP≌Rt△ECP(HL),∴CP=PF,∵PD=CD,∴PD=1,CP=3=PF,∴AP2﹣PD2=AD2,即:(AF+PF)2﹣12=AD2,(3+2)2﹣1=AD2,解得:AD1=2,AD2=﹣2(不合题意舍去),综上所述,AD=2或2,故答案为:2或2.三.解答题(共8小题)17.二次根式计算(1)2+(﹣).(2)(1﹣)2+÷.【分析】(1)直接化简二次根式进而计算得出答案;(2)直接利用乘法公式以及二次根式的混合运算法则计算得出答案.【解答】解:(1)原式=2+﹣3=﹣;(2)原式=1+2﹣2+2=3.18.解下列一元二次方程(1)x2﹣25=0.(2)x2﹣4x﹣5=0.【分析】(1)利用直接开平方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣25=0,∴x2=25,则x=±5;(2)∵x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x=5或x=﹣1.19.如图,在5×5的方格纸中,每个小正方形的边长为1个单位长度,△ABC的顶点都在格点上.请回答下列问题:(1)求AC的长;(2)在图中找一格点D,使得A,B,C,D四点构成的四边形是平行四边形.【分析】(1)利用勾股定理计算即可.(2)根据平行四边形的判定画出图形即可.【解答】解:(1)AC==.(2)如图,四边形ABCD即为所求.20.如图,在矩形ABCD中,过对角线BD的中点O作垂线EF,与边AD,BC分别交于点E,F,连接BE,DF.(1)求证:四边形EBFD是菱形;(2)若AD=8,AB=4,求四边形EBFD的周长.【分析】(1)首先判定平行四边形,然后根据对角线互相垂直的平行四边形是菱形进行判定即可;(2)由EF垂直平分BD,得到EB=ED,由AD﹣ED=AE,在直角三角形ABE中,设AE=x,表示出BE,再由AB的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为AE的长.则DE的长也可求出,进而可求出四边形EBFD的周长.【解答】解:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EDO=∠OBF,∵O是BD中点,∴BO=DO,∵∠EOD=∠BOF,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴四边形EBFD是平行四边形,又∵EF⊥BD,∴四边形EBFD是菱形;(2)∵四边形EBFD是菱形,∴ED=EB,设AE=x,则ED=EB=8﹣x,在Rt△ABE中,BE2﹣AB2=AE2,即(8﹣x)2=x2+42,∴x=3,∴AE=3.∴DE=5,∴四边形EBFD的周长=4×5=20.21.在推进湖州市新冠疫情防控活动中,某社区为了了解居民掌握新冠防控知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1757940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区从左往右第四组居民成绩的中位数,以及A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩达到优秀的人数.(3)请选择2个合适的统计量,分析A,B哪个小区的居民对新冠防控知识掌握得更好.【分析】(1)根据中位数的求法,分别求出A小区从左往右第四组居民成绩的中位数,以及A小区50名居民成绩的中位数;、(2)A小区抽查的50名居民成绩的优秀率,于是估计总体的优秀率,进而求出总体的优秀人数;(3)从中位数、众数两个方面进行分析解答.【解答】解:(1)A小区从左往右第四组16位居民成绩,从小到大排列后处在第8、9位的两个数的平均数是=80.5,将A小区50名居民成绩从小到大排列后,处在第25、26位的两个数的都是75,因此中位数是75;答:A小区从左往右第四组居民成绩的中位数是80.5,A小区50名居民成绩的中位数是75;(2)500×=200(人),答:A小区500名居民成绩达到优秀的人数为200人(3)从中位数上看,A小区的中位数是75,B小区的中位数是77,B小区的成绩较好;从众数上看,A小区的众数是79,而B小区的众数;是76.A小区的成绩较好.22.如图,一轮船以40km/h的速度由西向东航行,在途中点C处接到台风警报,台风中心点B正以20km/h的速度由南向北移动.已知距台风中心200km的区域(包括边界)都属于受台风影响区.当轮船接到台风警报时,测得BC=500km,BA=300km.(假定轮船不改变航向).(1)如果这艘轮船不改变航向,经过11小时,轮船与台风中心相距多远?此时,轮船是否受到台风影响?(2)如果这艘轮船受到台风影响,请求出轮船受到台风影响一共经历了多少小时?【分析】(1)直接利用勾股定理得出AC的长,进而利用勾股定理求出轮船与台风中心距离;(2)利用勾股定理结合一元二次方程解法得出轮船受到台风影响时间.【解答】解:(1)∵CB=500km,AB=300km,∴AC==400(km),=40(km),∵40<200,∴此时,轮船受到台风影响;(2)由题意得:(400﹣40t)2+(300﹣20t)2=2002,解得:t1=7,t2=15,轮船受到台风影响时间:15﹣7=8(小时),答:轮船受到台风影响一共8小时.23.