用加减法解二元一次方程组[下学期]--新人教版-
人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组

-理解消元的概念及其在解二元一次方程组中的应用;
-掌握通过加减法对二元一次方程组进行消元的具体步骤;
-学会运用加减消元法求解二元一次方程组,并能够正确验证结果;
-能够将实际问题转化为二元一次方程组,运用加减消元法解决问题。
举例说明:
(1)对于方程组:
\[
\begin{cases}
2x + 3y = 8 \\
在学生小组讨论的过程中,我也注意到有些小组在讨论时偏离了主题,这可能是因为他们对讨论的主题理解不够深入。为了改善这一点,我计划在今后的教学中,加强对学生讨论方向的引导,确保他们的讨论能够紧扣主题,提高讨论的效率。
-在验证解时,确保代入原方程组中的每个方程都满足,以避免漏解或多解。
举例说明:
(1)对于方程组:
\[
\begin{cases}
5x + 3y = 16 \\
3x - 5y = 23
\end{cases}
\]
学生可能会难以确定如何消去变量,需要指导他们通过乘以适当的数来调整系数,如将第一个方程乘以3,第二个方程乘以5,得到:
x - y = 2
\end{cases}
\]
然后应用加减消元法求解。
2.教学难点
-理解消元的本质,即如何通过变换使方程组中的某个变量的系数相同或互为相反数;
-在进行加减消元时,正确选择相加或相减的方程,避免计算错误;
-在消元过程中,注意保持等式两边的平衡,避免出现计算错误;
-对于系数不是整数倍的方程组,如何通过乘以适当的数使得系数相同或互为相反数;
人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组
一、教学内容
人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组
用加减法解二元一次方程组

用加减法解二元一次方程组引言解方程是数学中最基本的操作之一,可以用来求解未知数的值。
在代数中,二元一次方程组是由两个未知数及其对应的系数和常数项组成的方程组。
解二元一次方程组的一种常用方法是使用加减法。
什么是加减法解法加减法解法也被称为消元法,是通过对方程组进行加减操作,使其中一个未知数的系数相等或相反,从而进行消去,最终求解出另一个未知数的值,并将其代入原方程组解得另一个未知数的值。
解题步骤以一个简单的二元一次方程组为例进行步骤说明:假设有以下二元一次方程组:2x + 3y = 54x - 2y = 10步骤如下: 1. 选择两个方程,使用加减法消除一个未知数的系数。
通常选取两个系数的绝对值相等或相反的方程。
在本例中,我们选择第一个方程和第二个方程的第一个系数(2和4)来进行消去操作。
将第一个方程乘以2,得到:4x + 6y = 10然后将第二个方程和上述结果相减,得到:(4x - 2y) - (4x + 6y) = 10 - 10 -8y = 02.消元后得到一个只包含一个未知数的方程,即-8y = 0。
解这个方程得到y 的值。
根据以上方程,可以求得y = 0。
3.将y的值代入原方程组中的一个方程,求解出x的值。
选取第一个方程2x + 3y = 5,代入y = 0,得到:2x + 3 * 0 = 52x = 5x = 5 / 2解题结果根据以上步骤,得到了以下解题结果:x = 2.5y = 0总结加减法解二元一次方程组是一种常用的解法,通过对方程组进行加减操作,可以逐步消除未知数的系数,最终求解出未知数的值。
使用这种方法需要选择合适的方程进行消去,以便简化计算过程并得到正确的结果。
希望本文对你解决二元一次方程组问题有所帮助。
注意:以上所给方程仅作为示例。
在实际解题中,可能会遇到更复杂的方程组,需要采用更多的消元操作和计算步骤来求解。
人教版七年级下册数学8.2.2加减消元法解二元一次方程组课件

463x+361y=102
2006x-2007y=2008
(3) 3(x-1)=y+5 5(y-1)=3(x+5)
5.已知关于x、y的方程组 2x-3y=3和 3x+2y=11
2ax+3by=3
ax+by=-1
的解相同。
x 2 y 1
2
6.方程
+ =0与二元一次方程组 3ax+by=11
ax-by= 2
(1)某个未知数的系数互为相反数,则可以直接 把这两个方程中的两边分别相加, 消去这个未知数;
(2)如果某个未知数系数相等,则可以直接 把这两个方程中的两边分别相减, 消去这个未知数。
上面这些方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些?
