全国版2017版高考数学一轮复习第三章三角函数解三角形3.7应用举例课件理

合集下载

2017高考理科数学一轮复习课件:第3章 三角函数、解三角形 第3讲

2017高考理科数学一轮复习课件:第3章 三角函数、解三角形 第3讲

第三章 三角函数、解三角形
2cos 1.
10°-sin sin 70°
20°的值是___3_____.
解析: 原式=2cos(30°-sin207°0°)-sin 20°
=2(cos
30°·cos
20°+sin 30°·sin sin 70°
20°)-sin
20°
= c3ocsos202°0°= 3.
栏目 导引
第六页,编辑于星期六:二十二点 二分。
第三章 三角函数、解三角形
4.已知 cos 2α=12α∈-π4 ,0,则 sin α的值为__-__12____. 解析: cos 2α=1-2sin2α=12⇒sin α=±12.
又 α∈-π4 ,0,
所以 sin α=-12.
栏目 导引
第七页,编辑于星期六:二十二点 二分。
栏目 导引
第二十七页,编辑于星期六:二十二点 二分。
第三章 三角函数、解三角形
所以 tan(2α-β)=1t+anta2nα2-αttaann ββ=1-34+34×17 17=1. 因为 tan β=-17<0, 所以π2 <β<π,-π<2α-β<0,所以 2α-β=-3π4 .
栏目 导引
第二十八页,编辑于星期六:二十二点 二分。
1-cos 2
2α,配方变形:1±sin
α=sinα2 ±cosα2 2,1+cos
α
α
α
=2cos2 2 ,1-cos α=2sin2 2 .
(3)函数 f(α)=asin α+bcos α(a,b 为常数),可以化为 f(α)

a2+b2sin(α+φ)其中tan
φ=ba,或

2017高考数学一轮复习课件:第3章 三角函数、解三角形 第1讲

2017高考数学一轮复习课件:第3章 三角函数、解三角形 第1讲
角函数 能判断各象限角的三角函数符号,理解终边相同的角 同一三角函数值相等.
第二页,编辑于星期六:二十点 三十六分。
知识点
第三章 三角函数、解三角形
考纲下载
同角三 角函数 的基本 关系式 与诱导 公式
1.理解同角三角函数的两个基本关系式:sin2x+cos2x =1,csoins xx=tan x,并能简单应用.
D.第四象限
第十四页,编辑于星期六:二十点 三十六分。
3.下列与9π 4 的终边相同的角的表达式中正确的是( C ) A.2kπ+45°(k∈Z) B.k·360°+94π(k∈Z) C.k·360°-315°(k∈Z) D.kπ+5π 4 (k∈Z)
3
4.设角 α 终边上一点 P(-4,3),则 sin α的值为____5____.
1.能利用和、差、倍角的公式进行基本的变形,并证明 简单的 三角恒等式,了解公式特点,并能进行变形应用. 三角恒 2.能利用三角恒等变换研究三角函数的性质. 等变换 3.能把一些实际问题转化为三角问题,通过三角变换
解决.
第四页,编辑于星期六:二十点 三十六分。
知识点
第三章 三角函数、解三角形
考纲下载
解析: 设扇形圆心角为 α,半径为 r,则 2r+|α|r=4,所以|α|=4r-2.
所以 S 扇形=12|α|·r2=2r-r2=-(r-1)2+1,
所以当 r=1 时,(S 扇形)max=1, 此时|α|=2.
第二十七页,编辑于星期六:二十点 三十六分。
考点三 三角函数的定义(高频考点) 任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.在 高考中以选择题、填空题的形式出现,高考对三角函数定义 的考查主要有以下三个命题角度: (1)已知角 α 终边上一点 P 的坐标求三角函数值; (2)已知角 α 的终边所在的直线方程求三角函数值; (3)判断三角函数值的符号.

高考数学第一轮章节复习课件 第三章 三角函数 解三角形

高考数学第一轮章节复习课件 第三章 三角函数 解三角形
2.已知角α的终边所在的直线方程,则可先设出终边上一 点的坐标,求出此点到原点的距离,然后用三角函数 的定义来求相关问题,若直线的倾斜角为特殊角,也 可直接写出角α的值.
【注意】 若角α的终边落在某条直线上,一般要分类讨论.
已知角α的终边在直线3x+4y=0上,求sinα, cosα,tanα的值.
.
解析:tan= 答案:
5.某时钟的秒针端点A到中心点O的距离为5 cm,秒针均匀 地绕点O旋转,当时间t=0时,点A与钟面上标12的点B

合.将A、B两点间的距离d(cm)表示成t(s)的函数,则d

,其中t∈[0,60].
解析:∵经过t(s)秒针转了 弧度
d
5. t
, d
t
10 sin
.
2 60
)内的单调性.
知识点
考纲下载
考情上线
函数y= Asin(ωx +φ)的图 象
1.考查图象的变换和 1.了解函数y=Asin(ωx+φ)
解析式的确定,以 的
及通过图象描绘, 物理意义;能画出y=
观察讨论有关性质. Asin(ωx+φ)的图象,了解
2.以三角函数为载体, 参数A、ω、φ对函数图象
考查数形结合的思想. 变化的影响.
当且仅当α= ,即α=2时取等号, 此时 故当半径r=1 cm,圆心角为2弧度时,扇形面积最大, 其最大值为1 cm2.
法二:设扇形的圆心角为α(0<α<2π),半径为r,面积为S,
则扇形的弧长为rα,由题意有:2r+rα=4⇒α=
×r2=2r-r2=-(r-1)2+1,
∴当r=1(cm)时,S有最大值1(cm2),
为余弦线
有向线段 AT 为正切线

高考数学一轮复习 第三章 三角函数、解三角形 3.8 解三角形应用举例课件 理

高考数学一轮复习 第三章 三角函数、解三角形 3.8 解三角形应用举例课件 理

问题.
角函数的性质交汇命题,且多以解答题的形式呈现,
解题时要注意一些常用术语,充分结合数形结合及
转化化归思想的运用.
课时思维激活
教材知识梳理和小题探究
回扣教材
1.仰角和俯角 在视线和水平线所成的角中,视线在水平线 上方 的角叫仰角,在水平线 下方 的角叫俯角(如图①).
2.方位角 从指北方向顺时针转到目标方向线的水平角,如 B 点的方位角为 α(如图②). 3.方向角 相对于某一正方向的水平角 (1)北偏东 α,即由指北方向顺时针旋转 α 到达目标方向(如图③); (2)北偏西 α,即由指北方向逆时针旋转 α 到达目标方向; (3)南偏西等其他方向角类似.
又 sin15°=sin(60°-45°)=sin60°cos45°-cos60°sin45°
= 23× 22-12× 22=
6- 4
2,
所以 AB=AsCinsi1n56°0°=3
2+ 20
6,
因此,BD=3
2+ 20
6≈0.33(km).
故 B,D 的距离约为 0.33 km.
距离问题的类型及解法 (1)类型:测量距离问题分为三种类型:两点间不可达又不可视、两点间可视但不可达、 两点都不可达. (2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题, 从而利用正余弦定理求解.
MN=
900+300-2×30×10

3 2
= 300=10 3(m).
考点多维探究
考点 1 测量距离问题 研究测量距离问题是高考中的常考内容,既有选择题、填空题,也有解答题,难度一般适中,属中档 题.解题时要选取合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正余 弦定理求解,且主要有以下几个命题角度.

