江苏省无锡市锡中2020年中考第二次模拟考试数学试卷含答案解析

合集下载

江苏省无锡市2020年中考数学模拟试题(含答案)

江苏省无锡市2020年中考数学模拟试题(含答案)

2020年无锡中考数学模拟试题一、选择题(本大题共5小题,每小题3分,共15分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内)1.若点A(m ,n )在一次函数y =3x +b 的图象上,且3m ﹣n >2,则b 的取值范围为 A .b >2 B .b >﹣2 C .b <2 D .b <﹣22.在等腰锐角△ABC 中,AB =AC ,BC =sinA =35,则AB 的长为A .15B .C .20D .3.点G 为△ABC 的重心(△ABC 三条中线的交点),以点G 为圆心作⊙G 与边AB ,AC 相切,与边BC 相交于点H ,K ,若AB =4,BC =6,则HK 的长为A .3 B .3 C .2 D .24.已知二次函数2(2)y a x c =-+,当1x x =时,函数值为1y ;当2x x =时,函数值为2y ,若1222x x ->-,则下列表达式正确的是A .120y y +>B .120y y ->C .12()0a y y ->D .12()0a y y +> 5.如图,将边长为10的等边三角形OAB 位于平面直角坐标系第一象限中,OA 落在x 轴正半轴上,C 是AB 边上的动点(不与端点A 、B 重合),作CD ⊥OB 于点D ,若点C 、D 都在双曲线ky x=(k >0,x >0)上,则k 的值为A .B .18C .D .9第3题 第5题 第6题二、填空题(本大题共4小题,每小题2分,本大题共8分.不需要写出解答过程,只需把答案直接填写在相应的横线上)6.如图,AB 是半圆O 的直径,点C ,D 是半圆O 的三等分点,若弦CD =6,则图中阴影部分的面积为 .7.如图,四边形ABCD 中,已知AB =AD ,∠BAD =60°,∠BCD =120°,若四边形ABCD的面积为AC = .8.如图,在直角坐标系中,点A,B分别在x轴和y轴上,点A的坐标为(﹣2,0),∠ABO =30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=P点运动一周时,点Q运动的总路程是.9.如图,正方形ABCD的边长为4cm,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF的垂线BG,垂足为点G,连接AG,则AG长的最小值为.第7题第8题第9题三、解答题(本大题共5小题,共42分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)10.(本题满分6分)小明家将于5月1日进行自驾游,由于交通便利,准备将行程分为上午和下午.上午的备选地点为:A—鼋头渚、B—常州淹城春秋乐园、C—苏州乐园,下午的备选地点为:D—常州恐龙园、E—无锡动物园.(1)请用画树状图或列表的方法分析并写出小明家所有可能的游玩方式(用字母表示即可);(2)求小明家恰好在同一城市游玩的概率.11.(本题满分6分)如图,已知矩形ABCD,AB=m,BC=6,点P为线段AD上任一点.(1)若∠BPC=60°,请在图中用尺规作图画出符合要求的点P;(保留作图痕迹,不要求写作法)(2)若符合(1)中要求的点P必定存在,求m的取值范围.甲,乙两人同时各接受了300个零件的加工任务,甲比乙每小时加工的数量多,两人同时开工,其中一人因机器故障停止加工若干小时后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(小时)之间的函数关系,观察图象解决下列问题:(1)其中一人因故障,停止加工小时,C点表示的实际意义是,甲每小时加工的零件数量为个;(2)求线段BC对应的函数关系式和D点坐标;(3)乙在加工的过程中,多少小时时比甲少加工75个零件?(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每小时能加工80个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少小时时开始帮助乙?并在图中用虚线画出丙帮助后y与x之间的函数关系的图象.13.(本题满分10分)如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,在AB 边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D运动时间为t(s).(1)若△BDE是以BE为底的等腰三角形,求t的值;(2)若△BDE为直角三角形,求t的值;(3)当S△BCE≤92时,求所有满足条件的t的取值范围(所有数据请保留准确值,参考数据:tan15°=2).如图1,抛物线y=ax²+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).(1)求该抛物线的解析式;(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q 的坐标.参考答案1.D 2.A 3.B 4.C 5.A6.6π7.4 8.8 910.11.12.13.14.(1)∵在抛物线上,∴解得∴抛物线的解析式为(2)过点P作轴交AD于点G,∵∴直线BE的解析式为∵AD∥BE,设直线AD的解析式为代入,可得∴直线AD的解析式为设则则∴当x=1时,PG的值最大,最大值为2,由解得或∴∴最大值=∵AD∥BE,∴∴S四边形APDE最大=S△ADP最大+(3)①如图3﹣1中,当时,作于T.∵∴∴∴可得②如图3﹣2中,当时,当时,当时,Q3综上所述,满足条件点点Q坐标为或或或。

江苏省无锡市2020届中考数学仿真模拟试卷 (含解析)

江苏省无锡市2020届中考数学仿真模拟试卷 (含解析)

