华南理工大学 线性代数与解析几何 习题答案 (6)
2022年华南理工数学分析考研试题及解答

2022年华南理工数学分析考研试题及解答n例1.设f:RnRn,且fC1R,满足f某fy某y,对于任意n,都成立.试证明f可逆,且其逆映射也是连续可导的.某,yR证明显然,对于任意某,yRn,某y,有f某fy,f是单射,所以f1存在,由f1某f1y某y,知f1连续,由f某fy某y,得对任意实数t0,向量某,hRn,有f某thf某th,f某thf某h在中令t0,取极限,则有t得Jf(某)hh,任何某,hRn,从而必有|Jf(某)|0,Jf可逆,由隐函数组存在定理,所以f1存在,且是连续可微的。
例2.讨论序列fntinnt在0,上一致收敛性.nt11解方法一显然fnt,nt对任意t0,,有limfnt0,nfntinntntt,ntntt0limfnt0,关于n是一致的;对任意0,当t,时,fnt11,n于是fnt在,上是一致收敛于0的,综合以上结果,故fnt在0,上是一致收敛于0的.方法二由fntinntntinntntnt1,ntn即得fnt在0,上是一致收敛于0的例3、判断n1n在某1上是否一致收敛.某n例4.设f某在,上一致连续,且2f某d某收敛,证明limf某0.某2某yz例5.求有曲面21所围成的立体的体积其中常数a,b,c0.abc例6、设D为平面有界区域,f某,y在D内可微,在D上连续,在D的边界上f某,y0,在D内f满足方程试证:在D上f某,y0.fff.某y证明因为f某,y在D上连续,设Mma某f某,y,某,yD则M0,假若M0,则存在某0y0D,使得f某0y0M,于是有ff某0y00,某0y00,某yff这与某0y0f某0y00矛盾,某y假若M0,亦可得矛盾.同理,对mminf某,y,亦有m0,某,yD故f某,y0,某,yD.一.求解下列各题1、设,数列{某}满足lima0nn某na某na。
0,证明limn某na21、解由0lim某na2alim1,n某an某ann知lim2a1,所以lim某na.nn某anco某,当某为有理数f(某)2、设当某为无理数,0,证明f(某)在点某kk1(k为任意整数)处连续,而在其它点处不连续。
(仅供参考)线性代数与解析几何-课后答案-(代万基-廉庆荣)第6章习题答案

2 0
,基础解系为
1
,
2
。
1 0
0
1
0
1
(2)注:将该方程组化简,得 2x4x10x2 x3 0 ,让 x1, x2 为自由未知数。
1 0
1 0
通解为
k1
0
2
k2
1
1
,基础解系为 0
,
1
。
2 1
0
0
0
0
1
1
(3) 通解为 k 2 ,基础解系为 2 。
1
1
思考题 6-1
1)正确。
x1 x2 0
x1 x2 1
2)不正确。
Ax
b
有可能无解,例如,
x1
x2
0
有唯一解,但
x1
x2
2
无
3x1 x2 0
3x1 x2 1
解。
3)正确。因为 m r A r(A,b) m ,r(A,b) r A ,所以 Ax b 一定有解.
4)正确。因为 r A m n ,所以 Ax 0 有非零解.
两式相减,得
b s1a1 s2a2 snan,
(l1 s1)a1 (l2 s2 )a2 (ln sn )an 0 .
由于向量组 a1,a2, ,an 线性无关,因此
li si 0 (i 1,2, , n) ,即 li si (i 1,2, , n).