已知,在等腰直角三角形ABC中,BA=AC,∠BAC=90°,点D为BC边上一动点,点E,F分别为AB、BC边上的动点,且BE=AF.(1)如图1,当点D为BC中点时,试说明DE和DF的关系,并说明理由;(2)在(1)的条件下,如图2,当点E为AB中点时,判断四边形AEDF的形状,并说明理由;(3)如图3,过点A作BC的平行线,交DF的延长线于点G,且满足AG=BC=4.若D点从B点出发,以1个单位长度每秒的速度向终点C运动,连结AD.设点D的运动时间为t秒(0≤t≤4),在点D的运动过程中,图中能否出现全等三角形?若能,请直接写出整数t的值和对应全等三角形的对数;若不能,请说明理由.【分析】(1)连接AD,证明△BDE≌△ADF,得到DE=DF,∠BDE=∠ADF,求出∠EDF=90°,证明结论;(2)根据等腰三角形的性质得到DE⊥AB,根据正方形的判定定理证明;(3)分t=0、t=2、t=4三种情况,根据全等三角形的判定定理解答即可.【解答】解:(1)DE=DF,DE⊥DF,理由如下:如图1,连接AD,∵△ABC为等腰直角三角形,点D为BC中点,∴AD⊥BC,AD=DB,∠B=∠BAD=∠DAC=∠C=45°,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS)∴DE=DF,∠BDE=∠ADF,∵∠ADB=90°,∴∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,即∠EDF=90°,∴DE⊥DF,综上所述,DE=DF,DE⊥DF;(2)四边形AEDF为正方形,理由如下:∵DA=DB,点E为AB中点,∴DE⊥AB,∵DE⊥AB,∠BAC=90°,DE⊥DF,∴四边形AEDF为矩形,∵DE=DF,∴四边形AEDF为正方形;(3)当t=0时,△CBF≌△AGF,共1对,当t=2时,△ADE≌△CDF,△BED≌△AFD,△ABD≌△ACD,共3对,当t=4时,△AGC≌△CBA,共1对.24.已知反比例函数y1=(m>0,x>0)和y2=﹣(x<0),过点P(0,1)作x轴的平行线1与函数y1,y2的图象相交于点B,C.(1)如图1,若m=6时,求点B,C的坐标;(2)如图2,一次函数y3=kx﹣交l于点D.①若k=5,B、C、D三点恰好满足其中一点为另外两点连线的中点,求m的值;②过点B作y轴的平行线与函数y3的图象相交于点E.当m值取不大于的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.【分析】(1)将y=1代入y1=和y2=﹣=,即可求解;(2)①分点B是CD的中点、点D为BC中点两种情况,利用中点公式即可求解;②点B(m,1),则点E(m,mk﹣m),则BC=,BE=|mk﹣m﹣1|,d=BC+BE,即可求解.【解答】解:(1)∵m=6,将y=1代入y1==1,解得:x=6,故点B(6,1),将y=1代入y2=﹣==1,解得:x=﹣3,故点C(﹣3,1);(2)①当y=1时,点B、C的坐标分别为:(m,1)、(﹣m,1),当k=5时,y3=kx﹣=5x﹣=1,解得:x=,故点D(,1),当点B是CD的中点时,由中点公式得:=+2m,解得:m=;当点D为BC中点时,同理:m﹣m=2×,解得:m=;综上,m=或;②点B(m,1),则点E(m,mk﹣m),则BC=,BE=|mk﹣m﹣1|,d=BC+BE=+mk﹣m﹣1=(k+1)m﹣1,当k=﹣1时,d=﹣1<0,舍去;d=BC+BE=﹣mk+m+1=(2﹣k)m+1,∵BC+BE为定值,故k=2,此时d=1,故此时k的值为2,定值d为1.。
浙江省湖州市2019-2020学年初二下期末综合测试数学试题含解析

浙江省湖州市2019-2020学年初二下期末综合测试数学试题一、选择题(每题只有一个答案正确)1.如图,线段AB 经过平移得到线段A B '',其中点A ,B 的对应点分别为点A ',B ′,这四个点都在格点上.若线段AB 上有一个点(P a ,)b ,则点P 在A B ''上的对应点P '的坐标为( )A .(2,3)a b -+B .(2,3)a b --C .(2,3)a b ++D .(2,3)a b +-2.现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别为2s =0.51甲,2s =0.35乙,那么两个队中队员的身高较整齐的是( )A .甲队B .乙队C .两队一样高D .不能确定3.下列手机软件图标中,是轴对称图形的是( )A .B .C .D .4.已知一个直角三角形的两边长分别为3和4,则第三边长为( )A .5B .7C .7D .7或55.某校男子足球队年龄分布条形图如图所示,该球队年龄的众数和中位数分别是A .8,8B .15,15C .15,16D .15,14 6.关于x 的分式方程233x a x x -=++有增根,则a 的值为( ) A .﹣3 B .﹣5 C .0 D .27.