江苏省无锡市2020届中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分)1.−2的倒数是()A. 2B. 12C. −12D. 不存在2.函数y=√x−1x+1有意义,则自变量x的取值范围是()A. x>1B. x≠−1C. x≥1D. x≠±13.已知一组数据:60,30,40,50,70,这组数据的平均数和中位数分别是()A. 60,50B. 50,60C. 50,50D. 60,604.如果x−y=5且y−z=5,那么x−z的值是()A. 5B. 10C. −5D. −105.若六边形的每一个外角都相等,则一个外角的度数为()A. 30°B. 45°C. 60°D. 120°6.下列图形中,是轴对称图形但不是中心对称图形的是()A. 等边三角形B. 正六边形C. 正方形D. 圆7.下列计算中,不正确的是()A. a2⋅a5=a10B. a2−2ab+b2=(a−b)2C. −(a−b)=b−aD. 3a3b2÷a2b2=3a8.设函数y=6x 与y=x+1的图象的交点坐标为(a,b),则1a−1b的值为()A. 16B. 6 C. −16D. −69.如图,在△ABC中,∠A=30°,tan B=√32,AC=2√3,则AB的长为()A. 3+√3B. 2+2√3C. 5D. 9210.如图,等边△ABC,AB=3,CD=13AC,P为BC边上一点,则△APD周长的最小值为()A. 2+√13B. 3√3+42C. 3√13D. 2√13二、填空题(本大题共8小题,共16.0分)11.因式分解:4ax2−4ax+a=______.12.2015年黑龙江省地区生产总值实现15083亿元,用科学记数法表示15083亿元为______元.13.圆锥的底面半径是1,高是√3,则这个圆锥的侧面展开图的圆心角的度数是______.14.如图,在菱形ABCD中,BE⊥AB交对角线AC于点E,若∠D=120°,BE=1,则AC=______.15.请写出一个开口向下,并且过坐标原点的抛物线的表达式,y=______ .16.有个两位数,个位上的数字是十位上的数字的2倍,它们的和是12,那么这个两位数是______.17.抛物线y=x2+1的对称轴为____;若点A(2,m)在其图象上,则m=___.18.如图,AC与DF相交于点O,AD//BE//CF,AB=2,BC=5,DF=14,则DE=____.三、解答题(本大题共10小题,共84.0分)19.计算:(1)|−6|−√9+(1−√2)0−(−3).(2)x+4x2+3x −13x+x2.20.(1)解方程:x2+3x−2=0;(2)解不等式组:{2x−3≥x+1x−2>12(x+1).21.如图,已知B,D在线段AC上,且AB=CD,AE=CF,∠A=∠C,求证:BF//DE.22.如图,有5张形状、大小和质地都相同的卡片,正面分别写有字母:A,B,C,D,E和一个等式,背面完全一致.现将5张卡片分成两堆,第一堆:A,B,C;第二堆:D,E,并从第一堆中抽出第一张卡片,再从第二堆中抽出第二张卡片.(1)请用画树状图或列表法表示出所有可能结果;(卡片可用A,B,C,D,E表示)(2)将“第一张卡片上x的值是第二张卡片中方程的解”记作事件M,求事件M的概率.23.某地区农民工人均月收入增长率如图1,该地区农民工人均月收入的部分信息如图2(不完整的条形统计图),根据给出的统计图解答下列问题:图1 图2(1)2012年农民工人均月收入的增长率是多少?(2)补全条形统计图.(3)若2015年、2016年的农民工人均月收入的增长率与2014年相同,请你预测该地区2016年的人均月收入(保留整数).24.如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠B两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)25.如图,A,P,B,C是⊙O上的四个点,其中∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.(1)求证:∠APD=∠BAD;(2)若PD=2,AD=4,PC=PA+6,求AC的长.26.安徽某地生产的“蒲公英”茶畅销全国.每年新茶上市持续时间为140天.受多种因素影响,“蒲公英”的销售价y(元/千克)和生产成本z(元/千克)均随新茶上市后的时间t(天)的改变而改变.某茶厂要根据多年经验预测:今年新茶上市当日“蒲公英”的销售价为800元/千克,以后每天销售价比前一天下降6元/千克,此情形一直持续至第90天止,自第91天起至茶市结束,每天“蒲公英”的销售价又会比前一天上涨4元/千克.“蒲公英”生产成本z和上市时间t之t2−8t+420.间满足函数关系式z=120(1)第90天时“蒲公英”的销售价是多少?(2)求新茶上市的这140天内,y与t之间的函数表达式.(3)新茶上市第几天每千克“蒲公英”的纯收益最高?(纯收益=销售价−生产成本)27.如图,将矩形ABCD沿直线BD折叠,使点C落在点C′处,BC′交AD于点E,(1)求证:△BED是等腰三角形(2)若AD=8,AB=4,求△BED的面积.x+1相交于A、B两点(如图),28.二次函数y=ax2+bx+c的图象经过点(−1,4),且与直线y=−12A点在y轴上,过点B作BC⊥x轴,垂足为点C(−3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M.①求线段MN的最大值;②直接写出能使BM与NC互相垂直平分的N点的坐标.-------- 答案与解析 --------1.答案:C解析:解:−2的倒数是−12.故选C .根据倒数定义可知,−2的倒数是−12.主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 2.答案:C解析:解:根据题意得:{x −1≥0x +1≠0, 解得:x ≥1.故选:C .根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围 本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.答案:C解析:解:这组数据的平均数是:(60+30+40+50+70)÷5=50;把这组数据从小到大排列为:30,40,50,60,70,最中间的数是50,则中位数是50;故选C .平均数的计算公式和中位数的定义分别进行解答即可.此题考查了平均数和中位数,掌握平均数的计算公式和中位数的定义是本题的关键;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.4.答案:B解析:解:由题意可知:x −z =(x −y)+(y −z)=5+5=10,故选B .。