高考数学一轮复习第三章三角函数、解三角形3.7正弦定理、余弦定理

高考数学一轮复习第三章三角函数、解三角形3.7正弦定理、余弦定理

【步步高】(浙江通用)2017版高考数学一轮复习 第三章 三角函数、解三角形 3.7 正弦定理、余弦定理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .3.在△ABC 中,已知a 、b 和A 时,解的情况如下:在△ABC 中,常有以下结论: (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sinA +B2=cos C2;cos A +B2=sin C2.(5)tan A +tan B +tan C =tan A ·tan B ·tan C . (6)A >B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)在△ABC 中,若sin A >sin B ,则A >B .( √ )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( × )(4)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形;当b 2+c 2-a 2=0时,三角形为直角三角形;当b 2+c 2-a 2<0时,三角形为钝角三角形.( × ) (5)在三角形中,已知两边和一角就能求三角形的面积.( √)1.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =120°,a =2,b =233,则B等于( ) A.π3B.5π6C.π6或5π6 D.π6答案 D解析 ∵A =120°,a =2,b =233,∴由正弦定理a sin A =bsin B 可得,sin B =b a sin A =2332×32=12.∵A =120°,∴B =30°,即B =π6.2.(2015·北京)在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=________.答案 1解析 由余弦定理:cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,∴sin A =74, cos C =a 2+b 2-c 22ab =16+25-362×4×5=18,∴sin C =378,∴sin 2Asin C =2×34×74378=1.3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则边a =________;△ABC 的面积等于________. 答案6+ 2 1+ 3解析 A =π-B -C =7π12,sin 7π12=sin ⎝ ⎛⎭⎪⎫π3+π4=32×22+12×22=64+24.由正弦定理,得a sin A =bsin B ,即asin 7π12=2sinπ6,解得a =6+2, ∴△ABC 的面积等于12ab sin C =12×(6+2)×2×22=3+1. 4.(教材改编)△ABC 中,若b cos C +c cos B =a sin A ,则△ABC 的形状为________三角形. 答案 直角三角形解析 由已知得sin B cos C +cos B sin C =sin 2A , ∴sin(B +C )=sin 2A , ∴sin A =sin 2A ,又sin A ≠0,∴sin A =1,A =π2,∴△ABC 为直角三角形.5.(2015·杭州二中高中第二次月考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a -c =0,则角B =________.答案π3解析 由正弦定理知,sin B cos C +3sin B sin C -sin A -sin C =0. ∵sin A =sin(B +C )=sin B cos C +cos B sin C , 代入上式得3sin B sin C -cos B sin C -sin C =0. ∵sin C >0,∴3sin B -cos B -1=0,∴2sin ⎝ ⎛⎭⎪⎫B -π6=1,即sin ⎝⎛⎭⎪⎫B -π6=12.∵B ∈(0,π),∴B =π3.题型一 利用正弦定理、余弦定理解三角形例1 (1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个 D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)(2015·广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________. 答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b . ∴满足条件的三角形有2个.(2)由题意知a =2b ,a 2=b 2+c 2-2bc cos A , 即2b 2=b 2+c 2-2bc cos A , 又c 2=b 2+2bc , ∴cos A =22,A =45°,sin B =12,B =30°,∴C =105°.(3)因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,B +C <π,所以B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =b sin B ,即3sin 2π3=b sinπ6,解得b =1.思维升华 (1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2B .x <2C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________. 答案 (1)C (2)1解析 (1)若三角形有两解,则必有a >b ,∴x >2,又由sin A =a b sin B =x 2×22<1,可得x <22,∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0, ∴x =1,即AB =1.题型二 和三角形面积有关的问题例2 (2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C .所以-cos 2B =sin 2C .① 又由A =π4,即B +C =34π,得-cos 2B =-cos2⎝ ⎛⎭⎪⎫34π-C =-cos ⎝ ⎛⎭⎪⎫32π-2C=sin 2C =2sin C cos C ,② 由①②解得tan C =2. (2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C , 所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3.思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.(2015·天津七校4月联考)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =3b sin A -a cos B .(1)求角B ;(2)若b =2,△ABC 的面积为3,求a ,c .解 (1)由a =3b sin A -a cos B 及正弦定理,得sin A =3sin B ·sin A -sin A ·cos B , ∵0<A <π,∴sin A >0,∴3sin B -cos B =1,即sin ⎝⎛⎭⎪⎫B -π6=12.又∵0<B <π,∴-π6<B -π6<5π6,∴B =π3.(2)∵S =12ac sin B =3,∴ac =4,①又∵b 2=a 2+c 2-2ac cos B ,即a 2+c 2=8.② 由①②联立解得a =c =2.题型三 正弦、余弦定理的简单应用 命题点1 判断三角形的形状例3 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c b<cos A ,则△ABC 为( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .等边三角形(2)在△ABC 中,cos 2B 2=a +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A .等边三角形 B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形 答案 (1)A (2)B解析 (1)已知c b <cos A ,由正弦定理,得sin Csin B<cos A ,即sin C <sin B cos A ,所以sin(A+B )<sin B cos A ,即sin B cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sinA >0,于是有cosB <0,B 为钝角,所以△ABC 是钝角三角形.(2)∵cos 2B 2=1+cos B 2,cos 2B 2=a +c 2c , ∴(1+cos B )·c =a +c ,∴a =cos B ·c =a 2+c 2-b 22a,∴2a 2=a 2+c 2-b 2, ∴a 2+b 2=c 2,∴△ABC 为直角三角形. 命题点2 求解几何计算问题例4 (2015·课标全国Ⅱ)如图,在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C ;(2)若AD =1,DC =22,求BD 和AC 的长. 解 (1)S △ABD =12AB ·AD sin∠BAD ,S △ADC =12AC ·AD sin∠CAD .因为S △ABD =2S △ADC , ∠BAD =∠CAD , 所以AB =2AC . 由正弦定理可得 sin B sin C =AC AB =12. (2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理,知AB 2=AD 2+BD 2-2AD ·BD cos∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos∠ADC .故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6, 由(1)知AB =2AC ,所以AC =1. 思维升华 (1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a-b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3解析 (1)∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴s in A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ∴cos A (sin B -sin A )=0, ∴cos A =0或sin B =sin A , ∴A =π2或B =A 或B =π-A (舍去),∴△ABC 为等腰或直角三角形.(2)sin∠BAC =sin(π2+∠BAD )=cos∠BAD ,∴cos∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.二审结论会转换典例 (14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b ,sin B =6sin C . (1)求cos A 的值; (2)求cos ⎝⎛⎭⎪⎫2A -π6的值.规范解答解 (1)△ABC 中,由b sin B =csin C ,及sin B =6sin C ,可得b =6c ,[2分] 又由a -c =66b ,有a =2c ,[4分] 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c2=64.[7分] (2)在△ABC 中,由cos A =64, 可得sin A =104.[9分] 于是,cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154.[12分] 所以,cos ⎝ ⎛⎭⎪⎫2A -π6=cos 2A cos π6+sin 2A sin π6 =⎝ ⎛⎭⎪⎫-14×32+154×12=15-38.[14分] 温馨提醒 (1)本题将正弦定理、余弦定理和和差公式综合进行考查,具有一定的综合性,要求考生对公式要熟练记忆;通过审题理清解题方向.(2)本题还考查考生的基本运算求解能力,要求计算准确无误,尽量简化计算过程,减少错误.[方法与技巧]1.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.解题中要灵活使用正弦定理、余弦定理进行边、角的互化,一般要只含角或只含边. [失误与防范]1.在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2.在解三角形或判断三角形形状时,要注意三角函数值的符号和角的范围,防止出现增解、漏解.A 组 专项基础训练 (时间:35分钟)1.在△ABC 中,若a =4,b =3,cos A =13,则B 等于( )A.π4 B.π3C.π6D.2π3答案 A解析 因为cos A =13,所以sin A =1-19=223, 由正弦定理,得4sin A =3sin B ,所以sin B =22, 又因为b <a ,所以B <π2,B =π4,故选A.2.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则角C 等于( ) A.2π3B.π3C.3π4D.5π6答案 A解析 因为3sin A =5sin B ,所以由正弦定理可得3a =5b .因为b +c =2a ,所以c =2a -35a=75a .令a =5,b =3,c =7,则由余弦定理c 2=a 2+b 2-2ab cos C ,得49=25+9-2×3×5cosC ,解得cos C =-12,所以C =2π3. 3.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 答案 C解析 由正弦定理a sin A =b sin B =csin C=2R (R 为△ABC 外接圆半径)及已知条件sin A ∶sinB ∶sinC =5∶11∶13,可设a =5x ,b =11x ,c =13x (x >0).则cos C =x2+x 2-x22·5x ·11x=-23x 2110x2<0, ∴C 为钝角.∴△ABC 为钝角三角形.4.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( ) A .3B.932C.332D .3 3答案 C解析 ∵c 2=(a -b )2+6, ∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B 等于( ) A.π6B.π4C.π3D.3π4答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin A =sin B cos C ,则B =______.若A =π6,则ac =________.答案π2 33解析 由sin A =sin B cos C ,得sin(B +C )=sin B cos C ,得sin B cos C +cos B sin C =sin B cos C ,得cos B sin C =0,显然sin C ≠0, ∴cos B =0,∴B =π2.若A =π6,则C =π-A -B =π3.由正弦定理,得a c =sin A sin C =1232=33.7.(2015·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.答案 8解析 ∵cos A =-14,0<A <π,∴sin A =154,S △ABC =12bc sin A =12bc ×154=315,∴bc =24, 又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52, 由余弦定理得,a 2=b 2+c 2-2bc cos A=52-2×24×⎝ ⎛⎭⎪⎫-14=64,∴a =8. 8.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴si n A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c 且b (cos A -3cos C )=(3c -a )cosB .(1)求sin A sin C的值;(2)若cos B =16,且△ABC 的周长为14,求b 的值.解 (1)由正弦定理得到:sin B cos A +sin A cos B =3(sin B cos C +cos B sin C ), 即sin(A +B )=3sin(B +C ),由三角形内角和为π,得到:sin C =3sin A ⇒sin A sin C =13. (2)由sin A sin C =13可得:a c =13⇒c =3a ,△ABC 的周长a +b +c =14⇒b =14-4a ,由余弦定理cos B =a 2+c 2-b 22ac =16,解得a =2(a =14舍去),则b =6.10.(2015·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =33,sin(A +B )=69,ac =23, 求sin A 和c 的值. 解 在△ABC 中,由cos B =33,得sin B =63, 因为A +B +C =π,所以sin C =sin(A +B )=69.因为sin C <sin B ,所以C <B ,可知C 为锐角. 所以cos C =539.因此sin A =sin(B +C )=sin B cos C +cos B sin C =63×539+33×69=223. 由a sin A =c sin C ,可得a =c sin Asin C =223c 69=23c , 又ac =23,所以c =1.B 组 专项能力提升 (时间:20分钟)11.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32B.332C.3+62D.3+394答案 B解析 设AB =c ,则由AC 2=AB 2+BC 2-2AB ·BC ·cos B 知7=c 2+4-2c ,即c 2-2c -3=0,∴c =3(负值舍去).∴BC 边上的高为AB ·sin B =3×32=332. 12.若△ABC 中,若3cos 2A -B2+5cos 2C2=4,则tan C 的最大值为( )A .-34B .-43C .-24D .-2 2答案 B解析 由条件得3×A -B +12+5×cos C +12=4,即3cos(A -B )+5cos C =0,所以3cos(A -B )-5cos(A +B )=0,所以3cos A cos B +3sin A sin B -5cos A cos B +5sin A sin B =0,即cos A cos B =4sin A sin B ,所以tan A tan B =14,tan A +tan B ≥2tan A tan B =1.又tan C =-tan(A +B )=-tan A +tan B 1-tan A tan B =-43(tan A +tan B )≤-43,故选B.13.(2015·重庆)在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.答案 6解析 由正弦定理得ABsin∠ADB =AD sin B ,即2sin∠ADB =3sin 120°,解得sin∠ADB =22,所以∠ADB =45°,从而∠BAD =15°=∠DAC ,所以C =180°-120°-30°=30°,AC =2×sin 120°sin 30°= 6.14.在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________. 答案 27解析 由正弦定理知AB sin C =3sin 60°=BCsin A,∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sinB =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,又0<A <π,∴A =π6.由sin A sin B =cos 2 C 2,得12sin B =1+cos C 2, 即sin B =1+cos C , 则cos C <0,即C 为钝角,∴B 为锐角,且B +C =5π6,则sin(5π6-C )=1+cos C ,化简得cos(C +π3)=-1,解得C =2π3,∴B =π6.(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a2)2-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b =2,故S △ABC =12ab sin C =12×2×2×32= 3.。