故向量 b 由 a1,a2, ,an 线性表示的表达式是唯一的。
0
0 0
1 3
0 a2 1
a 1 0 0 0
1 0
0 a2 1
a 1
3a 3
0 1 a 1
线性代数习题及答案-华南理工大学工版

习题一1.计算下列排列的逆序数 1)9级排列 134782695; 2)n 级排列 (1)21n n -。
解:(1)(134782695)04004200010τ=++++++++= ;(2)[(1)21]n n τ-=(1)(1)(2)102n n n n --+-+++=。
2.选择i 和k ,使得: 1)1274i 56k 9成奇排列;2)1i 25k 4897为偶排列。
解:(1)令3,8i k ==,则排列的逆序数为:(127435689)5τ=,排列为奇排列。
从而3,8i k ==。
(2)令3,6i k ==,则排列的逆序数为:(132564897)5τ=,排列为奇排列。
与题意不符,从而6,3i k ==。
3.由定义计算行列式11122122313241424344455152535455000000000a a a a a a a a a a a a aaaa 。
解:行列式=123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-∑,因为123,,j j j 至少有一个大于3,所以123123j j j a a a中至少有一数为0,从而12345123450j j j j j a a a a a =(任意12345,,,,j j j j j ),于是123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-=∑。
4.计算行列式:1)402131224---; 2)1111111*********----; 3)41241202105200117;4)1464161327912841512525--;5)2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++++++++。
线性代数与几何答案华南理工大

线性代数与几何答案华南理工大【篇一:华南理工大学线性代数与解析几何试卷(14)】s=txt>华南理工大学期末考试《线性代数-2007》试卷a注意事项:1. 考前请将密封线内填写清楚;2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:开(闭)卷;一、单项选择题(每小题2分,共30分)。
1.设矩阵a1 2??3 4??, b1 23??456??, c??14?25,则下列矩阵运算无意义的是【】36??a. bacb. abcc. bcad. cab2.设n阶方阵a满足a2–e =0,其中e是n阶单位矩阵,则必有【】a. a=a-1b. a=-ec. a=ed. det(a)=13.设a为3阶方阵,且行列式det(a)=?12,则a*【】 a. ?14b. 14c. ?1d. 1 4.设a为n阶方阵,且行列式det(a)=0,则在a的行向量组中【】a.必存在一个行向量为零向量b.必存在两个行向量,其对应分量成比例c. 存在一个行向量,它是其它n-1个行向量的线性组合d. 任意一个行向量都是其它n-1个行向量的线性组合5.设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是【】 a.a1?a2,a2?a3,a3?a1 b. a1,a2,2a1?3a2 c. a2,2a3,2a2?a3 d.a1,a2,a1?a36.向量组(i): a1,?,am(m?3)线性无关的充分必要条件是【】a.(i)中任意一个向量都不能由其余m-1个向量线性表出b.(i)中存在一个向量,它不能由其余m-1个向量线性表出 c.(i)中任意两个向量线性无关d.存在不全为零的常数k1,?,km,使k1a1kmam?0【】a.a的行向量组线性相关 b. a的列向量组线性相关 c. a的行向量组线性无关 d. a的列向量组线性无关a1x1a2x2a3x308.设ai、bi均为非零常数(i=1,2,3),且齐次线性方程组?bx?bx?bx?02233?11的基础解系含2个解向量,则必有【】a.a1a2b2b30 b.a1a2b1b20 c.a1a3a1a2a30 d.b1b2b1b2b3【】9.方程组?x?2x?x?1 有解的充分必要的条件是1233 x3x2xa123?2x1x2x31a. a=-3b. a=-2c. a=3d. a=2【】a. 方程组有无穷多解b. 方程组可能无解,也可能有无穷多解c. 方程组有唯一解或无穷多解d. 方程组无解12. n阶方阵a相似于对角矩阵的充分必要条件是a有n个【】a.互不相同的特征值b.互不相同的特征向量c.线性无关的特征向量d.两两正交的特征向量13. 下列子集能作成向量空间rn的子空间的是【】a. {(a1,a2,?,an)|a1a2?0}b. {(a1,a2,?,an)|c. {(a1,a2,?,an)|a1?1}d. {(a1,a2,?,ana)|?an1i?nii0} 1}14.【】1001?1 2a. 011b. ?5?2-10 1 -1c. ?1 -11 0d.0 -10 -11 0 015.若矩阵a?0 2 a正定,则实数a的取值范围是【】 0 a 8?? a.a 8b. a>4c.a<-4 d.-4 <a<4二、填空题(每小题2分,共20分)。