特点: 同一个未知数的系数相同或互为相反数
8.2.2 消元
——用加减法解二元一次方程组
1、根据等式性质填空:
<1>若a=b,那么a±c= b±c .(等式性质1)
<2>若a=b,那么ac= bc . (等式性质2)
a
b
若a=b,那么 c = c .(b≠0)
2、解二元一次方程组的基本思路是什么?
二元
消元 转化
一元
3、用代入法解方程的步骤是什么?
1
点悟:
当方程组中任一个未知数的系数绝对值不是1, 且不相等或成倍数关系时,应将两个方程同时变 形, 使两个方程中某一未知数的系数绝对值相等, 利用加减法解方程组, 同时选择系数比较小的未知数消元。
加减法归纳:
用加减法解二元一次方程组时,若同一个未 知数的系数绝对值不相等,且不成整数倍时, 把一个(或两个)方程的两边乘以适当的数, 使两个方程中某一未知数的系数绝对值相等, 从而化为第一类型方程组求解.
人教版数学七年级下册第8章第2课消元-解二元一次方程组(加减法)教案

$$\begin{cases}2x+3y=7 \\ x-4y=-3\end{cases}$$
(2)掌握加减消元法的计算步骤:引导学生遵循正确的计算步骤,包括方程的变形、乘法运算、加减运算等,确保求解过程准确无误。
(3)运用加减消元法求解二元一次方程组:培养学生将所学知识应用于实际问题的能力,掌握从问题中抽象出方程组,然后通过加减消元法求解。
(3)针对实际问题,教师可引导学生通过画图、列表等方法,将问题中的信息转化为方程组,进而求解。
(4)在讲解消元法的局限性时,可以举例说明当方程组中的系数相差较大时,使用加减消元法可能导致计算过程复杂,此时可以寻求代入法或其他解法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“消元-解二元一次方程组(加减法)”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要同时解决两个问题的情况?”(例如:小明去商店买笔和本子,他知道自己总共花了多少钱,以及笔和本子的价格关系,如何求出笔和本子的单价?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二元一次方程组的奥秘。
人教版数学七年级下册第8章第2课消元-解二元一次方程组(加减法)教案
一、教学内容
本节课为人教版数学七年级下册第8章第2课,主题为“消元-解二元一次方程组(加减法)”。教学内容主要包括以下几点:
1.理解加减消元法的基本原理;
2.学会使用加减消元法解二元一次方程组;
3.掌握判断二元一次方程组解的过程;
4.能够灵活运用加减消元法解决实际问题。
4.在小组讨论与合作中,增强沟通与表达能力,培养团队合作精神。
在教学过程中,关注学生核心素养的提升,注重培养学生对数学知识的深入理解和灵活运用能力,为学生的终身学习和可持续发展奠定基础。
人教版七年级数学下册 第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组 同步练习题 含答案

第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组1. 若二元一次方程组的解为则a-b 等于( ) A. B. C. 3 D. 12. 方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 得到的方程是( ) A .y =4 B .7y =-14 C .7y =4 D .y =143. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( ) A.⎩⎪⎨⎪⎧x =5y =1 B. ⎩⎪⎨⎪⎧x =-5y =-1 C. ⎩⎪⎨⎪⎧x =4y =2 D.⎩⎪⎨⎪⎧x =-4y =-2 4. 若方程组的解满足x+y=0,则k 的值为( )A. -1B. 1C. 0D. 不能确定5. 用加减法解方程组⎩⎪⎨⎪⎧2a +2b =3,①3a +b =4,②最简单的方法是( ) A .①×3-②×2 B .①×3+②×2 C .①+②×2 D .①-②×26.解方程组⎩⎪⎨⎪⎧0.2x -0.3y =2,0.5x -0.7y =-1.5最合适的方法是( ) A .试值法 B .加减消元法 C .代入消元法 D .无法确定7. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则列方程组为( )A.⎩⎪⎨⎪⎧7y =x -38y =x +5B.⎩⎪⎨⎪⎧7y =x +38y =x -5C.⎩⎪⎨⎪⎧7y =x +38y +5=xD.⎩⎪⎨⎪⎧7y =x +38y =x +5 8. 对于非零的两个实数a,b,规定a ⊕b=am-bn,若3⊕(-5)=15,4⊕(-7)=28,则(-1)⊕2的值为( )A. -13B. 13C. 2D. -29. 已知则= .10. 二元一次方程组x +y 2=2x -y 3=x +2的解是________.11. 观察下列两方程组的特征:①⎩⎪⎨⎪⎧4x -3y =5,4x +6y =4; ②⎩⎪⎨⎪⎧y =3x +4,3x +5y =0. 其中方程组①采用______消元法较简单,而方程组②采用____消元法较简单.12. 已知方程组⎩⎪⎨⎪⎧2x -3y =4,①3x +2y =1,②用加减法消去x 的方法是_____________;用加减法消去y 的方法是______________.13. 根据图中的信息可知,一件上衣的价格是____元,一条短裤的价格是____元.14. 