2019-2020学年最新江苏省无锡市九年级二模数学试题3及答案解析

2019-2020学年最新江苏省无锡市九年级二模数学试题3及答案解析

初三数学第二次模拟考试试卷考试时间:120分钟 满分分值:130分注意:所有试题答案均填写在答题卷上,答案写在试卷上无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.9的平方根是…………………………………………………………………………( ▲ ) A .3 B .±3 C .-3 D . 812.下列运算正确的是 …………………………………………………………………( ▲ ) A .325()a a = B .325a a a +=C .32()a a a a -÷=D .331a a ÷=3.下列图形中,既是轴对称图形又是中心对称图形的是 …………………………( ▲ )A .B .C .D .4.下列多边形中,不能够单独铺满地面的是…………………………………………( ▲ ) A .正三角形 B .正方形 C .正五边形 D .正六边形 5.如图是每个面上都有一个汉字的正方体的一种平面展开图, 那么在原正方体中和“国”字相对的面是 …………( ▲ )A .中B .钓C .鱼D .岛6.已知圆锥的底面半径为2cm ,母线长为3cm ,则圆锥的全面积...是 ………………( ▲ ) A .14πcm 2 B .12πcm 2 C .10πcm 2 D .6πcm 2 7.下列说法错误..的是 ……………………………………………………………………( ▲ ) A .打开电视机,正在播放广告这一事件是随机事件(第5题)B .要了解小赵一家三口的身体健康状况,适合采用抽样调查C .方差越大,数据的波动越大D .样本中个体的数目称为样本容量8.若点A(-1,y 1)、B(2,y 2)都在双曲线y = 3+2mx 上,且y 1>y 2,则m 的取值范围是…………………………………………………………………………………………( ▲ ) A .m <0 B .m >0 C .m >-3 2 D .m <- 329.如图,⊙O 的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图象大致是( ▲ )10.如图1所示,圆上均匀分布着11个点A 1,A 2,A 3,…,A 11.从A 1起每隔k 个点顺次连接,当再次与点A 1连接时,我们把所形成的图形称为“k+1阶正十一角星”,其中1≤k≤8(k 为正整数).例如,图2是“2阶正十一角星”.那么当∠A 1+∠A 2+…+∠A 11=540°时,k 的值为…………………………………………………………( ▲ ) A .3 B .3或6 C .2或6 D .2A .B .C .D .235A2356A 图2图1二、填空题(本大题共8小题,每空2分,共16分.不需写出解答过程,只需把答案直接填写在答题卷上相应的位置处)11.在函数y=x -1中,自变量x 的取值范围是 ▲ . 12.分解因式:3x 2-27= ▲ .13.据统计,今年“五•一”黄金周,到西藏旅游的游客人数为588 000人.用科学记数法表示游客人数应记为 ▲ 人.14. 已知x =-2是方程x 2+mx -6=0的一个根,则方程的另一个根是 ▲ . 15.如图,在梯形ABCD 中,AB ∥DC ,∠ADC 的平分线与∠BDC 的平分线的交点E 恰在AB 上.若AD =8cm ,BC =9cm ,则AB 的长度是 ▲ cm .16.若⊙A 和⊙B 内切,它们的直径分别为8cm 和2cm ,则圆心距AB 为 ▲ cm .17.如图,△ABC 中,AD 是中线,AE 是角平分线,CF⊥AE 于F ,AB =5,AC =3,则DF的长为 ▲ .PQ 为(第17题)(第15题)ABCD E三、解答题(本大题共10小题,共计84分.解答时应写出必要的证明过程或演算步骤.) 19.(8分)计算与化简:(1)计算:(12)-1-3cos30°+(2014-π)0; (2)化简:a(a +1)―(a+1)(a―1).20.(8分)解方程与不等式组:(1)解方程:x 2―6x+4=0; (2)解不等式组⎩⎪⎨⎪⎧3x +1<2(x +2),-x 3≤5x 3+2.21.(8分)如图,E ,F 是四边形ABCD 的对角线AC 上两点,AF =CE ,DF =BE ,DF∥BE. 求证:(1)△AFD ≌△C EB ;(2)四边形ABCD 是平行四边形.22.(6分)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.(1)本次被调查的学生数是 ▲ 人;(2)统计表中a 的值为 ▲ ; (3)各组人数的众数是 ▲ ;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.23.(8分)一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(请用“画树状图”或“列表”等方法写出分析过程);(2)现再将n 个白球放入布袋,搅匀后,使摸出1个球是白球的概率为34,求n 的值.24.(8分)图1为学校运动会终点计时台侧面示意图,已知:AB =1米,DE =5米,BC⊥DC,∠ADC=30°,∠BEC=60°. (1)求AD 的长度;(2)如图2,为了避免计时台AB 和AD 的位置受到与水平面成45°角的光线照射,计时台上方应放直径(即DG 的长度)是多少米的遮阳伞? (结果都保留精确值)25.(10分)今年4月18日,我国铁路第六次大提速,在甲、乙两城市之间开通了动车组高速列车.已知每隔1h有一列速度相同的动车组列车从甲城开往乙城.如图所示,OA是第一列动车组列车离开甲城的路程s(单位在:km)与运行时间t(单位:h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(单位:km)与运行时间t(单位:h)的函数图象.请根据图中信息,解答下列问题:(1)点B的横坐标0.5的意义是普通快车发车时间比第一列动车组列车发车时间▲h,点B的纵坐标300的意义是▲;(2)请你在原图中直接画出第二列动车组列车离开甲城的路程s(单位:km)与时间t(单位:h)的函数图象;(3)若普通快车的速度为100km/h,①求BC的解析式,并写出自变量t的取值范围;②求第二列...动车组列车出发后多长时间与普通列车相遇;③直接..写出这列普通列车在行驶途中与迎面而来的相邻两列动车组列车相遇的间隔时间.26.(8分)已知二次函数图象的顶点在原点O,对称轴为y轴.一次函数y=kx+1的图象与二次函数的图象交于A,B两点(A在B的左侧),且A点坐标为(-4,4).平行于x轴的直线l过点(0,-1).(1)求二次函数的关系式;(2)把二次函数的图象向右平移2个单位,再向下平移t个单位(t>0),二次函数的图象与x轴交于M,N两点,一次函数图象交y轴于F点.当t为何值时,过F,M,N三点的圆的面积最小,最小面积是多少?27.(10分)如图,在平面直角坐标系中,已知OABC为矩形,点A、B的坐标分别为(12,0)、(12,6),直线y=-32x+b 与y 轴交于点P ,与边OA 交于点D ,与边BC 交于点E .(1)若直线y =-32x +b 平分矩形OABC 的面积,求b 的值;(2)在(1)的条件下,当直线y =-32x +b 绕点P 顺时针旋转时,与直线BC 和x 轴分别交于点N 、M ,问:是否存在ON 平分∠CN M 的情况?若存在,求线段DM 的长;若不存在,请说明理由;(3)在(1)的条件下,将矩形OABC 沿DE 折叠,若点O 落在边BC 上,求出该点坐标;若不在边BC 上,求将(1)中的直线沿y 轴怎样平移,使矩形OABC 沿平移后的直线折叠,点O 恰好落在边BC 上.28.(10分)已知△ABC 中,∠C 是其最小的内角,如果过顶点B 的一条直线把这个三角形分割成了两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC备用图一备用图二的关于点B 的伴侣分割线.例如:如图1,在Rt△ABC 中,∠C=20°,过顶点B 的一条直线BD 交AC 于点D ,且∠DBC =20°,显然直线BD 是△ABC 的关于点B 的伴侣分割线.(1)如图2,在△ABC 中,∠C=20°,∠ABC =110°.请在图中画出△ABC 的关于点B的伴侣分割线,并标注角度;(2)在△ABC 中,设∠B 的度数为y ,最小内角∠C 的度数为x .试探索y 与x 之间满足怎样的关系时,△ABC 存在关于点B 的伴侣分割线.图1图2ABDCAB南长区数学二模试题参考答案一、选择题1.B2.D 3.B4.C5.C6.C 7.B 8.D 9.C 10.B二填空题11.x ≥1 12.3(x +3)(x -3)13.5.88×105 14.315.17 16.3 17. 1 18.64-8361<t≤433三 解答题19.(1)原式=2―3×32+1 (3分) =32(4分) (2)22(1)a a a =+--原式 (2分) 1a =+ (4分)20.(1)3x = (4分)(2) 1≥x (1分) 4<x (2分) 41<≤∴x (4分)21.证明:(1)∵DF∥BE,∴∠AFD =∠CEB , (2分) ∵AF =CE ,DF =BE ,∴△ADF ≌△CBE . (4分) (2)∵△ADF ≌△CBE ,∴AD =BC ,∠DAF =∠BCE , (6分) ∴AD ∥BC , (7分) ∴四边形ABCD 是平行四边形. (8分)22. (1)120; (2分) (2)42;(3分) (3)12; (4分)(4)1560. (6分)23.解:(1)画树状图:略(3分)∴共有9种等可能的结果,其中符合条件的有4种情况.(4分) ∴P(两次摸到球颜色不同)=49.(5分)(2) 由题意得1+n 3+n =34, (6分) ∴n=5 (7分)经检验,n =5是所列方程的根,且符合题意.(8分) 24.解:(1)过点B 作BF ∥AD ,交DC 于点F ,直角梯形ABCD 中,AB ∥DF , ∴四边形ABFD 为平行四边形. ∴∠BFE =∠D =30°,AB =DF =1米, ∴EF =DE ﹣DF =4米,在Rt △BCF 中,设BC =x 米,则BF =2x ,CF =3x ,(2分)在Rt △BCE 中,∠BEC =60°,CEx , (3分) ∴EF =CF ﹣CE4x 解得:x =23, (4分) ∴AD =BF =2x =43米. (5分) (2)由题意知,∠BGE =45°,在Rt △BCG 中,BC =CG =23米, (6分)∴GE =GC ―EC =(23-2)米,DG =DE ﹣GE =(7-23)米, (7分)F即应放直径是(7-23)米的遮阳伞.(8分)25. (1)晚0.5,甲、乙两城相距300km .(2分)(2)如右图. (4分) (3)①s=-100t+350, (5分)自变量t 的取值范围是0.5≤t≤3.5.(6分) ②1小时. (8分) ③36分钟(或35小时). (10分)26.解:(1)把(44)A -,代入1y kx =+得34k =-, ∴一次函数的解析式为314y x =-+;二次函数图象的顶点在原点,对称轴为y 轴,∴设二次函数解析式为2y ax =,把(44)A -,代入2y ax =得14a =,∴二次函数解析式为214y x =. (2分) (2)平移后二次函数解析式为21(2)4y x t =--, (3分)令0y =,得21(2)04x t --=,12x =-22x =+ (4分) 过F M N ,,三点的圆的圆心一定在直线2x =上,点F 为定点,∴要使圆面积最小,圆半径应等于点F 到直线2x =的距离,此时,半径为2,面积为4π, (5分) 设圆心为C MN ,中点为E ,连CE CM ,,则1CE =,在三角形CEM 中,MEMN ∴=21MN x x =-=34t ∴=, ∴当34t =时,过F M N ,,三点的圆面积最小,最小面积为4π. (8分) 27.解: (1)∵直线y =-23x +b 平分矩形OABC 的面积,∴其必过矩形的中心 由题意得矩形的中心坐标为(6,3),∴3=-23×6+b 解得b =12 ······························································· (2分) (2)假设存在ON 平分∠CNM 的情况①当直线PM 与直线BC 和x 轴相交时,过O 作OH ⊥PM 于H ∵ON 平分∠CNM ,OC⊥BC,∴OH =OC =6由(1)知OP =12,∴∠OPM=30° ∴OM =OP ·tan 30°=34 当y =0时,由-23x +12=0解得x =8,∴OD =8 ∴DM =8+34 ······················································ (4分) ②当直线PM 与边BC 和边OA 相交时,同上可得DM =8-34(或由OM =MN 解得) ············· (5分) (3)假设沿DE 将矩形OABC 折叠,点O 落在边BC 上O ′ 处连结PO ′、OO ′,则有PO ′=OP由(1)得BC 垂直平分OP ,∴PO ′=OO ′ ∴△OPO ′ 为等边三角形,∴∠OPD =30° 而由(2)知∠OPD >30°所以沿DE 将矩形OABC 折叠,点O 不可能落在边BC 上 ···················· (6分) 设沿直线y =-23x +a 将矩形OABC 折叠,点O 恰好落在边BC 上O ′ 处 连结P ′O ′、OO ′,则有P ′O ′=OP ′=a 由题意得:CP ′=a -6,∠OPD =∠CO ′O 在Rt △OPD 中,tan ∠OPD =OP OD在Rt △OCO ′ 中,tan ∠CO ′O ='CO OC ∴OP OD ='CO OC ,即128='CO 6,CO ′=9在Rt △CP ′O ′ 中,由勾股定理得:( a -6 )2+9 2=a2解得a =439,12-439=49所以将直线y =-23x +12沿y 轴向下平移49个单位得直线y =-23x +439,将矩形OABC 沿直线y =-23x +439折叠,点O 恰好落在边BC 上 ················· (10分)28.解:(1)画图正确,角度标注正确 ························································ (2分)(2)设BD 为△ABC 的伴侣分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形, 易知∠C 和∠DBC 必为底角,∴ ∠DBC =∠C =x . 当∠A =90°时,△ABC 存在伴侣分割线,此时x y -90=, 当∠ABD =90°时,△ABC 存在伴侣分割线,此时x y +=90,当∠ADB =90°时,△ABC 存在伴侣分割线,此时x y x >=且,45; (5分) 第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形, 当∠DBC =90°时,若BD =AD ,则△ABC 存在伴侣分割线, 此时90180-=--y y x ,∴x y 21135-=, (7分) 当∠BDC =90°时,若BD =AD ,则△ABC 存在伴侣分割线,此时∠A =45°,∴x y -135=. (9分) 综上所述,当x y -90=或x y +=90或x y x >=且,45或x y 21135-=或x y -135=时△ABC 存在伴侣分割线. (10分)。