如图,已知△ABC 的周长为 20cm ,现将△ABC 沿 AB 方向平移2cm 至△A ′B ′C ′的位置,连结 CC ′.则四边形 AB ′C ′C 的周长是( )A .18cmB .20cmC .22cmD .24cm8.如图,若DE 是△ABC 的中位线,△ADE 的周长为1,则△ABC 的周长为( )A .1B .2C .3D .49.下列命题:①对顶角相等;②两直线平行,同位角相等;③全等三角形对应角相等;⑤菱形是对角线互相垂直的四边形. 它们的逆命题中,不成立的个数有( )A .1个B .2个C .3个D .4个10.式子2x +在实数范围内有意义,则x 的取值范围是( )A .x >﹣2B .x≥﹣2C .x <﹣2D .x≤﹣2二、填空题11.若()()22616x m x x x -+=--,则m=__ 12.小明统计了他家今年1月份打电话的次数及通话时间,并列出了频数分布表(如表)通话时间x/min0<x≤5 5<x≤10 10<x≤15 15<x≤20 频数(通话次数) 20 16 9 5如果小明家全年打通电话约1000次,则小明家全年通话时间不超过5min 约为_____次.13.如图,在平行四边形ABCD 中,AC 和BD 交于点O ,过点O 的直线分别与AB ,DC 交于点E ,F ,若△AOD 的面积为3,则四边形BCFE 的面积等于_____.14.在平面直角坐标系中,已知点A 60),B 60),点C 在x 轴上,且AC+BC=6,写出满足条件的所有点C 的坐标_____.15.如图,正方形ABCD 中,AB =6,E 是CD 的中点,将△ADE 沿AE 翻折至△AFE ,连接CF ,则CF 的长度是_____.16.十二边形的内角和度数为_________.17.在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,1,1,10,11,1.则这组数据的众数是____________.三、解答题18.已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.19.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,5,13.20.(6分)“2019宁波国际山地马拉松赛”于2019年3月31日在江北区举行,小林参加了环绕湖8km 的迷你马拉松项目(如图1),上午8:00起跑,赛道上距离起点5km处会设置饮水补给站,在比赛中,小林匀速前行,他距离终点的路程s(km)与跑步的时间t(h)的函数图象的一部分如图2所示(1)求小林从起点跑向饮水补给站的过程中与t的函数表达式(2)求小林跑步的速度,以及图2中a的值(3)当跑到饮水补给站时,小林觉得自己跑得太悠闲了,他想挑战自己在上午8:55之前跑到终点,那么接下来一段路程他的速度至少应为多少?21.(6分)已知直线y=kx+b经过点A(﹣20,1)、B(10,20)两点.(1)求直线y=kx+b的表达式;(2)当x取何值时,y>1.22.(8分)已知点P(2,2)在反比例函数y=kx(k≠0)的图象上.(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.23.(8分)如图,在平行四边形ABCD中,点E、F在对角线BD上,且BF=DE(1)求证:△ADE≌△CBF.(2)若AE=3,AD=4,∠DAE=90°,该判断当BE的长度为多少时,四边形AECF为菱形,并说明理由. 24.(10分)(1)因式分解:9(m+n)2﹣(m﹣n)2(2)已知:x+y=1,求12x2+xy+12y2的值.25.(10分)如图,正方形OABC的面积为4,点O为坐标原点,点B在函数y=kx(k<0,x<0)的图象上,点P(m,n)是函数y=kx(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F.(1)设矩形OEPF的面积为S1,求S1;(1)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S1.写出S1与m的函数关系式,并标明m的取值范围.参考答案一、选择题(每题只有一个答案正确)1.A【解析】【分析】根据点A 、B 平移后横纵坐标的变化可得线段AB 向左平移2个单位,向上平移了3个单位,然后再确定a 、b 的值,进而可得答案.【详解】由题意可得线段AB 向左平移2个单位,向上平移了3个单位,则P (a−2,b +3)故选A .【点睛】此题主要考查了坐标与图形的变化−−平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.2.B【解析】【分析】根据方差的意义解答.方差,通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小). 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】解:∵2S 甲>2S 乙,∴身高较整齐的球队是乙队.故选:B .