解下列方程组:(1)⎩⎪⎨⎪⎧x -3y =1,x +2y =6;(2)⎩⎪⎨⎪⎧3x +y =7,2x -y =3.15. 用加减法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =5,2x +3y =11;(2)⎩⎪⎨⎪⎧3x +2y =4,4x -3y =11;(3)⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,2(x +y )+(x -y )=15.16. 甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一组解为⎩⎪⎨⎪⎧x =1,y =-1,乙把ax -by =7看成ax -by =1,求得一组解为⎩⎪⎨⎪⎧x =1,y =2,求a 2-2ab +b 2的值.17. 小丽购买了6支水彩笔和3本练习本共用了21元;小明购买了同样的12支水彩笔和5本练习本共用了39元.已知水彩笔与练习本的单价不同.(1)求水彩笔与练习本的单价;(2)小刚要买4支水彩笔和4本练习本,共需多少钱?18. A,B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2 h 后两人在途中相遇,相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2 km,求甲、乙两人的速度.19. 某种水果的价格如表:张欣两次共购买了25 kg这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?答案:1---8 ABCBD BAA9. -310. ⎩⎪⎨⎪⎧x =-5y =-111. 加减 代入12. ①×3-②×2 ①×2+②×313. 40 2014. 解:(1)⎩⎪⎨⎪⎧x =4,y =1. (2)⎩⎪⎨⎪⎧x =2,y =1. 15. (1) 解:⎩⎪⎨⎪⎧x +y =5,①2x +3y =11,②①×3-②,得x =4,把x =4代入①,得y =1, ∴方程组的解为⎩⎪⎨⎪⎧x =4,y =1.(2) 解:⎩⎪⎨⎪⎧3x +2y =4,①4x -3y =11,②①×3+②×2,得17x =34,解得x =2, 把x =2代入①,得6+2y =4,解得y =-1,∴方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.(3) 解:⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,①2(x +y )+(x -y )=15,②①+②×5,得13(x +y)=91,解得x +y =7,把x +y =7代入①,得x -y =1.解方程组⎩⎪⎨⎪⎧x +y =7,x -y =1, 得⎩⎪⎨⎪⎧x =4,y =3,∴方程组的解为⎩⎪⎨⎪⎧x =4,y =3. 16. 解:由题意,得⎩⎪⎨⎪⎧a +b =7,a -2b =1,解得⎩⎪⎨⎪⎧a =5,b =2. ∴a 2-2ab +b 2=52-2×5×2+22=9.17. 解:(1)设水彩笔与练习本的单价分别为x 元和y 元,由题意, 得⎩⎪⎨⎪⎧6x +3y =21,12x +5y =39,解得⎩⎪⎨⎪⎧x =2,y =3. 则水彩笔与练习本的单价分别为2元和3元.(2)小刚买4支水彩笔和4本练习本共需2×4+3×4=20(元).18. 解:设甲的速度为x km/h ,乙的速度为y km/h ,由题意, 得⎩⎪⎨⎪⎧2x +2y =20,(2+2)y +2=20,解得⎩⎪⎨⎪⎧x =5.5,y =4.5. 则甲的速度为5.5 km/h ,乙的速度为4.5 km/h.19. 解:设张欣第一次、第二次分别购买了这种水果x kg ,y kg , 因为第二次购买多于第一次,则x<12.5<y.①当x ≤10时,⎩⎪⎨⎪⎧x +y =25,6x +5y =132,解得⎩⎪⎨⎪⎧x =7,y =18. ②当10<x<12.5时,⎩⎪⎨⎪⎧x +y =25,5x +5y =132,此方程组无解, ∴张欣第一次、第二次分别购买了这种水果7 kg ,18 kg.。
8.2解二元一次方程组加减消元法(三)

新课标(RJ) 数学 七年级下册
8.2 消元——解二元一次方程组
加减消元法(三)
8.2
消元——解二元一次方程组
教材重难处理
教材【第111页第3题的第(2)小题】分层分析
2 ( x - y ) x + y - =-1,① 3 4 解方程组: 6(x+y)-4(2x-y)=16.②
[分析] (1)方程①去分母、去括号、合并同类项,得形如 a1x +b1y=c1 的方程:
5x-11y ____________ =-12.③
8.2
消元——解二元一次方程组
(2)方程②去括号、合并同类项、化简,得形如 a2x+b2y=c2 的方程:
-x+5y _______________ =8.④ 28 .解得 y=______ 2 . (3)③+④×5,得 14y=______ 2 2 代入方程④,解得 x=______ (4)将 y=______ . 2 , x= 2 所以原方程组的解是 2 y= 2 W . a1x+b1y=c1, a2x+b2y=c2 (5) 这类方程组需要先整理成形如 __________________ 的方
8.2
消元——解二元一次方程组
解:设灌溉用井打 x 口,生活用井打 y 口.由题意,得
x+y=58, 4x+0.2y=80, x=18, 解这个方程组,得 y=40,
答:灌溉用井和生活用井各打18口和40口. [归纳总结] 找出等量关系,构建方程组模型,是解决实际问
题的一种常用方法.