备战2020中考无锡市中考第二次模拟考试数学试卷含答案【含多套模拟】

备战2020中考无锡市中考第二次模拟考试数学试卷含答案【含多套模拟】

中学数学二模模拟试卷一、选择题(共12小题,每小题3分,每小题只有一个正确答案,共36分) 1.在0、21、-2、-1四个数中,最小的数是( ) A .-2 B . -1 C .0 D .21 2.马大哈做题很快,但经常不仔细,所以往往错误率非常高,有一次做了四个题,但只做对了一个,他做对的是是( )A .248a a a =÷B .1243a a a =⋅C .1055a a a =+D .52322x x x =⋅3.下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D4.由吴京特别出演的国产科幻大片《流浪地球》自今年一月份放映以来实现票房与口碑的双丰收,票房有望突破50亿元。

其中50亿用科学计数法表示为( )A .10105.0⨯B .8105⨯C .9105⨯D .10105⨯ 5.如图,直线a ∥b ,将一直角三角形的直角顶点置于直线b 上,若∠1=28°,则∠2的度数为( ) A .108° B .118° C .128° D .152° 6.下列立体图形中,主视图是三角形的是( )A B C D7.下表来源市气象局2019年3月7号发布的全市六个监测点监测到的空气质量指数(AQI )数据A .65°B .75°C .85°D .90°8.在2018-2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次都保持不败,共取得了74分暂列积分榜第一名。

已知胜一场得3分,平一场得1分,负一场得0分。

设曼城队一共获胜了x 场,则可列方程为( )BC AA.74)30(3=-+xx B.74)30(3=-+xx C.74)26(3=-+xxD.74)26(3=-+xx9.定义:在等腰三角形中,底边和腰长的比叫做顶角的正对,顶角A的正对记做sadA,即sadA=底边:腰。