【点睛】本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.C【解析】【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.D【解析】分两种情况:(1)边长为45=;(2)边长为4D.5.B【解析】【分析】根据条形图,观察可得15岁的人数最多,因此可得众数是15,将岁数从大到小排列,根据最中间的那个数就是中位数.【详解】首先根据条形图可得15岁的人数最多,因此可得众数是15;+++++=,将岁数从大到小排列,根据条形图可知有人数:26832122因此可得最中间的11和12个的平均值是中位数,11和12个人都是15岁,故可得中位数是15.【点睛】本题主要考查众数和中位数的计算,是数据统计的基本知识,应当熟练掌握.6.B【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程计算即可求出a的值.【详解】分式方程去分母得:x−2=a,由分式方程有增根,得到x+3=0,即x=−3,把x=−3代入整式方程得:a=−5,故选:B.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.7.D【解析】【分析】根据平移的性质求出平移前后的对应线段和对应点所连的线段的长度,即可求出四边形的周长.【详解】解:由题意,平移前后A、B、C的对应点分别为A′、B′、C′,所以BC=B′C′,BB′=CC′,∴四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=20+4=24(cm),故选D.【点睛】本题考查的是平移的性质,主要运用的知识点是:经过平移,对应点所连的线段平行且相等,对应线段平行且相等.8.B【解析】【分析】根据三角形中位线定理得到BC=2DE,AB=2AD,AC=2AE,再通过计算,得到答案.【详解】∵DE是△ABC的中位线,∴DE=12BC,AD=12AB,AE=12AC,即AB=2AD,BC=2DE,AC=2AE,∵△ADE的周长= AD+DE+AE=1,∴△ABC的周长=AB+BC+AC=2(AD+DE+AE)=2,故选B.【点睛】本题考查的是三角形的中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.9.C【解析】【分析】分别写出各命题的逆命题:相等的角为对顶角;同位角相等,两直线平行;对应角相等,两三角形全等;对角线互相垂直的四边形为菱形;然后再分别利用举反例、平行线的判定以及菱形的判定方法依次进行判断.【详解】“对顶角相等”的逆命题为“相等的角为对顶角”,所以此逆命题为假命题;“两直线平行,同位角相等”的逆命题为“同位角相等,两直线平行”,此逆命题为真命题;“全等三角形对应角相等”的逆命题为“对应角相等的两个三角形全等”,此逆命题为假命题;“菱形的对角线互相垂直”的逆命题为“对角线互相垂直的四边形为菱形”,此命题为假命题.因此,上述逆命题中不成立的的有3个.故选:C.【点睛】本题考查了命题:判断事物的语句叫命题.正确的命题称为真命题,错误的命题称为假命题;交换命题的题设与结论得到的命题为原命题的逆命题.10.B【解析】【分析】x+≥,再解不等式即可.根据二次根式有意义的条件可得20【详解】x+≥,解:由题意得:20x≥-,解得:2故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.二、填空题11.1【解析】【分析】利用多项式乘以多项式计算(x-m)(x+2)可得x2+(2-m)x-2m,然后使x的一次项系数相等即可得到m 的值.【详解】∵(x-m)(x+2)=x2+(2-m)x-2m,∴2-m=-6,m=1,故答案是:1.【点睛】考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.12.1.【解析】【分析】根据表格中的数据可以计算出小明家全年通话时间不超过5min的次数,本题得以解决.【详解】由题意可得,小明家全年通话时间不超过5min约为:1000×20201695+++=1(次),故答案为:1.【点睛】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.13.6【解析】【分析】根据平行四边形的性质得到OD=OB,得到△AOB的面积=△AOD的面积,求出平行四边形ABCD的面积,根据中心对称图形的性质计算.【详解】解:∵四边形ABCD是平行四边形,∴OD=OB,∴△AOB的面积=△AOD的面积=3,∴△ABD的面积为6,∴平行四边形ABCD的面积为12,∵平行四边形是中心对称图形,∴四边形BCFE的面积=12×平行四边形ABCD的面积=12×12=6,故答案为:6.【点睛】本题主要考查了全等三角形的判定,平行四边形的性质,掌握全等三角形的判定,平行四边形的性质是解题的关键.14.(3,0)或(﹣3,0)【解析】试题解析:设点C到原点O的距离为a,∵AC+BC=6,∴a-6+a+6=6,解得a=3,∴点C的坐标为(3,0)或(-3,0).15.【解析】【分析】连接DF交AE于G,依据轴对称的性质以及三角形内角和定理,即可得到∠AGD=∠DFC=90°,再根据面积法即可得出DG=,最后判定△ADG≌△DCF,即可得到CF=DG=.