高三数学一轮总复习第三章三角函数解三角形3.7解三角形应用举例课件.ppt

高三数学一轮总复习第三章三角函数解三角形3.7解三角形应用举例课件.ppt

解析:如图所示,某人在 C 处,AB 为塔高,他沿 CD 前进,CD=40,此时∠ DBF=45°,过点 B 作 BE⊥CD 于 E,则∠AEB=30°,
在△BCD 中,CD=40,∠BCD=30°,∠DBC=135°,由正弦定理,得 sin∠CDDBC=sin∠BDBCD, ∴BD=4s0insi1n3350°°=20 2(米)。 ∠BDE=180°-135°-30°=15°。 在 Rt△BED 中,
29
通关特训 3 如图所示,位于 A 处的信息中心获悉:在其正东方向相距 40 海里
的 B 处有一艘渔船遇险,在原地等待营救。信息中心立即把消息告知在其南偏西 30°,
相距 20 海里的 C 处的乙船,现乙船朝北偏东 θ 的方向即沿直线 CB 前往 B 处救援, 则 cosθ 等于( )
A.
21 7
解析:如图所示,
由题意知∠C=45°,
由正弦定理得siAn6C0°=sin245°,
∴AC=
2× 2
23=
6。
2
答案: 6
13
4.一船向正北航行,看见正东方向有相距 8 海里的两个灯塔恰好在一条直线 上。继续航行半小时后,看见一灯塔在船的南偏东 60°,另一灯塔在船的南偏东 75°, 则这艘船每小时航行__________海里。
并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,求 A、B 之间的距
离。
16
解析:如图所示,在△ACD 中,∠ACD=120°,∠CAD=∠ADC=30°,
∴AC=CD= 3 km。
在△BCD 中,∠BCD=45°,
∠BDC=75°,∠CBD=60°。
∴BC=
s3isni6n07°5°=

全国版2017版高考数学一轮复习第三章三角函数解三角形3.3三角函数的图象与性质课件理

注意不要产生增解,也不要丢掉方程的解.
(2)注意sinx或cosx的值域是[-1,1],换元后新变量的
范围为[-1,1].
(3)解不等式时要注意周期,不可以忽略.
【变式训练】(2016·衡水模拟)设条件p: k 5 x 12 条件q:cos <0,则p是q的( ) 11 k ,k Z, (2x ) 12 3 A.充分不必要条件 B.必要不充分条件
5 E ( , ),F ( 2k, 2k)(k Z), 所以E F ( , ). 4 4 2 2
2.若sin2x>cos2x,则x的取值范围是
(
)
3 1 A.{x|2k x 2k ,k Z} 4 4 1 5 B.{x|2k x 2k ,k Z} 4 4 1 3 C.{x|k x k ,k Z} 4 4 1 3 D.{x|k x k ,k Z} 4 4
1.(必修4P40练习T3(2)改编)函数f(x)=4-2cos
小值是 .
1 3____ ,取得最小值时,x的取值集合为
x的最
【解析】f(x)min=4-2=2,此时, 1 x=2kπ (k∈Z),x=6kπ 3 (k∈Z),所以x的取值集合为{x|x=6kπ ,k∈Z}
答案:2
{x|x=6kπ ,k∈Z}
【母题变式】1.若本例题(3)中函数改为f(x)=
1 , cos x 1
求其定义域.
【解析】因为函数f(x)=
所以cosx≠1,
所以x≠2kπ,k∈Z,
1 cos x 1
,
所以函数的定义域为{x|x≠2kπ,k∈Z}.
2.在本例题(3)中函数改为