备战2020中考【6套模拟】无锡市中考第二次模拟考试数学试题含答案

备战2020中考【6套模拟】无锡市中考第二次模拟考试数学试题含答案

备战2020中考【6套模拟】无锡市中考第二次模拟考试数学试题含答案中学数学二模模拟试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,比﹣1大的数是()A.B.﹣2 C.﹣3 D.02.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.(3分)如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD 交于点E,连接BE,则BE的值为()A.B.2C.3D.46.(3分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分B.87.6分C.88分D.88.5分7.(3分)如图,平行四边形ABCD的对角线AC平分∠BAD,若AC=12,BD=16,则对边之间的距离为()A.B.C.D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图①,在矩形ABCD中,AB>AD,对角线AC、BD相交于点O,动点P由点A 出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y 关于x的函数关系图象,则AB边的长为()A.3 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(75分)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB=,E是半圆上一动点,连接AE,AD,DE.填空:①当的长度是时,四边形ABDE是菱形;②当的长度是时,△ADE是直角三角形.19.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.20.(9分)如图①,②分别是某款篮球架的实物图和示意图,已知支架AB的长为2.3m,支架AB与地面的夹角∠BAC=70°,BE的长为1.5m,篮板部支架BD与水平支架BE的夹角为46°,BC、DE垂直于地面,求篮板顶端D到地面的距离.(结果保留一位小数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为,综上可得∠BPC的度数为;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=,PC=1,求∠APC 的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,请直接写出BD的长.23.(11分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、﹣<﹣1,故本选项不符合题意;B、﹣2<﹣1,故本选项不符合题意;C、﹣3<﹣1,故本选项不符合题意;D、0>﹣1,故本选项,符合题意;故选:D.2.【解答】解:44亿=4.4×109.故选:B.3.【解答】解:该几何体的主视图为:故选:C.4.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.【解答】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,∵AB=2DE,作EH⊥BC交BC的延长线于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,故选:B.6.【解答】解:张敏的成绩是:=87.6(分),故选:B.7.【解答】解:设AC,BD交点为O,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,又∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BCA=∠BAC,∴AB=BC,∴平行四边形ABCD是菱形;∵四边形ABCD是菱形,且AC=12、BD=16,∴AO=6、BO=8,且∠AOB=90°,∴AB==10,∴对边之间的距离==,故选:C.8.【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB>BC,所以AB=4.故选:B.二、填空题(每小题3分,共15分)11.【解答】解:原式=2﹣4+4=2,故答案为:2.12.【解答】解:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.13.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.【解答】解:连接BG,CG∵BG=BC=CG,∴△BCG是等边三角形.∴∠CBG=∠BCG=660°,∵在正方形ABCD中,AB=4,∴BC=4,∠BCD=90°,∴∠DCG=30°,∴图中阴影部分的面积=S扇形CDG﹣S弓形CG=﹣(﹣×4×2)=4﹣,故答案为:4﹣.15.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(75分)16.【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.【解答】(1)证明:如图1,连接OD,∵在Rt△ABC中,∠BAC=90°,∠C=30°,∴AB=BC,∵D是BC的中点,∴BD=BC,∴AB=BD,∴∠BAD=∠BDA,∵OA=OD,∴∠OAD=∠ODA,∴∠ODB=∠BAO=90°,即OD⊥BC,∴BD是⊙O的切线.(2)①当DE⊥AC时,四边形ABDE是菱形;如图2,设DE交AC于点M,连接OE,则DE=2DM,∵∠C=30°,∴CD=2DM,∴DE=CD=AB=BC,∵∠BAC=90°,∴DE∥AB,∴四边形ABDE是平行四边形,∵AB=BD,∴四边形ABDE是菱形;∵AD=BD=AB=CD=BC=,∴△ABD是等边三角形,OD=CD•tan30°=1,∴∠ADB=60°,∵∠CDE=90°﹣∠C=60°,∴∠ADE=180°﹣∠ADB﹣∠CDE=60°,∴∠AOE=2∠ADE=120°,∴的长度为:=π;故答案为:;②若∠ADE=90°,则点E与点F重合,此时的长度为:=π;若∠DAE=90°,则DE是直径,则∠AOE=2∠ADO=60°,此时的长度为:=π;∵AD不是直径,∴∠AED≠90°;综上可得:当的长度是π或π时,△ADE是直角三角形.故答案为:π或π.19.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.20.【解答】解:延长AC、DE交于点F,则四边形BCFE为矩形,∴BC=EF,在Rt△ABC中,sin∠BAC=,∴BC=AB•sin∠BAC=2.3×0.94=2.162,∴EF=2.162,在Rt△DBE中,tan∠DBE=,∴DE=BE•tan∠DBE=1.5×1.04=1.56,∴DF=DE+EF=2.162+1.56≈3.7(m)答:篮板顶端D到地面的距离约为3.7m.21.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.22.【解答】解:(1)把△BPC绕点C顺时针旋转60°得△AP'C,连接PP′(如图1).由旋转的性质知△CP′P是等边三角形;∴P′A=PB=、∠CP′P=60°、P′P=PC=2,在△AP′P中,∵AP2+P′A2=12+()2=4=PP′2;∴△AP′P是直角三角形;∴∠P′AP=90°.∵PA=PC,∴∠AP′P=30°;∴∠BPC=∠CP′A=∠CP′P+∠AP′P=60°+30°=90°.故答案为:2;30°;90°;(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′.由旋转的性质知△CP′P是等腰直角三角形;∴P′C=PC=1,∠CPP′=45°、P′P=,PB=AP'=,在△AP′P中,∵AP'2+P′P2=()2+()2=2=AP2;∴△AP′P是直角三角形;∴∠AP′P=90°.∴∠APP'=45°∴∠APC=∠APP'+∠CPP'=45°+45°=90°(3)如图3,∵AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=2AB,∴DG=2BC=6,过A作AE⊥BC于E,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG===,∴BD=CG=.23.【解答】解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC=S△ADF+S△DFC=DF•AE+•DF•OE=DF•OA=×(﹣m2﹣m)×6=﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,∴当m=﹣3时,S△ADC存在最大值,又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)中学数学二模模拟试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,比﹣1大的数是()A.B.﹣2 C.﹣3 D.02.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.(3分)如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD 交于点E,连接BE,则BE的值为()A.B.2C.3D.46.(3分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分B.87.6分C.88分D.88.5分7.(3分)如图,平行四边形ABCD的对角线AC平分∠BAD,若AC=12,BD=16,则对边之间的距离为()A.B.C.D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图①,在矩形ABCD中,AB>AD,对角线AC、BD相交于点O,动点P由点A 出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y 关于x的函数关系图象,则AB边的长为()A.3 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(75分)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB=,E是半圆上一动点,连接AE,AD,DE.填空:①当的长度是时,四边形ABDE是菱形;②当的长度是时,△ADE是直角三角形.19.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.20.(9分)如图①,②分别是某款篮球架的实物图和示意图,已知支架AB的长为2.3m,支架AB与地面的夹角∠BAC=70°,BE的长为1.5m,篮板部支架BD与水平支架BE的夹角为46°,BC、DE垂直于地面,求篮板顶端D到地面的距离.(结果保留一位小数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为,综上可得∠BPC的度数为;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=,PC=1,求∠APC 的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,请直接写出BD的长.23.(11分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、﹣<﹣1,故本选项不符合题意;B、﹣2<﹣1,故本选项不符合题意;C、﹣3<﹣1,故本选项不符合题意;D、0>﹣1,故本选项,符合题意;故选:D.2.【解答】解:44亿=4.4×109.故选:B.3.【解答】解:该几何体的主视图为:故选:C.4.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.【解答】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,∵AB=2DE,作EH⊥BC交BC的延长线于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,故选:B.6.【解答】解:张敏的成绩是:=87.6(分),故选:B.7.【解答】解:设AC,BD交点为O,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,又∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BCA=∠BAC,∴AB=BC,∴平行四边形ABCD是菱形;∵四边形ABCD是菱形,且AC=12、BD=16,∴AO=6、BO=8,且∠AOB=90°,∴AB==10,∴对边之间的距离==,故选:C.8.【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB>BC,所以AB=4.故选:B.二、填空题(每小题3分,共15分)11.【解答】解:原式=2﹣4+4=2,故答案为:2.12.【解答】解:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.13.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.【解答】解:连接BG,CG∵BG=BC=CG,∴△BCG是等边三角形.∴∠CBG=∠BCG=660°,∵在正方形ABCD中,AB=4,∴BC=4,∠BCD=90°,∴∠DCG=30°,∴图中阴影部分的面积=S扇形CDG﹣S弓形CG=﹣(﹣×4×2)=4﹣,故答案为:4﹣.15.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(75分)16.【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.【解答】(1)证明:如图1,连接OD,∵在Rt△ABC中,∠BAC=90°,∠C=30°,∴AB=BC,∵D是BC的中点,∴BD=BC,∴AB=BD,∴∠BAD=∠BDA,∵OA=OD,∴∠OAD=∠ODA,∴∠ODB=∠BAO=90°,即OD⊥BC,∴BD是⊙O的切线.(2)①当DE⊥AC时,四边形ABDE是菱形;如图2,设DE交AC于点M,连接OE,则DE=2DM,∵∠C=30°,∴CD=2DM,∴DE=CD=AB=BC,∵∠BAC=90°,∴DE∥AB,∴四边形ABDE是平行四边形,∵AB=BD,∴四边形ABDE是菱形;∵AD=BD=AB=CD=BC=,∴△ABD是等边三角形,OD=CD•tan30°=1,∴∠ADB=60°,∵∠CDE=90°﹣∠C=60°,∴∠ADE=180°﹣∠ADB﹣∠CDE=60°,∴∠AOE=2∠ADE=120°,∴的长度为:=π;故答案为:;②若∠ADE=90°,则点E与点F重合,此时的长度为:=π;若∠DAE=90°,则DE是直径,则∠AOE=2∠ADO=60°,此时的长度为:=π;∵AD不是直径,∴∠AED≠90°;综上可得:当的长度是π或π时,△ADE是直角三角形.故答案为:π或π.19.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.20.【解答】解:延长AC、DE交于点F,则四边形BCFE为矩形,∴BC=EF,在Rt△ABC中,sin∠BAC=,∴BC=AB•sin∠BAC=2.3×0.94=2.162,∴EF=2.162,在Rt△DBE中,tan∠DBE=,∴DE=BE•tan∠DBE=1.5×1.04=1.56,∴DF=DE+EF=2.162+1.56≈3.7(m)答:篮板顶端D到地面的距离约为3.7m.21.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.22.【解答】解:(1)把△BPC绕点C顺时针旋转60°得△AP'C,连接PP′(如图1).由旋转的性质知△CP′P是等边三角形;∴P′A=PB=、∠CP′P=60°、P′P=PC=2,在△AP′P中,∵AP2+P′A2=12+()2=4=PP′2;∴△AP′P是直角三角形;∴∠P′AP=90°.∵PA=PC,∴∠AP′P=30°;∴∠BPC=∠CP′A=∠CP′P+∠AP′P=60°+30°=90°.故答案为:2;30°;90°;(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′.由旋转的性质知△CP′P是等腰直角三角形;∴P′C=PC=1,∠CPP′=45°、P′P=,PB=AP'=,在△AP′P中,∵AP'2+P′P2=()2+()2=2=AP2;∴△AP′P是直角三角形;∴∠AP′P=90°.∴∠APP'=45°∴∠APC=∠APP'+∠CPP'=45°+45°=90°(3)如图3,∵AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=2AB,∴DG=2BC=6,过A作AE⊥BC于E,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG===,∴BD=CG=.23.【解答】解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC=S△ADF+S△DFC=DF•AE+•DF•OE=DF•OA=×(﹣m2﹣m)×6=﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,∴当m=﹣3时,S△ADC存在最大值,又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)中学数学二模模拟试卷一、 选择题( 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上) 1. 63a a ÷结果是 ( )A .3aB .2aC . 9aD .3a -2.在函数y =x 的取值范围 ( ) A .1x ≤ B .1x ≥ C .1x < D . 1x >3.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为( )A .0.1072×106B .1.072×105C .1.072×106D .10.72×1044.如图,∠1=50°,如果AB ∥DE ,那么∠D 的度数为( ) A . 40° B . 50° C . 130° D . 140°5、若一个多边形的内角和与它的外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形6. 若1=x 是方程052=+-c x x 的一个根,则这个方程的另一个根是 ( )A .-2B .2C .4D .-57. 已知一个圆锥的侧面积是10πcm 2,它的侧面展开图是一个圆心角为144°的扇形,则这个圆锥的底面半径为 ( )A . 45cm BC . 2 cm D.8. 如图,在楼顶点A 处观察旗杆CD 测得旗杆顶部C 的仰角为30°,旗杆底部D 的俯角为45°.已知楼高9AB = m ,则旗杆CD 的高度为( )A. (9+mB. (9+mC.D.C(第4题)1ABDE第10题9. 如图,在矩形ABCD 中,AB =3,BC =5,以B 为圆心BC 为半径画弧交AD 于点E ,连接CE ,作BF ⊥CE ,垂足为F ,则tan ∠FBC 的值为( )10. 如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm /s 的速度沿A →C →B运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上) 11.在实数范围内分解因式:1642-m = .12. 已知a -2b =-5,则8-3a +6b 的值为 . 13. 一组数据2、3、4、5、6的方差等于 .14.抛物线241y x x =-+的顶点坐标为 第15题 15.如图,A 、B 、C 是⊙O 上的三点,∠AOB =100°,则∠ACB = 度. 16. 如图,在△ABC 中,AC >AB ,点D 在BC 上,且BD =BA ,∠ABC 的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和(第9题)BADCEF△BDE 的面积都为3,则△ABC 的面积为 .17. 如图,在边长为10 的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是第16题 第17题 第18题18. 如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点,点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图像于点M 、N ,则四边形PMON 面积的最大值是 .三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)计算:101()2cos60(2)2π--︒+-20.(本题满分5分)解不等式组:1123(2)4x x x ⎧-<⎪⎨⎪--≤⎩21.(本题满分6分) 先化简,再求值:121a a a a a --⎛⎫÷- ⎪⎝⎭,其中a.22.(本题满分6分) 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)求证:AB =AC ;(2)若AD =,∠DAC =30°,求△ABC 的周长.23.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?ABDCF E24.(本题满分8分)在地铁入口处检票进闸时,3个进闸通道A、B、C中,可随机选择其中的一个通过.(1)如果你经过此进闸口时,选择A通道通过的概率是;(2)求两个人经过此进闸口时,选择不同通道通过的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程.)25. (本题满分8分) 如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运。