【详解】解:如图,连接DF交AE于G,由折叠可得,DE=EF,又∵E是CD的中点,∴DE=CE=EF,∴∠EDF=∠EFD,∠ECF=∠EFC,又∵∠EDF+∠EFD+∠EFC+∠ECF=180°,∴∠EFD+∠EFC=90°,即∠DFC=90°,由折叠可得AE⊥DF,∴∠AGD=∠DFC=90°,又∵ED=3,AD=6,∴Rt△ADE中,又∵∴DG=∵∠DAG+∠ADG=∠CDF+∠ADG=90°,∴∠DAG=∠CDF,又∵AD=CD,∠AGD=∠DFC=90°,∴△ADG≌△DCF(AAS),∴CF=DG=,故答案为:.【点睛】本题主要考查了正方形的性质,折叠的性质以及全等三角形的判定与性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.1800°【解析】【分析】根据n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【详解】解:十二边形的内角和为:(n﹣2)•180°=(12﹣2)×180°=1800°.故答案为1800°.【点睛】本题考查了多边形的内角和的知识,解决本题的关键是正确运用多边形的内角和公式,要求同学们熟练掌握.17.1【解析】【分析】众数是一组数据中出现次数最多的数据,有时众数可以不止一个.【详解】解:在这一组数据中1是出现次数最多的,故众数是1;故答案为1.三、解答题18.y=2x﹣1.【解析】【分析】设一次函数的解析式是:y=kx+b ,把(3,-5)与(-4,9)代入即得到一个关于k ,b 的方程组,解方程组即可求解.【详解】解:设一次函数为()0y kx b k =+≠因为它的图象经过3,5-4-9(),(,), 所以5=394k b k b +⎧⎨-=-+⎩ 解得:21k b =⎧⎨=-⎩所以这个一次函数为21y x =-【点睛】本题考查了待定系数法求函数的解析式,正确解方程组是关键.19. (1)详见解析;(2)详见解析.【解析】【分析】(1)直接利用勾股定理结合网格得出符合题意的图形,(2)直接利用勾股定理结合网格得出符合题意的图形.【详解】解:(1)如图1所示:正方形ABCD 即为所求;(2)如图2所示:三角形ABC 即为所求.【点睛】本题考查了利用勾股定理求直角三角形的边长,熟练掌握定理即可求解.20.(1)3685s t =-+;(2)速度为:365km/h ,a =2536;(3)接下来一段路程他的速度至少为13.5km/h . 【解析】【分析】(1)根据图象可知,点(0,8)和点(512,5)在函数图象上,利用待定系数法求解析式即可; (2)由题意,可知点(a ,3)在(1)中的图象上,将其代入求解即可;(3)设接下来一段路程他的速度为xkm/h ,利用解:(1)设小林从起点跑向饮水补给站的过程中s与t的函数关系式为:s=kt+b,(0,8)和(512,5)在函数s=kt+b的图象上,∴85512bk b=⎧⎪⎨+=⎪⎩,解得:36k5b8⎧=-⎪⎨⎪=⎩,∴s与t的函数关系式为:3685s t=-+;(2)速度为:5363125÷=(km/h),点(a,3)在3685s t=-+上,∴36835a-+=,解得:2536a=;(3)设接下来一段路程他的速度为xkm/h,根据题意,得:55256036⎛⎫-⎪⎝⎭x≥3,解得:x≥13.5答:接下来一段路程他的速度至少为13.5km/h.【点睛】本题主要考查一次函数的应用,解决第(3)题的关键是明确,要在8点55之前到达,需满足在接下来的路程中,速度×时间≥路程.21.(1)y=12x+11;(2)x>﹣20时,y>1.【解析】【分析】(1)利用待定系数法求一次函数解析式;(2)解不等式12x+11>1即可.【详解】(1)根据题意得2051020k bk b-+=⎧⎨+=⎩,解得1k2b15⎧=⎪⎨⎪=⎩,所以直线解析式为y=12x+11;(2)解不等式12x+11>1得x>﹣20,即x>﹣20时,y>1.本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;再将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.22.(1)4;(2)443y <<. 【解析】【分析】由p 点可以求得函数解析式,即可得k;由函数解析式中x 的取值可以得y 的取值.【详解】解:()1∵点()2,2P 在反比例函数()0k y k x=≠的图象上, ∴224k =⨯=. ()2∵40k =>, ∴反比例函数4y x=在第一象限内单调递减. ∵当1x =时,441y ==;当3x =时,43y =. ∴443y <<. 故当13x <<时,y 的取值范围为:443y <<. 【点睛】本题考查了反比例函数的性质,熟悉掌握概念是解决本题的关键.23.(1)证明见解析;(2)BE 的长度为75时,四边形AECF 为菱形. 【解析】【分析】(1)由平行四边形的性质可得∠ADE=∠CBF ,AD=BC ,利用SAS 即可证明△ADE ≌△CBF ;(2)连接AC ,设BE=x ,AC 、EF 相交于O ,利用勾股定理可求出DE 的长,即可用x 表示出OE 和OB 的长,由菱形的性质可得AC ⊥EF ,即可证明平行四边形ABCD 是菱形,可得AB=AD=4,在Rt △AOB 和Rt △AOE 中,分别利用勾股定理表示出OA 2,列方程求出x 的值即可得答案.