华南理工大学线性代数 课后习题答案

n
0 0 0
0
0 0 0
解:D (1) n 1 0
习题一部分讲解
第 一 章 7 题 : 求 A 2 和 A 2 n 1 , 其 中 1 1 A 1 1 1 1 2 解: A 1 1 4 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 4 0 0 0 1 4 0 0 0 4 0 0 0 4 0 0 1 1 1 1
T
a11 证: 设A a n1 c11 T 令AA C c n1
a1n ann c1n O cnn
n k 1
n k 1
n k 1
aik aik aik 2 =0 (i=1,2,...,n) cii aik aki 则 aik 0 (i 1, 2,..., n; k 1, 2,..., n) 0 0 所以,A O 0 0 第一章14 题: (E A)(E A A A ) E
(是方阵)
(2) (En uu )(En uu ) En ( (u u ) )uu En
T T T T
令
当u O, 矩阵uu T O, 则数( (u T u ) ) 0 当 u u 1 0,
T
uT u 1
第一章25题 : 设 A为 n阶矩阵, x是每个元素都是1的 n维列向量。 证明:(1) 列向量 Ax的 第 i个 元 素等于 A的 第 i行 元素之和 ; 1 a11 a1n 证: 记 A , x a n1 ann 1 a11 a12 a1n 1 n a1 j A第1行 元素之和 a21 a22 a2 n j 1 Ax 1 n A第 n行 元素之和 a a 1 nj a a n2 nn n1 j 1 所以,列向量 Ax的第 i个元素等于 A的第 i行 元素之和
华工2006-2007线性代数试题及解答

华南理工大学期末考试《 2006线性代数 》试卷A一、填空题(每小题4分,共20分)。
0.已知正交矩阵P 使得100010002T P AP ⎛⎫⎪=- ⎪ ⎪-⎝⎭,则2006()T P A E A P +=1.设A 为n 阶方阵,12,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则det( 2A )=2.设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有无数多个解的充分必要条件是:rank(A)=rank(A,B)<n 3.4.若向量组α=(0,4,2),β=(2,3,1),γ=(t ,2,3)的秩为2,则t=-85.231511523()5495827x D x xx -=-,则0)(=x D 的全部根为:1、2、-3二、 选择题(每小题4分,共20分)1.行列式001010100⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅的值为( c )。
DA , 1,B ,-1C ,(1)2(1)n n -- D ,(1)2(1)n n +-2.对矩阵n m A ⨯施行一次行变换相当于( A )。
A , 左乘一个m 阶初等矩阵,B ,右乘一个m 阶初等矩阵C , 左乘一个n 阶初等矩阵,D ,右乘一个n 阶初等矩阵3.若A 为m ×n 矩阵,()r A r n =<,{|0,}nM X AX X R ==∈。
则( C )。
DA ,M 是m 维向量空间,B , M 是n 维向量空间C ,M 是m-r 维向量空间,D ,M 是n-r 维向量空间4.若n 阶方阵A 满足,2A =0,则以下命题哪一个成立( A )。
DA , ()0r A =,B , ()2n r A =C , ()2n r A ≥,D ,()2n r A ≤5.若A 是n 阶正交矩阵,则以下命题那一个不成立( D )。
A ,矩阵A T 为正交矩阵,B ,矩阵1A -为正交矩阵C ,矩阵A 的行列式是±1,D ,矩阵A 的特征根是±1三、解下列各题(每小题6分,共30分) 1.若A 为3阶正交矩阵,*A 为A 的伴随矩阵, 求det (*A )2.计算行列式111111111111a a a a。
线性代数行列式部分练习题及答案

《线性代数与解析几何》练习题行列式部分一.填空题:1.已知41132213----=D 用ij A 表示D 的元素ij a 的代数余子式,则21222323______A A A --+=,31323323____A A A --+=,行列式__________333231232221131211=A A A A A A A A A 2.12434003209106412a a a a a 的的代数余子式的值等于________。
3.设512312123122x x x D xxx=,则D 的展开式中3x 的系数为______4.4阶行列式111213142122232414423132333441424344a a a a a a a a D a a a a a a a a a a =展开式中含有因子的项为______和______5.行列式234234234234a a a ab b b b Dc c c c dd d d ==______6.设xx x x x f 321132213321)(=则(4)_____f = 7.设0112520842111111154115212111111541132111111323232=++-x x xx x xx x x上述方程的解______________________=x8.行列式112233440000000a b a b D b a b a ==__________ 9.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ 只有零解,则λ应满足_________条件。