方程组
3x 5 y m 2 ① 2 x 3 y m
的解也是方
程 x y 8 的解,求m的值 解:①-②得: x 2y 2 ③
用加减法解二元一次方程组

用加减法解二元一次方程组以下是关于用加减法解二元一次方程组,希望内容对您有帮助,感谢您得阅读。
教学建议1.教材分析(1)知识结构(2)重点、难点分析重点:本小节的重点是使学生学会用加减法解二元一次方程组.这也是一种全新的知识,与在一元一次方程两边都加上、减去同一个数或同一个整式,或者都乘以、除以同一个非零数的情况是不一样的,但运用这项知识(这里也表现为一种方法),有时可以简捷地求出二元一次方程组的解,因此学生同样会表现出一种极大的兴趣.必须充分利用学生学会这种方法的积极性.加减(消元)法是解二元一次方程组的基本方法之一,因此要让学生学会,并能灵活运用.这种方法同样是解三元一次方程组和某些二元二次方程组的基本方法,在教学中必须引起足够重视.难点:灵活运用加减法的技巧,以便将方程变形为比较简单和计算比较简便,这也要通过一定数量的练习来解决.·2.教法建议(1)本节是通过一个引例,介绍了加减法解方程组的基本思想和解题过程.教学时,要引导学生观察这个方程组中未知数系数的特点.通过观察让学生说出,在两个方程中y的系数互为相反数或在两个方程中x的系数相等,让学生自己动脑想一想,怎么消元比较简便,然后引出加减消元法.(2)讲完加减法后,课本通过三个例题加以巩固,这三个例题是由浅入深的,讲解时也要先让学生观察每个方程组未知数系数的特点,然后让学生说出每个方程组的解法,例题1老师自己板书,剩下的两个例题让学生上黑板板书,然后老师点评.(3)讲解完本节后,教师应引导学生比较代入法与加减法这两种方法,这两种方法虽有不同,但实质都是消元,即通过消去一个未知数,把“二元”转化为“一元”.也就是说:这时学生对解题方法比较熟悉,但还没有上升到理论的高度,这时教师应及时点拨、渗透化归转化的思想,并指出这是具有普遍意义的分析问题、解决问题的思想方法.?教学设计示例(第一课时)·一、素质教育目标(一)知识教学点1.使学生掌握用加减法解二元一次方程组的步骤.2.能运用加减法解二元一次方程组.(二)能力训练点1.培养学生分析问题、解决问题的能力.2.训练学生的运算技巧.(三)德育渗透点消元,化未知为已知的转化思想.(四)美育渗透点渗透化归的数学美.二、学法引导1.教学方法:谈话法、讨论法.2.学生学法:观察各未知量前面系数的特征,只要将相同未知量前的系数化为绝对值相等的值后即可利用加减法进行消元,同时在运算中注意归纳解题的技巧和解题的方法.三、重点、难点、疑点及解决办法(-)重点使学生学会用加减法解二元一次方程组.(二)难点灵活运用加减消元法的技巧.·(三)疑点如何“消元”,把“二元”转化为“一元”.(四)解决办法只要将相同未知量前的系数化为绝对值相等的值即可利用加减法进行消元.四、课时安排一课时.五、教具学具准备投影仪、胶片.六、师生互动活动设计1.教师通过复习上节课代入法解二元一次方程组的方法及其解题思想,引入除了消元法还有其他方法吗?从而导入新课即加减法解二元一次方程组.2.通过引例进一步让学生探究是用代入法还是用加减法解方程组更简单,让学生进一步明确用加减法解题的优越性.3.通过反复的训练、归纳、再训练、再归纳,从而积累用加减法解方程组的经验,进而上升到理论.七、教学步骤(-)明确目标本节课通过复习代入法从而引入另一种消元的办法,即加减法解二元一次方程组.·(二)整体感知加减法解二元一次方程组的关键在于将相同字母的系数化为绝对值相等的值,即可使用加减法消元.故在教学中应反复教会学生观察并抓住解题的特征及办法从而方便解题.(三)教学过程1.创设情境,复习导入(1)用代入法解二元一次方程组的基本思想是什么?(2)用代入法解下列方程组,并检验所得结果是否正确.学生活动:口答第(1)题,在练习本上完成第(2)题,一个同学说出结果.上面的方程组中,我们用代入法消去了一个未知数,将“二元”转化为“一元”,从而得到了方程组的解.对于二元一次方程组,是否存在其他方法,也可以消去一个未知数,达到化“二元”为“一元”的目的呢?这就是我们这节课将要学习的内容.