【详解】(1)∵平行四边形ABCD ,∴AD//BC ,∴∠∠ADE=∠CBF ,AD=BC ,又∵BF=DE ,∴△ADE ≌△CBF.(2)BE的长度为75时,四边形AECF为菱形.理由如下:连接AC,设BE=x,AC、EF相交于O,∵AE=3,AD=4,∠DAE=90°,∴BF=DE=22AE AD+=5,∴OE=52x-,OB=52x+,∵四边形AECF为菱形,∴AC⊥EF,∴平行四边形ABCD是菱形,∴AB=AD=4,在Rt△AOB和Rt△AOE中,OA2=AB2-OB2=AE2-OE2,即42-(52x+)2=32-(52x-)2,解得:x=7 5 .∴BE的长度为75时,四边形AECF为菱形.【点睛】本题考查了全等三角形的判定、菱形的判定与性质,根据对角线互相垂直的平行四边形是菱形,得出平行四边形ABCD是菱形,进而求出AB的长是解题关键.24.(1)4(2m+n)(m+2n);(2)1 2 .【解析】【分析】(1)直接利用平方差公式分解因式得出答案;(2)直接提取公因式12,再利用完全平方公式分解因式,进而把已知代入求出答案.【详解】解:(1)9(m+n)2﹣(m﹣n)2=[3(m+n)+(m﹣n)][3(m+n)﹣(m﹣n)] =(4m+2n)(2m+4n)=4(2m+n)(m+2n);(2)12x 2+xy+12y 2 =12(x 2+2xy+y 2) =12(x+y)2, 当x+y =1时, 原式=12×12=12. 【点睛】此题主要考查了公式法分解因式,正确运用公式是解题关键.25.(1)14S =;(1)224,2084,2m m S m m+-<<⎧⎪=⎨+<-⎪⎩ . 【解析】【分析】(1)根据正方形的面积求出点B 的坐标,进而可求出函数解析式,由点P 在函数图象上即可求出结果; (1)由于点P 与点B 的位置关系不能确定,故分两种情况进行讨论计算即可.【详解】解:(1)∵正方形OABC 的面积为4,∴2OC OA ==,∴(2,2)B -,把(2,2)B -代入k y x=中,22k =-, ∴4k =-, ∴解析式为4y x=-, ∵(,)P m n 在4y x=-的图象上, ∴4n m =-,即4mn =-, ∴14S mn ==;(1)①当P 在B 点上方时,242()42(20)S m m m =-⋅-=+-<<;②当P 在B 点下方时,248424(2)S m m m ⎛⎫=-⋅-=+<- ⎪⎝⎭,综上,224,2084,2m m S m m+-<<⎧⎪=⎨+<-⎪⎩.【点睛】本题考查了反比例函数与几何的综合,难度不大,要注意当点的位置不确定时,需观察图形判断是否进行分类讨论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吴兴区第二学期期末测试(解析版)八年级数学一、选择题(本题有10小题,每小题3分,共30分。
每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.若式子有意义,则x 的取值范围是()A. B. C. D.正确答案:C试题解析:【分析】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x-1≥0,解得x≥1.故选C.2.下列图形中既是中心对称图形又是轴对称图形的是()A.B. C. D.正确答案:B试题解析:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:A.是轴对称图形,不是中心对称图形.故A不符合题意;B.是轴对称图形,也是中心对称图形.故B符合题意;C. 是轴对称图形,不是中心对称图形.故C不符合题意;D. 不是轴对称图形,是中心对称图形.故D不符合题意.故选B.3.下列计算正确的是()A.B. C. D.正确答案:D试题解析:【分析】此题考查二次根式的加法,先判断是否是同类二次根式,再合并同类二次根式.【解答】解:A.,故错误;B.,不是同类二次根式不能合并,故错误;C.,不是同类二次根式不能合并,故错误;D.,正确。
4,用反证法证明命题“三角形中必有一个内角小于或等于60度”时,应假设()A. 每一个内角都大于60度B. 每一个内角都小于60度C. 有一个内角大于60度D. 有一个内角小于60度正确答案:A试题解析:【分析】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.熟记反证法的步骤,然后进行判断即可.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即每一个内角都大于60°.故选A.5.如图,在平面直角坐标系中,点A是反函数图象上的点,过点A与x轴垂直的直线交x轴于点B,连结AO,若△ABO的面积为3,则k的值为()A.3B.-3C.6D.-6正确答案:D试题解析:【分析】本题考查了反比例函数系数k的几何意义,根据已知条件得到三角形ABO的面积=AB •OB,由于三角形ABC的面积=AB•OB=3,得到|k|=6,即可得到结论.