2017年高考数学人教版理科一轮复习课件:第3章 三角函数、解三角形 1 任意角和弧度制及任意角的三

第十二页,编辑于星期六:二点 四十六分。
4.任意角的三角函数
y
y
x
x
第十三页,编辑于星期六:二点 四十六分。












第十四页,编辑于星期六:二点 四十六分。
MP
OM

AT
第十五页,编辑于星期六:二点 四十六分。
二、必明 3●个易误点 1.易混概念:第一象限角、锐角、小于 90°的角是概念不同的三 类角。第一类是象限角,第二、第三类是区间角。 2.利用 180°=π rad 进行互化时,易出现度量单位的混用。 3.三角函数的定义中,当 P(x,y)是单位圆上的点时有 sinα=y, cosα=x,tanα=yx,但若不是单位圆时,如圆的半径为 r,则 sinα=yr, cosα=xr,tanα=yx。
解析:(1)如图,在坐标系中画出直线 y= 3x,可以发现它与 x 轴 的夹角是π3,在[0,2π)内,终边在直线 y= 3x 上的角有两个:π3,43π; 在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角 α 构成的集合为-53π,-23π,π3,43π。
第十八页,编辑于星期六:二点 四十六分。
3.若角 θ 满足 tanθ>0,sinθ<0,则角 θ 所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 解析:由 tanθ>0 知,θ 是一、三象限角,由 sinθ<0 知,θ 是三、 四象限角,故 θ 是第三象限角,故选 C。 答案:C
第七页,编辑于星期六:二点 四十六分。
第十页,编辑于星期六:二点 四十六分。
2.象限角
第一象限角的集合 第二象限角的集合 第三象限角的集合 第四象限角的集合

【名师A计划】2017高考数学一轮复习 第三章 三角函数、解三角形 第一节 三角函数的有关概念课件 理


)
【解题思路】利用三角函数定义 sin θ= 由 ������(4, ������ )可知������ = √16 + ������2 , 所以 sin ������
25m2=144+9m2⇒16m2=144,解得 m=±3,又 m>0,所以 m=3. 【参考答案】 B
★备用典例 (2015· 南昌十校模拟) 已知角 α 的终边与单位圆交于 点 P(m,n),且 n=2m(m≠0),那么 sin 2α 的值是 A.4 5
3
【解题思路】 (1)弧长在弧度制下进行求解 ;(2)利用已知构建两个方程,通过联立方程消 去 l,结合一元二次方程的最值来求解 ;(3)利用数形结合法,结合弓形的面积等于扇形的 面积减去三角形面积,即可求解.
π 【参考答案】(1)α=60°= , ������ 3
= 10 ×
(2)由已知得,l+2R=20,
rad °
—— 1rad =
(3)弧长、扇形的面积公式 设扇形的弧长为 l,圆心角大小为 α(弧度),半径为 r,则
①l= |α|· r ,②S 扇形=
1 lr 2
=
1 |α|r2 2
.
3.任意角的三角函数
(1)设 α 是一个任意角,它的终边与单位圆交于点 P(x,y),则 sin ������ α=y,cos α=x,tan α= (x≠0). (2)三角函数值在各象限的符号
8 等分,
再从第一象限的等分开始按逆时针方向依次轮回写出 1,2,3,4, ������ 则 8 个区域中标号为 2(������位于第几象限则对应标号几)的即为 所在象限.
2
【参考答案】
������ 是第一象限的角或第三象限的角 2