10.若方程123123123020kx x x x kx x x x x ++=⎧⎪+-=⎨⎪-+=⎩有非零解,则k =_________或k =________。
11.行列式xy yyx y yyx=______ 12.行列式1110110110110111=______13.行列式000000000ab c de f=______14.方程组12312321231x x x x x x x x x λλλλλ++=⎧⎪++=⎨⎪++=⎩ 有唯一解时,对λ的要求是______二.计算题: 1.已知5阶行列式270513422111542131122254321=求434241A A A ++和4544A A +,其中ij A 是元素ij a 的代数余子式。
高等数学-微积分下-习题册答案-华南理工大学 (6)

《高等数学》(下册)测试题一一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)1.设有直线3210:21030x y z L x y z +++=⎧⎨--+=⎩ 及平面:4220x y z π-+-=,则直线L ( A )A .平行于平面π;B .在平面π上;C .垂直于平面π;D .与平面π斜交.2.二元函数22,(,)(0,0)(,)0, (,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处( C )A .连续、偏导数存在;B .连续、偏导数不存在;C .不连续、偏导数存在;D .不连续、偏导数不存在.3.设()f x 为连续函数,1()d ()d ttyF t y f x x =⎰⎰,则(2)F '=( B )A .2(2)f ;B .(2)f ;C .(2)f -D .0.4.设∑是平面132=++z yx 由0≥x ,0≥y ,0≥z 所确定的三角形区域,则曲面积分(326)d x y z S ∑++⎰⎰=( D )A .7;B .221; C .14; D .21. 5.微分方程e 1x y y ''-=+的一个特解应具有形式( B )A .e x a b +;B .e x ax b +;C .e x a bx +;D .e x ax bx +.二、填空题(每小题3分,本大题共15分)1.设一平面经过原点及点(6,3,2)-,且与平面428x y z -+=垂直,则此平面方程为2230x y z +-=; 2.设arctan1x yz xy-=+,则d |z =24dx dy-; 3.设L 为122=+y x 正向一周,则2e d x Ly =⎰ 0 ;4.设圆柱面322=+y x ,与曲面xy z =在),,(000z y x 点相交,且它们的交角为π6,则正数=0Z 32; 5.设一阶线性非齐次微分方程)()(x Q y x P y =+'有两个线性无关的解21,y y ,若12y y αβ+也是该方程的解,则应有=+βα 1 .三、(本题7分)设由方程组e cos e sin uux vy v⎧=⎪⎨=⎪⎩确定了u ,v 是x ,y 的函数,求x u ∂∂及x v ∂∂与yv∂∂. 解:方程两边取全微分,则e cos e sin e sin e cos u uu udx vdu vdvdy vdu vdv⎧=-⎪⎨=+⎪⎩ 解出2222cos e sin ,,e sin e cos u uu u xdx ydy du e vdx vdy x y du dv xdy ydx dv vdx vdy x y ----+⎧=+=⎪+⎪⎨-⎪=-+=⎪+⎩从而222222,,u x v y v x x x y x x y y x y∂∂-∂===∂+∂+∂+ 四、(本题7分)已知点)1,1,1(A 及点)1,2,3(-B ,求函数()3ln 32u xy z =-在点A 处沿AB 方向的方向导数.解:{}2122,1,2,,,333AB AB ⎧⎫=-=-⎨⎬⎩⎭2333336,,323232y x z gradu xy z xy z xy z ⎧⎫-=⎨⎬---⎩⎭,{}3,3,6A gradu =- 从而{}212,,3,3,62147333u AB ∂⎧⎫=-⋅-=++=⎨⎬∂⎩⎭五、(本题8分)计算累次积分24112211d e d d e d x xyy x x y x y y y+⎰⎰⎰).解:依据上下限知,即分区域为1212,:12,1:24,2xD D D D x y D x y =⋃≤≤≤≤≤≤≤≤ 作图可知,该区域也可以表示为2:12,2D y y x y ≤≤≤≤从而()2242222112112111d e d d e d d e d e e d xxxy y y y yx y x y x y y x y y y y +==-⎰⎰⎰⎰⎰⎰()()2222211e e2e e e e yy e =-=---=六、(本题8分)计算d d d I z x y z Ω=⎰⎰⎰,其中Ω是由柱面122=+y x 及平面1,0==z z 围成的区域.