【解答】解:∵三角形AOB的面积=AB•OB=3,∴|k|=6,∵k<0,∴k=-6,故选D6.湖州是“两山”理论发源地. 在一次学校组织的以“学习两山理论,建设生态文明”为主题的知识竞赛中,某班6名同学的成绩如下(单位:分):97,99,95,92,92,93,则这6名同学的成绩的中位数和众数分别为()A. 93分,92分B. 94分,92分C. 94分,93分D. 95分,95分正确答案:B试题解析:【分析】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.利用中位数和众数的定义求解.【解答】解:在这一组数据中92是出现次数最多的,故众数是92;将这组数据从小到大的顺序排列:92、92、93、95、97、99,处于中间位置的数是93,95,它们的平均数是94,那么由中位数的定义可知,这组数据的中位数是94.故选B.7.如果关于x的方程2x2-x+k=0(k为常数)有两个相等的实数根,那么k=()A. B. C. D.正确答案:A解:∵关于x的方程2x2-x+k=0(k为常数)有两个相等的实数根,∴△=(-1)2-8k=0,解得k=.故选A.先根据一元二次方程根与系数的关系列出关于k方程,求出k的值即可.本题考查的是根与系数的关系,熟知一元二次方程ax2+bx+c=0(a≠0)中,当△=0时,方程有两个相等的两个实数根是解答此题的关键.8.下列命题中,真命题是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形正确答案:C试题解析:解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;故选C.A、根据矩形的判定定理作出判断;B、根据菱形的判定定理作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断.本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.9.在平面直角坐标系内,A、B、C三点的坐标为(0,0)、(4,0)、(3,2),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限正确答案:C试题解析:【分析】考查平行四边形的性质,利用已知条件正确画图、数形结合,能起到事半功倍的作用.根据坐标与图形的性质和平行四边形的对边平行且相等可以画出草图,然后解答.【解答】解:现根据题意画出草图:A、B、C三点位置如图所示,要使四边形ABCD为平行四边形,则点D有三种可能,即分别以AB、AC、BC为对角线的平行四边形,故第四个顶点不可能在第三象限.故选C.10.新定义:若关于x的一元二次方程:与,称为“同族二次方程”.如2(x-3)2+4=0与3(x-3)2+4=0是“同族二次方程”.现有关于x的一元二次方程与是“同族二次方程”,那么代数式能取的最小值是()A. 2011B. 2013C. 2018D. 2023此题考查求代数式的值,二元一次方程组的解法,配方法.由“同族二次方程”,得出,可得方程组解得a、b的值,代入,配方可得.【解答】解:∵与是“同族二次方程”,∴,,∴,解得∴,∵最小值为0,∴最小值为2013,即最小值为2013.故选B.二、填空题(本题有6小题,每小题4分,共24分)11.一个四边形的外角和等于度.正确答案:360试题解析:【分析】此题考查了多边形的外角和,比较简单,只要识记多边形的外角和是360°即可.多边形外角和都等于360°,则四边形的外角和为360度.解:∵多边形外角和=360°,∴四边形的外角和为360度.故答案为360.12.甲、乙两位选手各10次射击成绩的平均数都是9.2环,方差分别是,,则选手发挥最稳定.正确答案:甲试题解析:【分析】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S2甲=0.015,S2乙=0.025,∴S2乙>S2甲∴成绩最稳定的是甲. 故答案为甲.13.如图1,在Rt△ABC中,∠ABC=90°,点D、E、F分别是AB、AC、BC边上的中点,连结BE、DF,已知BE=5,则DF=(图1)(图2)正确答案:5试题解析:此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.已知BE是Rt△ABC斜边AC的中线,那么;EF是△ABC的中位线,则.【解答】解:∵△ABC是直角三角形,BE是斜边的中线,∴,又∵DF是△ABC的中位线,∴,∴DF=BE=5.故答案为5.14.如图2,在平面直角坐标系中,已知A(-2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA’,则A’的坐标为正确答案:(2,3)试题解析:【分析】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,,A′C′=BC=3,可得结果.【解答】解:作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴点A′的坐标为(2,3).故答案为(2,3).15.