2017届高考数学一轮总复习 第三章 三角函数、解三角形 理 新人教版

第三章⎪⎪⎪ 三角函数、解三角形第一节 任意角和弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式1.若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角答案:C2.(教材习题改编)3 900°是第________象限角,-1 000°是第________象限角. 答案:四 一3.(教材习题改编)已知半径为120 mm 的圆上,有一条弧的长是144 mm ,则该弧所对的圆心角的弧度数为________.答案:1.21.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况. 4.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α =x r ,tan α=y x.[小题纠偏]1.下列说法正确的是( ) A .三角形的内角必是第一、二象限角 B .第一象限角必是锐角 C .不相等的角终边一定不相同D .若β=α+k ·360°(k ∈Z),则α和β终边相同 答案:D2.若角α终边上有一点P (x,5),且cos α=x13(x ≠0),则sin α=________.答案:513考点一 角的集合表示及象限角的判定 基础送分型考点——自主练透[题组练透]1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三角限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个解析:选C -3π4是第三象限角,故①错误;4π3=π+π3,从而4π3是第三象限角,故②正确;-400°=-360°-40°,从而③正确;-315°=-360°+45°,从而④正确.2.(易错题)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角解析:选C ∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.3.设集合M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z,那么( ) A .M =N B .M ⊆N C .N ⊆MD .M ∩N =∅解析:选B 法一:由于M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N .法二:由于M 中,x =k2·180°+45°=k ·90°+45°=45°·(2k +1),2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .4.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为: β=45°+k ×360°(k ∈Z), 则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315°[谨记通法]1.终边在某直线上角的求法4步骤(1)数形结合,在平面直角坐标系中画出该直线; (2)按逆时针方向写出[0,2π)内的角;(3)再由终边相同角的表示方法写出满足条件角的集合; (4)求并集化简集合.2.确定k α,αk(k ∈N *)的终边位置3步骤(1)用终边相同角的形式表示出角α的范围; (2)再写出k α或αk的范围;(3)然后根据k 的可能取值讨论确定k α或αk的终边所在位置,如“题组练透”第2题易错.考点二 扇形的弧长及面积公式基础送分型考点——自主练透 [题组练透]1.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是( ) A .1 B .4 C .1或4D .2或4解析:选C 设此扇形的半径为r ,弧长为l , 则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.2.(易错题)若扇形的圆心角是α=120°,弦长AB =12 cm ,则弧长l =________cm. 解析:设扇形的半径为r cm ,如图.由sin 60°=6r,得r =4 3 cm ,∴l =|α|·r =2π3×43=833π cm.答案:833π3.已知扇形周长为40,当它的半径和圆心角分别取何值时,扇形的面积最大? 解:设圆心角是θ,半径是r ,则2r +r θ=40.又S =12θr 2=12r (40-2r )=r (20-r )=-(r -10)2+100≤100.当且仅当r =10时,S max =100,此时2×10+10θ=40,θ=2. 所以当r =10,θ=2时,扇形的面积最大.[谨记通法]弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =αr ,扇形的面积公式是S =12lr =12αr 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量,如“题组练透”第2题.考点三 三角函数的定义常考常新型考点——多角探明[命题分析]任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.在高考中多以选择题、填空题的形式出现.常见的命题角度有: (1)三角函数值的符号判定;(2)由角的终边上一点的P 的坐标求三角函数值; (3)由角的终边所在的直线方程求三角函数值.[题点全练]角度一: 三角函数值的符号判定 1.若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角解析:选C 由sin αtan α<0可知sin α,tan α异号, 则α为第二或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三或第四象限角. 综上可知,α为第三象限角.角度二:由角的终边上一点P 的坐标求三角函数值2.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.解析:因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.答案:-353.已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m 4, 则m =________.解析:由题设知x =-3,y =m ,∴r 2=|OP |2=(-3)2+m 2(O 为原点),r =3+m 2. ∴sin α=m r=2m 4=m 22, ∴r =3+m 2=22, 即3+m 2=8,解得m =± 5. 答案:± 5角度三:由角的终边所在的直线方程求三角函数值4.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 解:设α终边上任一点为P (-4a,3a ),当a >0时,r =5a ,sin α=35,cos α=-45,tan α=-34;当a <0时,r =-5a ,sin α=-35,cos α=45,tan α=-34.[方法归纳]应用三角函数定义的3种求法(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.一抓基础,多练小题做到眼疾手快1.若一扇形的圆心角为72°,半径为20 cm ,则扇形的面积为( ) A .40π cm 2B .80π cm 2C .40 cm 2D .80 cm 2解析:选B ∵72°=2π5,∴S 扇形=12αr 2=12×2π5×202=80π(cm 2).2.已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 因为点P 在第三象限,所以⎩⎪⎨⎪⎧tan α<0,cos α<0,所以角α的终边在第二象限.3.如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ)解析:选A 由三角函数定义知,点P 的横坐标x =cos θ,纵坐标y =sin θ. 4.(2016·江西六校联考)点A (sin 2 015°,cos 2 015°)位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C 因为sin 2 015°=sin(11×180°+35°) =-sin 35°<0,cos 2 015°=cos(11×180°+35°) =-cos 35°<0,所以点A (sin 2 015°,cos 2 015°)位于第三象限.5.(2016·福州一模)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43B.34C .-34D .-43解析:选D 因为α是第二象限角,所以cos α=15x <0,即x <0.又cos α=15x =xx 2+16.解得x =-3,所以tan α=4x =-43.二保高考,全练题型做到高考达标1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A. π3B. π6C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角. 故A ,B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.(2016·南昌二中模拟)已知角α终边上一点P 的坐标是(2sin 2,-2cos 2),则sin α等于( )A .sin 2B .-sin 2C .cos 2D .-cos 2 解析:选D 因为r =2+-2=2,由任意三角函数的定义,得sin α=y r=-cos 2.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为( )A. π3B. π2C. 3D .2解析:选C 设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =αr , ∴α= 3.4.(2015·潍坊二模)集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C 当k =2n (n ∈Z)时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z)时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C.35D.45解析:选B 取终边上一点(a,2a )(a ≠0),根据任意角的三角函数定义,可得cos θ=±55,故 cos 2θ=2cos 2θ-1=-35. 6.已知α是第二象限的角,则180°-α是第________象限的角.解析:由α是第二象限的角可得90°+k ·360°<α<180°+k ·360°(k ∈Z),则180°-(180°+k ·360°)<180°-α<180°-(90°+k ·360°),即-k ·360°<180°-α<90°-k ·360°(k ∈Z),所以180°-α是第一象限的角.答案:一7.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)8.已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.解析:因为sin θ=y42+y2=-255, 所以y <0,且y 2=64,所以y =-8. 答案:-89.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为____________________. 解析:如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin 5π4=cos 5π4=-22.根据三角函数线的变化规律标出满足题中条件的角x ∈⎝ ⎛⎭⎪⎫π4,5π4.答案:⎝⎛⎭⎪⎫π4,5π410.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr=6.(2)法一:∵2r +l =8, ∴S 扇=12lr =14l ·2r≤14⎝ ⎛⎭⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎫822=4,当且仅当2r =l ,即α=lr=2时,扇形面积取得最大值4. ∴圆心角α=2,弦长AB =2sin 1×2=4sin 1. 法二:∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=l r=2时,扇形面积取得最大值4. ∴弦长AB =2sin 1×2=4sin 1. 三上台阶,自主选做志在冲刺名校1.若α是第三象限角,则下列各式中不成立的是( ) A .sin α+cos α<0 B .tan α-sin α<0 C .cos α-tan α<0D .tan αsin α<0解析:选B ∵α是第三象限角,∴sin α<0,cos α<0,tan α>0,则可排除A ,C ,D.2.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1. 3.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断 tan α2sin α2cos α2的符号.解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0, 知α在第一、三象限,故α角在第三象限,其集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π<α<2k π+3π2,k ∈Z .(2)由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2 sin α2 cos α2取正号;当α2在第四象限时, tan α2<0, sin α2<0, cos α2>0,所以 tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.第二节 同角三角函数的基本关系与诱导公式_1.同角三角函数的基本关系式 (1)平方关系 sin 2α+cos 2α=1; (2)商数关系 tan α=sin αcos α.2.诱导公式1.已知sin ⎝⎛⎭⎪⎫5π2+α=15,那么cos α=( )A .-25B .-15C.15D.25解析:选C ∵sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α,∴cos α=15.2.若sin θcos θ=12,则tan θ+cos θsin θ的值是( )A .-2B .2C .±2D.12解析:选B tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1cos θsin θ=2.3.(教材习题改编)(1)sin ⎝ ⎛⎭⎪⎫-31π4=________,(2)tan ⎝ ⎛⎭⎪⎫-26π3=________.答案:(1)22(2) 31.利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.2.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 3.注意求值与化简后的结果一般要尽可能有理化、整式化. [小题纠偏]1.(2015·福建高考)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125B .-125C.512 D .-512解析:选D 因为α为第四象限的角, 故cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫-5132=1213, 所以tan α=sin αcos α=-5131213=-512.2.若sin(3π+θ)=13,则sin θ=________.答案:-13考点一 三角函数的诱导公式 基础送分型考点——自主练透[题组练透]1.sin 210°cos 120°的值为( ) A.14 B .-34C .-32D.34解析:选A sin 210°cos 120°=-sin 30°(-cos 60°)=12×12=14.2.已知A =k π+αsin α+k π+αcos α(k ∈Z),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}解析:选C 当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.3.已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫5π6+α=________. 解析:tan ⎝⎛⎭⎪⎫5π6+α=tan ⎝ ⎛⎭⎪⎫π-π6+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.答案:-334.(易错题)设f (α)=π+απ-α-π+α1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α⎝ ⎛⎭⎪⎫sin α≠-12,则f ⎝ ⎛⎭⎪⎫-23π6=________.解析:∵f (α)=-2sin α-cos α+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α =cos α+2sin αsinα+2sin α=1tan α, ∴f ⎝⎛⎭⎪⎫-23π6=1tan ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝ ⎛⎭⎪⎫-4π+π6=1tan π6= 3. 答案: 3[谨记通法]1.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角就好了.” 2.利用诱导公式化简三角函数的要求 (1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值,如“题组练透”第4题.考点二 同角三角函数的基本关系 题点多变型考点——纵引横联[典型母题]已知α是三角形的内角,且sin α+cos α=15.求tan α的值.[解] 法一: 联立方程⎩⎪⎨⎪⎧sin α+cos α=15,sin 2α+cos 2α=1,①②由①得cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形的内角,[类题通法] 同角三角函数基本关系式的应用技巧[越变越明][变式一] 保持母题条件不变, 求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值. 解:由母题可知: tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2 =-43-45×⎝ ⎛⎭⎪⎫-43+2=87.(2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825. [变式二] 若母题条件变为“sin α+3cos α3cos α-sin α=5”, 求tan α的值.解:法一:由sin α+3cos α3cos α-sin α=5, 得tan α+33-tan α=5,即tan α=2.法二:由sin α+3cos α3cos α-sin α=5,得sin α+3cos α=15cos α-5sin α,∴6sin α=12cos α,即tan α=2.[变式三] 若母题中的条件和结论互换:已知α是三角形的内角,且tan α=-13, 求sin α+cos α的值.解:由tan α=-13,得sin α= -13cos α,将其代入 sin 2α+cos 2α=1,得109cos 2α=1,∴cos 2α=910,易知cos α<0, ∴cos α=-31010, sin α=1010,故 sin α+cos α=-105.1.三角形中求值问题,首先明确角的范围,才能求出角的值或三角函数值.2.三角形中常用的角的变形有:A +B =π-C,2A +2B =2π-2C ,A 2+B 2+C 2=π2等,于是可得sin(A +B )=sin C ,cos ⎝⎛⎭⎪⎫A +B 2=sin C 2等.一抓基础,多练小题做到眼疾手快1.若α∈⎝ ⎛⎭⎪⎫-π2,π2,sin α=-35,则cos(-α)=( ) A .-45B.45C.35D .-35解析:选B 因为α∈⎝ ⎛⎭⎪⎫-π2,π2,sin α=-35,所以cos α=45,即cos(-α)=45. 2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6D.π3解析:选D ∵sin(π+θ)=-3cos(2π-θ),[破译玄机]∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.3.已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α=( ) A.223B .-223C.13D .-13解析:选D ∵cos ⎝ ⎛⎭⎪⎫π4+α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4-α=-sin ⎝⎛⎭⎪⎫α-π4=-13.4.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,则tan α=________. 解析:∵α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-1-sin 2α=-35,∴tan α=sin αcos α=-43.答案:-435.如果sin(π+A )=12,那么cos ⎝ ⎛⎭⎪⎫3π2-A 的值是________.解析:∵sin(π+A )=12,∴-sin A =12.∴cos ⎝⎛⎭⎪⎫3π2-A =-sin A =12.答案:12二保高考,全练题型做到高考达标1.已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是( ) A .sin θ<0,cos θ>0 B .sin θ>0,cos θ<0 C .sin θ>0,cos θ>0D .sin θ<0,cos θ<0解析:选B ∵sin(θ+π)<0,∴-sin θ<0,sin θ>0. ∵cos(θ-π)>0,∴-cos θ>0,cos θ<0.2.若sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,则sin α·cos α的值等于( ) A .-25B .-15C. 25或-25D. 25解析:选A 由sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,可得sin α=-2cos α,则tan α=-2,sin α·cos α=tan α1+tan 2α=-25. 3.(2016·江西五校联考)cos 350°-2sin 160°-=( )A .- 3B .-32C.32D. 3 解析:选D 原式=----+=cos 10°----=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°= 3.4.已知f (α)=π-απ-α-π-αα,则f ⎝⎛⎭⎪⎫-31π3的值为( ) A. 12 B .-13C .-12D. 13解析:选C ∵f (α)=sin α·cos α-cos αtan α=-cos α,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫10π+π3 =-cos π3=-12.5.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32B.32C .-34D.34解析:选B ∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32. 6.化简:sin ⎝ ⎛⎭⎪⎫π2+α·cos ⎝ ⎛⎭⎪⎫π2-απ+α+π-α⎝ ⎛⎭⎪⎫π2+απ+α=________.解析:原式=cos α·sin α-cos α+sin α-sin α-sin α=-sin α+sin α=0. 答案:07.sin 4π3·cos 5π6·tan ⎝ ⎛⎭⎪⎫-4π3的值是________.解析:原式=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝ ⎛⎭⎪⎫π-π6·tan ⎝ ⎛⎭⎪⎫-π-π3=⎝ ⎛⎭⎪⎫-sin π3·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-tan π3=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334. 