2020年江苏省无锡市中考数学摸底考试试卷附解析

2020年江苏省无锡市中考数学摸底考试试卷附解析

2020年江苏省无锡市中考数学摸底考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知,在等腰梯形 ABCD 中,AD∥BC,AD= 4 cm,BC= 10 cm,AB = 5 cm,以点A为圆心,AD 为半径作⊙A,则⊙A与 BC 的位置关系是()A.相离B.相切C.相交D.不能确定2.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD•的长为1米,继续往前走2米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度等于()A.4.5米B.6米C.7.2米D.8米3.如图,在□ABCD中,EF∥GH∥AB,MN∥BC,则图中的平行四边形的个数为(• )A.12个B.16个C.14个D.18个4.如图所示,在△ABC中,D,E,F分别是AB,AC,BC上的点,DE∥BC,EF∥AB,DF ∥AC,则图中共有平行四边形()A.1个B.2个C.3个D.4个5.如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(-2,2)6.不等式23(1)x x-≤+的负整数有()A. 0个B. 1个C.2个D.3个7.如图是小明家一年的费用统计图,从该统计图中可以看出的信息是()A.小明家有3口人B.小明家一年的费用需要2万元C.小明家生活方面费用占总费用的35%D .小明家的收入很高 8.已知280x y -++=,那么x y +的值为( )A .10B . 不能确定C .-6D .10±二、填空题9.已知双曲线xk y =经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b .10.如图,反比例函数xy 5=的图象与直线)0(>=k kx y 相交于B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 个面积单位.10 11.一个扇形如图,半径为10cm ,圆心角为270°,用它做成一个圆锥的侧面,那么圆锥的高为_______cm .12.已知函数①21y x =-;②22+5y x x =-,函数 (填序号)有最小值,当x= 时,该函数最小值是 .13. 抛物线243y x x =-+的顶点及它与x 轴的交点,三点连线所围成的三角形的面积是 .14. 已知反比例函数的图象经过点(3,2)和(m ,-2),则m 的值是 .15.若函数23(2)mm y m x --=-是关于x 的反比例函数,则m= . 16.将两个全等的三边各不相等的三角形按不同的方式拼接成各种四边形,其中平行四边形有________个.17.已知一个样本的频数分布表中,5.5~10.5一组的频数为8,频率为0.5,20.5~25.5这一组的频率为0.25,则频数为 .18.若(2x-5)0有意义,则x 应满足条件 .19.6的平方根是 ,它的算术平方根是 . 三、解答题20.如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可使小灯泡发光。