【教法说明】由练习导入新课,既复习了旧知识,又引出了新课题,教学过程中还可以进行代入法和加减法的对比,训练学生根据题目的特点选取适当的方法解题.2.探索新知,讲授新课第(2)题的两个方程中,未知数的系数有什么特点?(互·为相反数)根据等式的性质,如果把这两个方程的左边与左边相加,右边与右边相加,就可以消掉,得到一个一元一次方程,进而求得二元一次方程组的解.解:①+②,得把代入①,得∴∴学生活动:比较用这种方法得到的、值是否与用代入法得到的相同.(相同)上面方程组的两个方程中,因为的系数互为相反数,所以我们把两个方程相加,就消去了.观察一下,的系数有何特点?(相等)方程①和方程②经过怎样的变化可以消去?(相减)学生活动:观察、思考,尝试用①-②消元,解方程组,比较结果是否与用①+②得到的结果相同.(相同)我们将原方程组的两个方程相加或相减,把“二元”化成了“一元”,从而得到了方程组的解.像这种解二元一次方程组的方法叫加减消元法,简称“加减法”.提问:①比较上面解二元一次方程组的方法,是用代入法简单,还是用加减法简单?(加减法)②在什么条件下可以用加减法进行消元?(某一个未知数·的系数相等或互为相反数)③什么条件下用加法、什么条件下用减法?(某个未知数的系数互为相反数时用加法,系数相等时用减法)【教法说明】这几个问题,可使学生明确使用加减法的条件,体会在某些条件下使用加减法的优越性.例1 解方程组哪个未知数的系数有特点?(的系数相等)把这两个方程怎样变化可以消去?(相减)学生活动:回答问题后,独立完成例1,一个学生板演.解:①-②,得∴把代入②,得∴∴∴(1)检验一下,所得结果是否正确?(2)用②-①可以消掉吗?(可以)是用①-②,还是用②-①计算比较简单?(①-②简单)(3)把代入①,的值是多少?(),是代入①计算简单还是代入②计算简单?(代入系数较简单的方程)练习:P23 l.(l)(2)(3),分组练习,并把学生的解题·过程在投影仪上显示.小结:用加减法解二元一次方程组的条件是某个未知数的系数绝对值相等.例2 解方程组(1)上面的方程组是否符合用加减法消元的条件?(不符合)(2)如何转化可使某个未知数系数的绝对值相等?(①×2或②×3)归纳:如果两个方程中,未知数系数的绝对值都不相等,可以在方程两边部乘以同一个适当的数,使两个方程中有一个未知数的系数绝对值相等,然后再加减消元.学生活动:独立解题,并把一名学生解题过程在投影仪上显示.学生活动:总结用加减法解二元一次方程组的步骤.①变形,使某个未知数的系数绝对值相等.②加减消元.③解一元一次方程.④代入得另一个未知数的值,从而得方程组的解.3.尝试反馈,巩固知识练习:P23 1.(4)(5).·【教法说明】通过练习,使学生熟练地用加减法解二元一次方程组并能在练习中摸索运算技巧,培养能力.4.变式训练,培养能力(1)选择:二元一次方程组的解是()A. B. C. D.(2)已知,求、的值.学生活动:第(1)题口答,第(2)题在练习本上完成.【教法说明】第(1)题可以用解方程组的方法得解,也可以把四组值分别代入原方程组中,利用检验的方法解,这道题能训练学生思维的灵活性;第(2)题通过分析,学生可得方程组从而求得、的值.此题可以培养学生分析问题,解决问题的综合能力.(四)总结、扩展1.用加减法解二元一次方程组的思想:2.用加减法解二元一次方程组的条件:某一未知数系数绝对值相等.3.用加减法解二元一次方程组的步骤:八、布置作业(一)必做题:P241.(二)选做题:P25B组1.(三)预习:下节课内容.·参考答案(一)(1)(2)(3)(4)(二)1.(1)与(4)(2)与(3)·。
二元一次方程组的解法---加减消元法(课件)七年级数学下册(人教版)

x 1
1 0.3 y 2 5
(2)
y 1 4x 9 1
4
20
3 2 x 1 5 y 11
(1)
3 x 2 y 3 10
解: (1)方程组整理,得
6 + 5 = 14 ①
3 − 2 = 16 ②
x=10
= 10
所以这个方程组的解是
= −2
2x 3 y 1 ①
(3)
4x 7 y 5 ②
11.选择适合的解法解下列方程组.