答案:-3348.已知cos ⎝ ⎛⎭⎪⎫π6-θ=a (|a |≤1),则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________. 解析:由题意知,cos ⎝⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a .sin ⎝⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝⎛⎭⎪⎫5π6+θ+sin ⎝⎛⎭⎪⎫2π3-θ=0.答案:09.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°·(-sin 1 050°)+tan 945° =-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45°=32×32+12×12+1=2. 10.已知sin(3π+α)=2sin ⎝ ⎛⎭⎪⎫3π2+α,求下列各式的值: (1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α.解:由已知得sin α=2cos α. (1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α =sin 2α+sin 2αsin 2α+14sin 2α=85.三上台阶,自主选做志在冲刺名校1.sin 21°+sin 22°+…+sin 290°=________.解析:sin 21°+sin 22°+…+sin 290°=sin 21°+sin 22°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 21°+sin 290°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 244°+cos 244°)+sin 245°+sin 290°=44+12+1=912.答案:9122.已知f (x )=cos2n π+x2n π-xcos2n +π-x ](n ∈Z).(1)化简f (x )的表达式;(2)求f ⎝ ⎛⎭⎪⎫π2 014+f ⎝ ⎛⎭⎪⎫503π1 007的值.解:(1)当n 为偶数,即n =2k (k ∈Z)时, f (x )=cos 2k π+x2k π-xcos2k +π-x ]=cos 2x ·sin 2-xcos 2π-x =cos 2x-sin x2-cos x2=sin 2x ;当n 为奇数,即n =2k +1(k ∈Z)时,f (x )=cos 2k +π+x ]·sin 2k +π-x ]cos2k ++1]π-x }=cos 2[2k π+π+x 2[2k π+π-x cos 2k +π+π-x=cos2π+x2π-xcos 2π-x=-cos x 2sin 2x -cos x 2=sin 2x ,综上得f (x )=sin 2x .(2)由(1)得f ⎝ ⎛⎭⎪⎫π2 014+f ⎝ ⎛⎭⎪⎫503π1 007=sin 2π2 014+sin 21 006π2 014 =sin 2π2 014+sin 2⎝ ⎛⎭⎪⎫π2-π2 014 =sin2π2 014+cos 2π2 014=1. 第三节 三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z).[小题体验]1.下列函数中,最小正周期为π的奇函数是( ) A .y =cos 2x B .y =sin 2x C .y =tan 2x D .y =sin ⎝⎛⎭⎪⎫2x -π2答案:B2.(教材习题改编)函数y =4sin x ,x ∈[-π,π]的单调性是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,在⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上都是减函数C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎢⎡⎦⎥⎤π2,π和⎣⎢⎡⎦⎥⎤-π,-π2上是增函数,在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数答案:B3.(教材习题改编)函数y =-tan ⎝⎛⎭⎪⎫x +π6+2的定义域为________________.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π3,k ∈Z1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时的情况. 3.三角函数存在多个单调区间时易错用“∪”联结.[小题纠偏]1.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-1B .-22C.22D .0解析:选B 由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1, 故函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π4上的最小值为-22.2.函数y =cos ⎝⎛⎭⎪⎫π4-2x 的单调减区间为____________. 解析:由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝ ⎛⎭⎪⎫2x -π4得2k π≤2x -π4≤2k π+π(k ∈Z),解得k π+π8≤x ≤k π+5π8(k ∈Z).所以函数的单调减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z).答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z)考点一 三角函数的定义域与值域基础送分型考点——自主练透[题组练透]1.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3解析:选A ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝ ⎛⎭⎪⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1.∴y ∈[-3,2],∴y max +y min =2- 3.2.(易错题)函数y =1tan x -1的定义域为__________________.解析:要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+kx ,k ∈Z ,即⎩⎪⎨⎪⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z.故函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z .答案:⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≠π4+k π且x ≠π2+k π,k ∈Z3.函数y =lg(sin 2x )+9-x 2的定义域为______________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2.答案:⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π24.(易错题)求函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫|x |≤π4的最大值与最小值.解:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22. ∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎪⎫|x |≤π4的最大值为54,最小值为1-22.[谨记通法]1.三角函数定义域的2种求法(1)应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域,如“题组练透”第2题易忽视.(2)转化为求解简单的三角不等式求复杂函数的定义域. 2.三角函数最值或值域的3种求法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x 、cos x 、sin x cos x 或sin x ±co s x 换成t ,转化为二次函数,如“题组练透”第4题.考点二 三角函数的单调性重点保分型考点——师生共研[典例引领]写出下列函数的单调区间:(1)f (x )=2sin ⎝⎛⎭⎪⎫x +π4,x ∈[0,π];(2)f (x )=|tan x |;(3)f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6,x ∈⎣⎢⎡⎦⎥⎤-π2,π2. 解:(1)由-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,得-3π4+2k π≤x ≤π4+2k π,k ∈Z.又x ∈[0,π],所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤0,π4,递减区间为⎣⎢⎡⎦⎥⎤π4,π.(2)观察图象可知,y =|tan x |的增区间是⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z ,减区间是⎝ ⎛⎦⎥⎤k π-π2,k π,k ∈Z.(3)当2k π-π≤2x -π6≤2k π(k ∈Z),即k π-5π12≤x ≤k π+π12,k ∈Z ,函数f (x )是增函数.因此函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的单调递增区间是⎣⎢⎡⎦⎥⎤-5π12,π12,递减区间为⎣⎢⎡⎦⎥⎤-π2,-5π12,⎣⎢⎡⎦⎥⎤π12,π2.[由题悟法]求三角函数单调区间的2种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[提醒] 求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域.[即时应用]1.函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为______.解析:由已知函数为y =-sin ⎝ ⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间即可.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z.故所给函数的单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z).答案:⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z)2.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析:∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在⎣⎢⎡⎦⎥⎤π3,π2上单调递减知,π2ω=π3,∴ω=32.答案:32考点三 三角函数的奇偶性、周期性及对称性常考常新型考点——多角探明[命题分析]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.常见的命题角度有: (1)三角函数的周期;(2)求三角函数的对称轴或对称中心; (3)三角函数对称性的应用.[题点全练]角度一:三角函数的周期1.函数y =1-2sin 2⎝ ⎛⎭⎪⎫x -3π4是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析:选A y =1-2sin 2⎝ ⎛⎭⎪⎫x -3π4=cos 2⎝ ⎛⎭⎪⎫x -3π4=-sin 2x ,所以f (x )是最小正周期为π的奇函数.2.(2015·长沙一模)若函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3.答案:2或3角度二:求三角函数的对称轴或对称中心3.(2015·太原模拟)已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π,则函数f (x )的图象( )A .关于直线x =π4对称B .关于直线x =π8对称C .关于点⎝ ⎛⎭⎪⎫π4,0对称D .关于点⎝ ⎛⎭⎪⎫π8,0对称解析:选B ∵f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4的最小正周期为π,∴2πω=π,ω=2,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4.当x =π4时,2x +π4=3π4,∴A ,C 错误;当x =π8时,2x +π4=π2,∴B 正确,D 错误.角度三:三角函数对称性的应用4.(2015·西安八校联考)若函数y =cos ⎝ ⎛⎭⎪⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,则ω的最小值为( ) A .1 B .2 C .4 D .8解析:选Bπω6+π6=k π+π2(k ∈Z)⇒ω=6k +2(k ∈Z)⇒ωmin =2.5.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为( )A .-34B .-14C .-12D.34解析:选D 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f ⎝ ⎛⎭⎪⎫16=12cos π6=34.[方法归纳]函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.一抓基础,多练小题做到眼疾手快 1.函数y = cos x -32的定义域为( ) A. ⎣⎢⎡⎦⎥⎤-π6,π6 B. ⎣⎢⎡⎦⎥⎤k π-π6,k π+π6(k ∈Z) C. ⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6(k ∈Z) D .R解析:选C ∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z. 2.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π,则f ⎝ ⎛⎭⎪⎫π8=( ) A .1 B. 12C .-1D .-12解析:选 A 由题设知2πω=π,所以ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,所以f ⎝ ⎛⎭⎪⎫π8=sin ⎝⎛⎭⎪⎫2×π8+π4=sin π2=1.3.(2016·石家庄一模)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A. ⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B. ⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z)C. ⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z)D. ⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z). 4.函数f (x )=sin(-2x )的单调增区间是____________. 解析:由f (x )=sin(-2x )=-sin 2x ,2k π+π2≤2x ≤2k π+3π2得k π+π4≤x ≤k π+3π4(k ∈Z).答案:⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z)5.函数y =3-2cos ⎝⎛⎭⎪⎫x +π4的最大值为______,此时x =______.解析:函数y =3-2cos ⎝ ⎛⎭⎪⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π,即x =3π4+2k π(k ∈Z).答案:53π4+2k π(k ∈Z) 二保高考,全练题型做到高考达标1.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( )A. ⎝ ⎛⎭⎪⎫-π4,0B. ⎝⎛⎭⎪⎫0,π2C. ⎝ ⎛⎭⎪⎫π2,3π4D. ⎝⎛⎭⎪⎫3π4,π解析:选B 由f (x )=-cos 2x 知递增区间为⎣⎢⎡⎦⎥⎤k π,k π+π2,k ∈Z ,故只有B 项满足.2.(2015·河北五校联考)下列函数最小正周期为π且图象关于直线x =π3对称的函数是( )A .y =2sin ⎝⎛⎭⎪⎫2x +π3 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π6C .y =2sin ⎝ ⎛⎭⎪⎫x 2+π3D .y =2sin ⎝⎛⎭⎪⎫2x -π3 解析:选B 由函数的最小正周期为π,可排除C.由函数图象关于直线x =π3对称知,该直线过函数图象的最高点或最低点,对于A ,因为sin ⎝⎛⎭⎪⎫2×π3+π3=sin π=0,所以选项A 不正确.对于D ,sin ⎝ ⎛⎭⎪⎫2×π3-π3=sin π3=32,所以选项D 不正确.对于B ,sin ⎝⎛⎭⎪⎫2×π3-π6=sin π2=1,所以选项B 正确.3.已知函数f (x )=-2sin(2x +φ)(|φ|<π), 若f ⎝ ⎛⎭⎪⎫π8=-2,则f (x )的一个单调递增区间可以是( )A. ⎣⎢⎡⎦⎥⎤-π8,3π8B. ⎣⎢⎡⎦⎥⎤5π8,9π8C. ⎣⎢⎡⎦⎥⎤-3π8,π8 D. ⎣⎢⎡⎦⎥⎤π8,5π8 解析:选D ∵f ⎝ ⎛⎭⎪⎫π8=-2,∴-2sin ⎝ ⎛⎭⎪⎫π4+φ=-2,sin ⎝ ⎛⎭⎪⎫π4+φ=1.又∵|φ|<π,∴φ=π4,∴f (x )=-2sin ⎝⎛⎭⎪⎫2x +π4, 由2k π+π2≤2x +π4≤2k π+3π2,k ∈Z ,得k π+π8≤x ≤k π+5π8,k ∈Z.当k =0时,得π8≤x ≤5π8.4.若函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( )A. 5π12B. π4C. π3D. π6解析:选A 由题意得T 2=π2,T =π,ω=2.又2x 0+π6=k π(k ∈Z),x 0=k π2-π12(k∈Z),而x 0∈⎣⎢⎡⎦⎥⎤0,π2,所以x 0=5π12.5.若函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,且|φ|<π2在区间⎣⎢⎡⎦⎥⎤π6,2π3上是单调减函数,且函数值从1减少到-1,则f ⎝ ⎛⎭⎪⎫π4=( )A. 12B.22C.32D .1解析:选C 由题意得函数f (x )的周期T =2⎝⎛⎭⎪⎫2π3-π6=π,所以ω=2,此时f (x )=sin(2x +φ),将点⎝ ⎛⎭⎪⎫π6,1代入上式得sin ⎝ ⎛⎭⎪⎫π3+φ=1⎝⎛⎭⎪⎫|φ|<π2,所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,于是f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π2+π6=cos π6=32. 6.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝ ⎛⎭⎪⎫π6+x=f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6的值为________.解析:∵f ⎝⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝ ⎛⎭⎪⎫π6=±2. 答案:2或-27.函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是________________. 解析:由2x +π4=k π(k ∈Z)得,x =k π2-π8(k ∈Z).∴函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是⎝ ⎛⎭⎪⎫k π2-π8,0,k ∈Z. 答案:⎝⎛⎭⎪⎫k π2-π8,0,k ∈Z 8.已知x ∈(0,π],关于x 的方程2 sin ⎝⎛⎭⎪⎫x +π3=a 有两个不同的实数解,则实数a的取值范围为________.解析:令y 1=2sin ⎝⎛⎭⎪⎫x +π3,x ∈(0,π],y 2=a ,作出y 1的图象如图所示.若2sin ⎝⎛⎭⎪⎫x +π3=a 在(0,π]上有两个不同的实数解,则y 1与y 2应有两个不同的交点,所以3<a <2.答案:(3,2)9.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.(1)求函数f (x )图象的对称轴方程; (2)求f (x )的单调增区间;(3)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)f (x )=2sin ⎝⎛⎭⎪⎫2x +π4,令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z.∴函数f (x )图象的对称轴方程是x =k π2+π8,k ∈Z. (2)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,则k π-3π8≤x ≤k π+π8,k ∈Z.故f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.(3)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,∴-1≤sin ⎝⎛⎭⎪⎫2x +π4≤22,∴-2≤f (x )≤1, ∴当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2. 10.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫0<φ<2π3的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32,求f (x )的单调递增区间.解:∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ). ∴sin(2x +φ)=sin(-2x +φ),将上式展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32时,sin ⎝ ⎛⎭⎪⎫2×π6+φ=32,即sin ⎝⎛⎭⎪⎫π3+φ=32.又∵0<φ<2π3,∴π3<π3+φ<π.∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3.令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z.∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z.三上台阶,自主选做志在冲刺名校1.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π6,α.当α=π3时,f (x )的值域是______;若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则a 的取值范围是______.解析:若-π6≤x ≤π3,则-π6≤2x +π6≤5π6,此时-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1,即f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1. 若-π6≤x ≤α,则-π6≤2x +π6≤2α+π6.因为当2x +π6=-π6或2x +π6=7π6时,sin ⎝ ⎛⎭⎪⎫2x +π6=-12,所以要使f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