【2020精品中考数学提分卷】无锡市中考二模数学试卷+答案

【2020精品中考数学提分卷】无锡市中考二模数学试卷+答案

无锡锡中2019~2020学年度初三中考二模数学试卷2018.4考试说明:满分130分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内)1.3-的值是 ( )A .3B .﹣3C .±3 D2.函数y =中自变量x 的取值范围是 ( )A .2x ≥-B .2x >-C .2x ≤-D .2x <- 3.下列运算正确的是 ( )A .66x x x ⋅= B .236()x x = C .22(2)4x x +=+ D .33(2)2x x = 4.下列图形中既是轴对称图形,又是中心对称图形的是 ( )A B C D5.一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是 ( ) A .平均数 B .众数 C .中位数 D .方差 6.若42m a b -与225na b+是同类项,则nm 的值是 ( )A .2B .0C .4D .17.已知点A(m +1,﹣2)和点B(3,m ﹣1),若直线AB∥x 轴,则m 的值为 ( ) A .2 B .﹣4 C .﹣1 D .38.如图,AB 是∥O 的直径,直线PA 与∥O 相切于点A ,PO 交∥O 于点C ,连接BC ,若∥P =50°,则∥ABC 的度数为 ( )A .20°B .25°C .40°D .50°第9题第8题 第10题9.如图,□ABCD 对角线AC 与BD 交于点O ,且AD =3,AB =5,在AB 延长线上取一点E ,使BE =25AB ,连接OE 交BC 于F ,则BF 的长为 ( ) A .23 B .34 C .56D .1 10.如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为 ( )A .322+B .433+C .2213+D .10二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.在实数范围内分解因式:2232x -= .12.2017年无锡市国内生产总值(GDP)达到10500亿元,成为全国第14个突破万亿元的城市,数据10500亿元用科学记数法可表示为 亿元.13.化简:239m m --= .14.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积为 cm².15.如图,将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB :BC =4:5,则tan∥CFD = .第15题 第16题 第17题 16.如图,点A 是反比例函数ky x=的图象上的一点,过点A 作AB∥x 轴,垂足为B ,点C 为y 轴上的一点,连接AC ,BC ,若∥ABC 的面积为4,则k 的值是 .17.如图,在∥ABC 中,CA =CB =4,∥ACB =90°,以AB 中点D 为圆心,作圆心角为90°的扇形DEF ,点C 恰好在弧EF 上,则图中阴影部分面积为 .18.如图,∥AOB =45°,点M ,N 在边OA 上,OM =x , ON =x +4,点P 是边OB 上的点,若使点P ,M ,N 构 成等腰三角形的点P 恰好有三个,则x 满足的条件是三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:02(12)(3)2---+-; (2)化简:(1)(1)(2)a a a a +-+-.(1)解方程:28x x +=; (2)解不等式组:53165142x x x x ≤+⎧⎪⎨-<+⎪⎩.21.(本题满分6分)如图,BD 是∥ABC 的角平分线,点E 、F 分别在BC ,AB 上,且DE∥AB ,BE =AF .(1)求证:四边形ADEF 是平行四边形; (2)若∥ABC =60°,BD =6,求DE 的长.央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.在一次数学考试中,小明有一道选择题(只能在四个选项A、B、C、D中选一个)不会做,便随机选了一个答案;小亮有两道选择题都不会做,他也随机选了两个答案.(1)小明随机选的这个答案,答对的概率是;(2)通过画树状图或列表法求小亮两题都答对概率是多少?(3)这个班数学老师参加集体阅卷,在阅卷过程中,发现学生的错误率较高,他想:若这10道选择题都是靠随机选择答案,则这10道选择题全对的概率是.24.(本题满分8)如图,在Rt∥ABC中,∥C=90°,以AC为直径作∥O,交AB于D.(1)在图1中,用直尺和圆规过点D作∥O的切线DE交BC于点E(保留作图痕迹,不写作法);(2)如图2,如果∥O的半径为3,ED=4,延长EO交∥O于F,连接DF,与OA交于点G,求OG的长.图1 图22018年4月,无锡外卖市场竞争激烈,美团、滴滴、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,每月工资:底薪1000元,另外外卖送单补贴(送一次外卖称为一单),具体方案如下:(1)若某“外卖小哥”4月份送餐600单,求他这个月的工资总额;(2)设这个月“外卖小哥”送餐x单,所得工资为y元,求y与x的函数关系式;(3)若“外卖小哥”本月送餐800单,所得工资6400≤y≤6500,求m的取值范围.26.(本题满分10)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0),如图1,正方形OBCD 的顶点B在x轴的负半轴上,点C在第二象限,现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=12,当EA∥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在∥OEP:1?若存在,求出点P的坐标;若不存在,试说明理由.图1 图2 图327.(本题满分10)如图,在平面直角坐标系中,抛物线22y ax ax c =-+与x 轴交于A 、B 两点(点A 在点B 的左侧),且AB =4,又P 是第一象限抛物线上的一点,抛物线对称轴交x 轴于点F ,交直线AP 于点E ,AE :EP =1:2.(1)求点A 、点B 的坐标;(2)直线AP 交y 轴于点G ,若CG ,求此抛物线的解析式; (3)在(2)的条件下,若点D 是射线AP 上一动点,沿着DF 翻折∥ADF 得到∥A′DF (点A 的对应点为A′),∥A′DF 与∥ADB 重叠部分的面积为∥ADB 的14,求此时∥ADB 的面积.28.(本题满分10)如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E 出发,向终点D运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角∥BFG,以BG,BF为邻边作□BFHG,连接AG,设点F的运动时间为t秒.(1)试说明:∥ABG∥∥EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.备用图参考答案一、选择题二、填空题三、解答题19.(1)﹣6;(2)1﹣2a .20.(1)1x =2x =;(2)﹣1<x ≤8.21.(1)利用一组对边平行且相等即可得证;(2)22.(1)200;(2)生活类数据标30,小说类数据标70;(3)126°;(4)240人. 23.(1)14;(2)116;(3)1014. 24.(1)作图略;(2)OG 的长为1511.25.(1)他这个月的工资总额为4800元;(2)y 与x 的函数关系式为6100005008,500102,x x y x x m x m x m +≤≤⎧⎪=<≤⎨⎪->⎩,;(3)750≤m ≤900.26.(1)直线EF的函数表达式为y x =+(2)作MN∥AM 交x 轴于点N ,此时∥AEM∥∥NOM ,得到AE =ON =4,∥AMN 是等腰直角三角形,从而AMAN=; (3)点P 的坐标为(0,8),(﹣8,24),(﹣24,48),(﹣8,0)或(﹣24,8).27.(1)先判断抛物线的对称轴为x =1,再根据AB =4,求得AF =BF =2,从而求出A 、B 两点坐标,其中点A 的坐标为(﹣1,0),点B 的坐标为(3,0); (2)由于C 是抛物线与y 轴交点,从而表示出点C 坐标(0,c ),根据CG,得到点G 坐标为(0,c), 从而利用A 、G 两点表示出AG:(y c x c =+++, 根据AE :EP =1:2判断出点P 横坐标为5,代入直线AG 得到P(5,6c+), 将A 、P两点代入抛物线即可得二次函数解析式为:2y x =; (3)要使∥A′DF 与∥ADB 重叠部分的面积为∥ADB 的14,不难判断出四边形A′BFD 是平行四边形,从而A′D =BF =2,即AD =2,作DQ∥x 轴于点Q ,利用∥ADQ∥∥AGO ,求得DQ,最终求得∥ADB28.(1)根据SAS 证明∥ABG∥∥EBF ; (2)作GI∥AD 于点I ,HJ∥AD 于点J ,显然EF=t,由(1)之AG EF,且∥BAG=∥BEF=135°,从而∥GAE=45°,则AI=GI=12t,由∥GIF∥∥FJH,得GI=FJ=12t,则AJ=AE+EF+FJ=2+t+12t=2+32t,当点H在直线CD上时,AJ=AD=10,求得t=163;(3)HC的最小值为.。

(江苏卷) 2020年中考数学第二次模拟考试(参考答案)

(江苏卷) 2020年中考数学第二次模拟考试(参考答案)
2020 年中考数学第二次模拟考试【江苏卷】
数学·参考答案
1
2
3
4
5
6
AABDAC
7.–1 8.1.1×103 9. x 1 10.1 11.﹣15
13.17
14. 8 15
15.60
17.【解析】
1
1 x
x2 1 x
16. 9 或 5 52
12. 2 5
= x 1 x2 1 xx x+1
= x2 1 x+1
x y 9000, 则 1.1x 0.9 y 9000,
x 4500,
解得
y
4500,
数学 第 3页(共 9页) 3
答:原计划拆建各 4500 平方米.
(2)计划资金 y1=4500×80+4500×800=3960000(元),
实用资金 y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+324000=3636000(元),
AD
在 Rt△ADB 中,tan∠ABD= ,
BD
∴BD=
AD tan ABD
x tan 180

AD
在 Rt△ACD 中,tan∠ACD= ,
CD
∴CD=
AD tan ACD
x tan 140

∵BC=CD﹣BD,
x
x
∴ tan140 ﹣ tan180 =6,
40
∴4x﹣ x=6.
13
解这个方程,得 x=6.5.
=
( x+1)( x-1)
1 = x 1 .
3(x 2) 2x 5①
18.【解析】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【解答】 解:根据随机事件的概念直接得出答案;任意打开一本
A.
B.
C.
D.
6、 下列关于反比例函数 y= 的说法中,错误的是(

A .当 x< 0 时,y 随 x 的增大而减小
B.双曲线在第一、三象限内
C.当 x> 0 时,y 随 x 的增大而增大
D.当 x> 0 时,函数值 y>0
7、若一个凸多边形的内角和为 1080° ,则这个多边形的边数为(

A .9
AD 边上同一点 P 处,A 点的对称点为 A′点, D 点的对称点为 D ′点,若∠ FPG = 90° ,△ A′ EP 的面积为 8,△
D′ PH 的面积为 2,则矩形 ABCD 的面积等于 (