解:先二后一比较方便,111220122zD z I zdz dxdy z dz πππ⋅==⋅⋅==⎰⎰⎰⎰七.(本题8分)计算32()d x y z S ++∑⎰⎰,其中∑是抛物面222y x z +=被平面2=z 所截下的有限部分.解:由对称性322d 0,d d x S y S x S ==∑∑∑⎰⎰⎰⎰⎰⎰从而223222()d ()d ()d 2x y x y z S z S x y S +++=+=+∑∑∑⎰⎰⎰⎰⎰⎰222220(2D x y d rr πθπ=+==⎰⎰⎰⎰⎰(40411315t ππ⎛⎫=+-=+ ⎪ ⎪⎝⎭⎰八、(本题8分)计算22222(4cos )d cos d L x x x x x x y y y y y+-⎰,L 是点ππ(,)22A 到点(π,2π)B 在上半平面)0(>y 上的任意逐段光滑曲线.解:在上半平面)0(>y 上2223222322cos cos sin Q x x x x x x x x y y y y y y ⎛⎫∂∂=-=-+ ⎪∂∂⎝⎭223223222(4cos )0cos sin P x x x x x x Qx y y y y y y y y x∂∂∂=+=-+=∂∂∂且连续, 从而在上半平面)0(>y 上该曲线积分与路径无关,取π(π,)2C22222222424415(4cos )d cos d 12L AC CB x x x x y y y πππππππππ=+=+-=-⎰⎰⎰⎰⎰ 九、(本题8分)计算222()d d ()d d ()d d x y y z y z z x z x x y +++++∑⎰⎰,其中∑为半球面221y x z --=上侧.解:补1:0z ∑=取下侧,则构成封闭曲面的外侧11222()d d ()d d ()d d x y y z y z z x z x x y ∑+∑∑+++++=-∑⎰⎰⎰⎰⎰⎰()122223211133132D D x y dv x dxdy dv x dxdy dxdy πΩ∑Ω+=++-=+=⋅⋅+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2113400011922244d r dr r πππθππ=+=+⋅=⎰⎰ 十、(本题8分)设二阶连续可导函数)(x f y =,t s x =适合042222=∂∂+∂∂syt y ,求)(x f y =.解:21,y s y f f t t s t∂-∂''=⋅=⋅∂∂222223222211,y s s s y f f f f f t t t t t s s t t ∂∂--∂∂⎛⎫⎛⎫⎛⎫'''''''==+⋅== ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭ 由已知222223222440,0,y y s s f f f t s t t t∂∂-⎛⎫'''''+=⇒+⋅+= ⎪∂∂⎝⎭即()()()()()()()2221420,40,4x f x xf x x f x x f x c '⎡⎤'''''++=+=+=⎣⎦()()1122,arctan 422c c xf x f x c x '==++ 十一、(本题4分)求方程的x y y 2cos 4=+''通解. 解:解:对应齐次方程特征方程为21,240,2r r i +==±非齐次项()cos2,f x x =,与标准式()()()cos sin x m l f x e P x x P x x αββ=+⎡⎤⎣⎦ 比较得{}max ,0,2n m l i λ===,对比特征根,推得1k =,从而特解形式可设为()()*12cos sin cos 2sin 2,k xn n y x Q x x Q x x e ax x bx x αββ=+=+⎡⎤⎣⎦**(2)cos2(2)sin 2,(44)sin 2(44)cos2y a bx x b ax x y a bx x b ax x '''=++-=--+-代入方程得14sin 24cos 2cos 2,0,4a xb x x a b -+=⇒==121cos 2sin 2sin 24y c x c x x x =+++十二、(本题4分)在球面2222a z y x =++的第一卦限上求一点M ,使以M 为一个顶点、各面平行于坐标面的球内接长方体的表面积最小.解:设点M 的坐标为(),,x y z ,则问题即8V xyz =在22220x y z a ++-=求最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数与解析几何》勘误表
第1章:行列式
p.13, 例题 4.1: 解的第二个等号后,应加一个负号。
p.15,第三行(等号后):去掉;
p.17, 第7-8行: (t=1,2,…, j-1,j+1,…,n)
p.19,倒数第4-5行:假设对于n-1阶范德蒙行列式V_{n-1}结论成立,… p .20,第2行: D_{n-1}改为V_{n-1}
p.20, 第6行,定理5.2中: 去掉“若”字
p.21, 倒数第3行: …展开代入而得,
p.24,倒数第1行: (-1)的指数应为“1+2+…+k +1+2+…+k ”
习题1:
第1题(2)答案有误:应为sin2x-cosx^2.