≈1.73)
3
【解析】记气球的高度为AD,交CB延长线于D,
在Rt△ACD中,AC=92m,在△ABC中,
BC= ·sin∠BAC=
AC ×0si.n60A=B6C0(m). 92 答0 . 9案2 :60
·9s2in37°≈ sin 67
感悟考题 试一试 3.(2016·西安模拟)如图,要测量底部不 能到达的电视塔的高度,选择甲、乙两观 测点.在甲、乙两点测得塔顶的仰角分别 为45°,30°,在水平面上测得电视塔与甲
S△=
(R为三角形外接圆半
径,ra 为4 b R c三角rp 形内p切p 圆a半p 径b,pp =c (a+b+c)).
1
2
2.注意结果的准确性 解三角形时,为避免误差的积累,应尽可能使用已知的 数据(原始数据),少用间接求出的量.
【小题快练】 链接教材 练一练 1.(必修5P20习题1.2B组T1改编)已知△ABC的角A,B, C的对边分别为a,b,c,则△ABC的面积公式可表示为
()
A.S1absinA 2
C.S1a2sinAsinC 2 sinB
B.S1bccos A 2
D.S1a2sinBsinC 2 sinA
【解析】选D.因为S△=1 absin C=1 bcsin A=1 acsin B,
所以A和B都不正确.因为2
2
2
b a ,即 basinB,
所以S△=1 a b s in C 1 aa s in siB nB s in C sin 故A 1 选a 2 Ds i.n B ss iinn A C ,
底部 求 可达 竖 直 高 底部 度 不可