A . 20 +12 3
B. 16 +12 5
C. 20 +12 5
D . 16+12 3
10、如图,在△ ABC 中,∠ CAB=120° , AB=AC=3,点 E 是三角形 ABC 内一点,且满足
D
Q
P A
C
D
Q
C
Q
D
C
P E
B A
F P
E
B A B
2020 年省锡中二模数学考试卷
一、选择题 ( 本大题共 10 小题,每小题 3 分,共 30 分在每小题所给出的四个选项中,只有一个是正确
的,请将正确的选项编号填写在答卷纸相应的位置处
)
1、-3 的倒数是( A.3
【解答】 D
) B. -3
C. 1 3
又∵ △ D’PH 面积为2 所以 x = 2 则四边形 ABCD 面积为20 +12 5 故选择C
13、如图,在△ ABC 中,∠ CAB=120°, AB=AC=3,点 E 是三角形 ABC 内一点,且满足
则点 E 在运动过程中所形成的图形的长为 (

A. 3

B.
3
C
C. 2 3
2
23 2
BE - CE = AE
A E
O
C
D
B
26. 今年的新冠疫情爆发,使很多农作物积压没法正常销售。为解决农民的困难,我市某食品加工公司主动分两次 采购了一批竹笋, 第一次花费 40 万元,第二次花费 60 万元。已知第一次采购时每百千克竹笋的价格比去年的平
均价格上涨了 500 元,第二次采购时每百千克竹笋的价格比去年的平均价格下降了
6、 下列关于反比例函数 y= 的说法中,错误的是(
A .当 x< 0 时,y 随 x 的增大而减小 C.当 x> 0 时,y 随 x 的增大而增大 【解答】 C
) B.双曲线在第一、三象限内 D.当 x> 0 时,函数值 y>0
7、若一个凸多边形的内角和为 1080° ,则这个多边形的边数为(

A .9
B. 8
C. 7
【解答】 B
D.6
11、如图, A, B, C 是⊙O 上三点,∠ ACB= 25° ,则∠ BAO 的度数是(

A .65°
B. 60°
【解答】 解:连接 OB,
∵∠ACB= 25° ,
∴∠AOB= 2∠ ACB= 50° ,
∵ OA= OB,
∴∠BAO=∠ ABO=(180° ﹣ 50° )÷ 2= 65° ,
xy3 x 1 2y
21. 如图,点 C 在线段 AB 上,△ DAC 和△ BDE 都是等边三角形 ( 1)求证:△ DAB≌ △ DCE ( 2)求证: DA∥ EC
E
D
A
C
B
22. 初三年级教师对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注 听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如图 两幅不完整的统计图,请根据 图中所给信息解答下列问题:
A. x>2
3、下列运算正确的是(
A.
2
a
3
a
5
a
B. x 2

23
6
B. a ga a
C. x 2
235ຫໍສະໝຸດ C. (a ) aD. x≠2
5
2
3
D. a a a
4、 下列图形中,中心对称图形有(

A .1 个
B.2 个
C. 3 个
5、如图是由四个相同的小正方体组成的立体图形,它的俯视图为(

D.4 个
2020 年省锡中二模数学考试卷
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分在每小题所给出的四个选项中,只有一个是正确 的,请将正确的选项编号填写在答卷纸相应的位置处)
1、-3 的倒数是( A.3
) B. -3
2、函数 y= x 2 中自变量 x 的取值范围(
C. 1 3

D. 1 3
故答案为: 65° 故选 A
C. 55°
D . 50°
12、如图,把某矩形纸片 ABCD 沿 EF,GH 折叠(点 E,H 在 AD 边上,点 F ,G 在 BC 边上),使点 B 和点 C 落在
AD 边上同一点 P 处,A 点的对称点为 A′点, D 点的对称点为 D ′点,若∠ FPG = 90° ,△ A′ EP 的面积为 8,△
则点 E 在运动过程中所形成的图形的长为 (

A. 3

B.
3
C. 2 3
C
2
23 2
BE - CE = AE
2 3π
D.
3
E
A
B
二、填空题
11、无锡近年来经济快速发展, 2019 年 GDP 超过 1180000000000 元,将 1180000000000 用科学计数法表示

.
12、分解因式:
D′ PH 的面积为 2,则矩形 ABCD 的面积等于 (

A . 20 +12 3
B. 16 +12 5
C. 20 +12 5
D . 16+12 3
【解答】∵ ∠ FPG= 90° ∴ A’E//D’P
所以可以得出△ A’EP∽ △ D ’PH
能得出相似比为2:1 设D ’H= x 则D ’P= A’P= 2 x 所以能得出 AD= (5+ 3 5 ) x CD= 2 x
这个两位数恰好能被 4 整除的概率. (请用“画树状图”或“列表”等方法写出分析过程)
24. 如图,已知点 M 在直线 l 外,点 N 在直线 l 上,请用无刻度的直尺和圆规完成下列作图,要求保留痕迹,不写
作法。
( 1)在图①中,以线段 MN 为一条对角线作菱形 MPNQ ,使菱形的边 PN 落在直线 l 上 ( 2)在图②中,做圆 O,使圆 O 过点 M ,且与直线 l 相切于 N。
( 1)若∠ ACB= 90° ,求抛物线解析式 ( 2)问 OC 和 DP 能否相等?若能,求出抛物线解析式,若不能,说明理由。
y
O
x
28.如图 1,边长为 6 的正方形 ABCD,动点 P、 Q 各从点 A, D 同时出发,分别沿 AD, DC 方向运动,且速度均为 每秒 1 个单位长度 . ( 1) AQ 与 BP 关系为 ________________; ( 2)如图 2,当点 P 运动到线段 AD 的中点处时, AQ 与 BP 交于点 E,试探究∠ CEQ 和∠BCE 满足怎样的数量关 系. ( 3)如图 3,将正方形变为菱形且∠ BAD= 60° ,其余条件不变,设运动 t 秒后,点 P 仍在线段 AD 上,AQ 交 BD 于 F ,且△ BPQ 的面积为 S,试求 S 的最小值,及当 S 取最小值时∠ DPF 的正切值 .
D. 1 3
2、函数 y= x 2 中自变量 x 的取值范围(

A. x>2
【解答】 B
B. x 2
3、下列运算正确的是(
A.
2
a
3
a
5
a

23
6
B. a ga a
【解答】 D
4、 下列图形中,中心对称图形有(

C. x 2
D. x≠2
23
5
C. (a ) a
5
2
3
D. a a a
A .1 个
B.2 个
M
l N
图1
M
l N
图2
25. 如图,直角三角形 ABC 中,∠ ABC= 90° ,以边 AB 为直径作圆 O,交 AC 于点 E,点 D 是 BC 的中点,连接 DE ( 1)判断 DE 与圆 O 的关系,说明理由
( 2)若 AB= 4,DE= 2 3 ,点 G 是圆上出 E、 B 外的任意一点,则∠ EGB= ______° (直接写出答案)
所以 E 的轨 迹长为 C
3 π
,故选择B
3
G
E O
B
三、填空题
A F
13、无锡近年来经济快速发展, 2019 年 GDP 超过1180000000000 元,将 1180000000000 用科学计数法表示

.
【解答】 解: 1.18
12
10
14、分解因式: a2 2a
.
【解答】 解: a(a 2)
( 1)在这次评价中,一共抽查了
名学生;
( 2)请将条形统计图补充完整;
( 3)如果全市有 12000 名初中学生,那么在试卷讲评课中, “独立思考”的学生约有多少人?
23. 有四张完全一样的卡片,在正面分別写上
1、2、 3、 4 四个数字后洗匀,反面朝上放在桌上.小明从中先后任意
抽取两张卡片, 然后把先抽到的卡片上的数字作为十位数, 后抽到的卡片上的数字作为个位数,组成一个两位数. 求
相关文档
最新文档