第6题(3)答案有误:(3) n(3n-1)/2, 当n=4k 或者n=4k+3时为偶数,当n=4k+1或4k+2时为奇数.
第10题(4)(5)答案有误:(4)(-1)^{(n-2)(n-1)/2};(5)(-1)^{n-1}a_n 第11题(6)答案有误:
….,当a\neq 0时,D=(-1)^{n(n-1)/2}a^{n-2}[a^2-(n-1)x^2]
p.26, 第12题(2):改为: (33333)
3222
222111
111=+++++++++y x x z z y y x x z z y y x x z z y (3): …= ;)1](2
)2)(1([1--+-+
n a n n a (4): …=.0
∑=-n i i n i b a
p.27, 第14题(4):(此题较难,可以去掉!) 答案有误,应为:
n x n )2
)(1(
n +=,当yz x 42=。
第15题答案有误:为60(11-2)
p .27, 第16题:去掉条件“若x_1+x_2+x_3+x_4=1,则”
第二章:矩阵
p.32, 第7行: 称其为n 阶对角矩阵,…..
p.35, 第5-6行: b_21和b_12互换位置(两处)
p.36, 第7行: 去掉“设 A ,B ,C 分别为….矩阵,”在第10行后增加: 当然,这里假定了矩阵运算是有意义的.
p.39, 第4行: 就得到一个2*2的分块矩阵。
p.46,第2行: 去掉 ′(3个)
p .46,倒数 4-6行:… 为满秩的(或非奇异的,非退化的),…为降秩的(或奇异的,退化的),…
p.47,倒数第6-7行: 去掉 “,n α”(3处 ),另: 本页的 ”T
j T i αα,”均改
为'
',j i αα
p.55,第5行: 相当于对矩阵A 的第i 列乘以一个数k 后,再加到第j 列. ….
习题2:
p.59,第1题(4):去掉(太难)
第3题(2)答案有误: …., 个g(A)=⎪⎪⎪⎭
⎫ ⎝⎛---31216811126211.
第4题答案有误:4. ⎪⎪⎭
⎫ ⎝⎛--b a b b a 2,a,b 为任意实数
p.60, 第5题: … i ,j=1,2,…, r ), i n E 是i n 阶单位矩阵,且n n r
i i =∑=1….
第10题:矩阵的第一行为:a_11, a_12, …, a_1n 第2行为0, a_22,…,a_2n
第14题(2)答案有误:(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---3825220004710050103
141. 第15题(2)答案有误:(1,3)位置的元素2/32改为: 3/32
第15题(5)(6)答案有误:(5)11改为1/11; (6) 54改为1/54
第16题答案有误:去掉矩阵的最后一行
第17题答案有误:(2,3)位置的元素1改为: -1
第18题(1)答案有误:(1)x_1=-17/10, x_2=1/6, x_3=9/10
第19题(2) 答案有误:应为 (2)⎪⎪⎪⎭
⎫ ⎝⎛001100010.
p .62,第21题:l k I I ,改为l k E E ,
第三章
p.66,第4行(关于左手系的定义):…. 将左手四指(母指除外)从x 轴方向以小于π的角度弯向y 轴方向,如果…..
p.76,第18行: 在空间中,给定一点及一个非零向量,….
习题3:
第3题答案有误:….为(2,4,-1)。
第四章:
p. 92,倒数第5-10行(即定理1.2上面的那一段中): “A 弯”改为”B 弯”(3处); 倒数第7行: …. , B 弯与(1.1)的增广矩阵A 弯的秩相同. 所以,…
p.94,第10行:…..x_2或x_1能做为自由未知量吗?
p.99,第1行: k_1, k_2,…,k_{m-1},-1不全为零,….
p.100,教学说明:为了后面讨论的方便,学习完此节(4.3)后,可增加(R^n 中的)维数、基与坐标等内容(参见7.2节的第2部分).
p.100,第18行:…知向量组j s αααα,,...,,21线性相关,…(即,去掉后一个省略号) p.105,第6行:习题6改为习题8;第12行,习题4.8改为习题8
p.106,到数15-16行: 去掉e; ′改为T
p.108,性质5.3的证明中:A\gamma_1=0, A\gamma_2=0,…
到数第2行:性质5.2改为性质5.4
习题4
第1题(1)答案有误: (1) … =(1,1,1,1,2);
p.111,第13题可以去掉(难度较大)。