∠ACB=α 解直角三角形 BC=a AB=atanα
∠ACB=α ∠ADB=β
CD=a
解两个直角三角形
AB=
atantan tan tan
求AB 图形
山两 求侧 水

距 离
河两 岸
需要测量 的元素
∠ACB=α AC=b BC=a
∠ACB=α ∠ABC=β
2 2s in A 2 s in A
2.(必修5P24复习参考题A组T5改编)如图,
从气球A上测得正前方的河流的两岸B,C
的俯角分别为67°,30°,此时气球的高度
是46m,则河流的宽度BC约等于
m.(用四舍五
入法将结果精确到个位.参考数据:sin67°≈0.92,
cos67°≈0.39,sin37°≈0.60,cos 37°≈0.80,
图形表示 例:①北偏东m°
方向角
正北或正南方向线与目 标方向线所成的锐角,通 常表达为北(南)偏东 ②南偏西n° (西)××度
术语名称
术语意义
图形表示
坡角 坡面与水平面的夹角 设坡角为α,
坡度为i,则
坡度
坡面的垂直高度h和水 i= h =tanα
平宽度l的比
l
【特别提醒】
1.三角形的面积公式
解题时特殊情况下可考虑下列公式.
所以DB=
DB AB , sinDAB sinADB
A B sin D A B 5 (3 3 )sin 4 5 1 03 海 里 ,
sin A D B sin 1 0 5
又∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,
BC=20 海里,
3
在△DBC中,由余弦定理得
CD2=BD2+BC2-2BD·BC·cos∠DBC
由正弦定理,得BC200sin30100 2(米), sin 45
所以,河的宽度为
BCsin75100 2 2 650 31米. 4
5.(2016·衡阳模拟)A,B是海面上
位于东西方向相距5(3+ )海里的
3
两个观测点.现位于A点北偏东
45°,B点北偏西60°的D点有一艘
轮船发出求救信号,位于B点南偏西60°且与B点相距
CB=a
解法 用余弦定理
AB= a2b22abcos
用正弦定理
AB= asin
sin( )
求AB 图形
求 水河 平对 距岸 离
需要测量 的元素
∠ADC=α ∠BDC=β ∠BCD=δ ∠ACD=γ
CD=a
解法
在△ADC中, AC= a s in 在△sBinD(C中 ,)
BC=
在△AaBsCin中 ,应用 余弦s定in (理 求 ) AB
3.实际问题中的常用术语
术语名称
术语意义
仰角与 俯角
在目标视线与水平视线所成 的角中,目标视线在水平视线 上方的叫做仰角,目标视线在 水平视线下方的叫做俯角
方位角
从某点的指北方向线起按顺 时针方向到目标方向线之间 的水平夹角叫做方位角.方位 角α的范围是0°≤α<360°
图形表示
术语名称
术语意义
第七节 应用举例
【知识梳理】
1.三角形的面积公式
S△ABC= 1 aha= 1 bhb= 1 chc
=______2 ___=_2 ______2 __=_________.
1 absin C 1 bcsin A 1 casin B来自222
2.实际测量中的常见问题
求AB
图形
需要测量 的元素
解法
=300+1200-2× 所以CD=30(海10里3),则20需3要的1时90间0,t= =1(小时).
2 30 30
x=500(m).
4.(2016·长沙模拟)一学生在河岸紧靠河边笔直行走,
经观察,在河对岸靠近河边有一参照物与学生前进方向
成30度角,学生前进200米后,测得该参照物与前进方向
成75度角,则河的宽度为 ( )
A.50( +1)米
B.100( +1)米
C.50 3 米
D.100 3 米
2
2
【解析】选A.如图所示,在△ABC中∠BAC=30°, ∠ACB=75°-30°=45°,AB=200米,
20 海里的C点的救援船立即前往营救,其航行速度为
3
30海里/小时,该救援船到达D点需要的时间为( )
A.1小时
B.2小时
C.(1+ )小时 D. 小时
3
3
【解析】选A.由题意知AB=5(3+3 )海里,
∠DBA=90°-60°=30°,∠DAB=45°,
所以∠ADB=105°,
在△DAB中,由正弦定理得
地连线及甲、乙两地连线所成的角为120°,甲、乙两地
相距500m,则电视塔的高度是 ( )
A.100 m 2
B.400m
C.200 m
3
D.500m
【解析】选D.设塔高为xm,则由已知可得
BC=xm,BD=
3
xm,由余弦定理可得BD2=BC2+CD22BC·CDcos∠BCD,即3x2=x2+5002+500x,解得
相关文档
最新文档