如图,在△ABC中,D是AB上任意一点,E是BC的中点,过C作CF∥AB,交DE 的延长线于F, 连BF、CD,若∠FDB=30°,∠ABC=45°,BC=,则DF= .正确答案:4试题解析:【分析】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【解答】解:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四边形CDBF是平行四边形.作EM⊥DB于点M,∵四边形CDBF是平行四边形,,∴,DF=2DE,在Rt△EMB中,EM=BE•sin∠ABC=1,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=2,∴DF=2DE=4.故答案为4.16.将反比例函数()的图像绕着原点O顺时针旋转45°得到新的双曲线图像C1上的任意一点P到F的(如图1所示),直线⊥轴,F为轴上的一个定点。
已知:图像C1距离与到直线的距离之比为定值,记为,即,().(1)如图1,若直线经过点B(1,0),双曲线C的解析式为,且,则F点1的坐标为;的解析式为,且F(5,0).P (2)如图2,若直线经过点B(1,0),双曲线C2为双曲线C在第一象限内图像上的动点,连接PF,Q为线段PF上靠近点P的三等分点,连接2HQ,在点P运动的过程中,当HQ=HP时,点P 的坐标为.正确答案:(1)(4,0);(2)试题解析:【分析】此题考查两点间的距离,一元二次方程的解法.(1)由题意得y=0时,,解得x=2或x=-2(舍去),利用可得结果;(2)设点P,由Q为线段PF上靠近点P的三等分点,可得Q,利用两点间的距离公式列方程解答即可.解:∵,当y=0时,,解得x=2或x=-2(舍去),∵,∴,∵OB=1,∴PH=1,则PF=AF=2,∴OF=4,∴F(4,0).故答案为(4,0);(2)设点P,∵Q为线段PF上靠近点P的三等分点,∴Q,∵H,HQ=HP,∴,化简得,解得或x=1(舍去),当时,.∴P.故答案为三、解答题(本题有8小题,共66分)17.(本题6分)计算正确答案:解:.试题解析:此题考查二次根式的混合运算,先算除法,再把各项化简,合并同类二次根式即可.18.(本题6分)解方程(1);(2)正确答案:解:(1),x-3=±3,x-3=3或x-3=-3,∴,;(2),(2x-1)(x+1)=0,2x-1=0或x+1=0,∴,.试题解析:此题考查一元二次方程的解法.(1)两边分别开平方,再计算即可;(2)先把方程左边利用十字相乘法分解因式,再进一步计算19.(本题6分)如图,O是矩形ABCD的对角线的交点.作ED∥AC,CE∥BD,DE,CE相交于点E.求证:四边形OCED是菱形.正确答案:证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴AC与BD相等且互相平分,∴OD=OC,∴四边形OCDE是菱形.试题解析:本题考查了矩形的性质,菱形的判定,掌握基本的性质与判定是解决问题的关键.由DE∥AC,EC∥BD,易得四边形OCED是平行四边形,又矩形的对角线相等且平分,可得OC=OD,则四边形OCED是菱形.20.(本题8分)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:(1)若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?(2)为了体现学科差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数.请你从折合平均数的角度分析,哪两人将被表扬?若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?正确答案:解:(1)=(分);=(分);=(分);答:乙、丙将被表扬;(2)==(分);=(分);=(分);答:甲、丙将被表扬.试题解析:此题考查算术平均数和加权平均数的计算.(1)把各科分数相加,再除以4即可;(2)按比例计算出平均分,再判断即可.21.(本题8分)如图:反比例函数的图象与一次函数的图象交于A、B两点,其中A点坐标为(1,2).(1)求反比例函数与一次函数的表达式;(2)观察图象,直接写出当时,自变量的取值范围;(3)一次函数的图象与轴交于点C,点P是反比例函数图象上的一个动点,若,求此时P点的坐标.正确答案:解:(1)把A(1,2)代入得:k=2,∴;把A(1,2)代入得:2=1+b,b=1,∴y=x+1;(2)∵A(1,2),∴B(-2,-1),由函数图像可得:当时,-2<x<0或x>1;(3)∵一次函数的图象与y轴交于点C,y=0+1,y=1,∴C(0,1),∴OC=1,∵,∴,∴,当x=12时,,当x=-12时,,∴或.试题解析:此题考查待敌系数法求反比例函数和一次函数的解析式,反比例函数的图像和性质,一次函数的图像和性质.(1)把A(1,2)代入得k的值,把A(1,2)代入得b的值;(2)根据图像得出的图象在反比例函数的图象上方时x的取值即可;(3)由可得,解方程即可.22.(本题10分)某楼盘2019年2月份以每平方米10000元的均价对外销售,由于炒房客的涌入,房价快速增长,到4月份该楼盘房价涨到了每平方米12100元。