x 4y 2
①
(1)
3 x 5 y 20 ②
2x 3 y 3 ①
(2)
5 x 3 y 2 ②
解:(2)①+②,得
运输360t化肥,装载了6节火车车厢与15辆汽车;运输440t化肥,装载了8节
火车车厢与10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?
解:设每节火车车厢与每辆汽车平均各装 x t和 y t.列方程组得
6 x 15 y 360
①
②
8 x 10 y 440
①×2,得 12x+30y=720 ③
②左边-①左边=②右边-①右边
2x+y-(x+y)=16-10
解这个方程得 x=6
把x=6代入①,得 y=4
x 6
所以这个方程组的解是
y 4
联系前面的解法,想一想怎样解方程组
3 x 10 y 2.8
15 x 10 y 8
①
②
解:①+②,得 18x=10.8
x=0.6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.复习
(1)用代入法解二元一次方程组的基本思想是什么?
(2)用代入法解下列方程组,并检验所得结果是否正
确.
3x 2 y 13 3x 2 y 5
(1) (2)
x
y
32
对于二元一次方程组,是否存在其他方法,也可以消 去一个未知数,达到化“二元”为“一元”的目的呢?
2.新课
第(2)题的两个方程中,未知数 y 的系数有什么特
第五章 二元一次方程组
5.3 用加减法解二元一次方程组
便在脑海中幻想着自己亲手 制作小木雕的场景,迫不及待的想要把它们变成现实。 幻想着自己成了能工巧匠,一块木头不一会儿就被做成了一只栩栩如生, 非常可爱的小狗。忽然感觉自己就 好像是"神笔马良"一样,也拥有一把神奇的 雕刻笔,相信任何木头都能让它变得形态逼真,活灵活现的。 我将去年暑假收集的雪糕棍全部找了出来,用铅笔和直尺开始了绘图,我 想要做一把 小木剑:用直尺量出了木条宽的中点,又在两边找到了两个合适的 点,平移做成了一个长方条,和刚才的点连接后,剑的大致轮廓就做出来了, 剑柄也在十分钟后完工。 这一切都进行的顺顺 利利,我便开始了雕刻,每一步我都小心让学生通过模仿操作,掌握for语 句和repeat语句. v教学重点: 通过实例,使学生理解循环语句的 表示方法,结构和用法,进一步体会 算法的基本思想. v 教学难点: 将程序框图转化为程序语言,编写 正确的程序语言 v教学方法: 讲练结合法 v突破重难点的方法: 让学生通过模仿,练习,掌握for语 句,repat语句书写格式,体会其内 在的逻辑关系 . 1.指开出始下图中的变循量n环控变制着量循,循环的开 环体n:,=循1环终止始条和件结束,称为循环变量 a:=15n 输出a n:=n+1 否 n>66 是 结束 反复执行的部分, 称为循环体 此用于判断 是否继续执 行循环体,称为循环的 终止条件 2.画出循环结构的流程图的 基本模式 循环变量:=初始值 循环体 循环变量:=循环变量的后继 否 循环变量>终值 是 循环结构是算法中的基本 结构,for语句是表达循环结 构最常见的语句之一,它适 用于预先知道循环次数的 循环结构翼翼的,可 我担心的事还是发生了,因为木条的木纹是倾斜的,所以正当我雕刻时,一不 小心就顺 着木纹切了下去,把木条切断了,这一个小小的失误使得我前功尽弃, 还险些伤到了我的手指。 我有些退缩了,毕竟以前曾两次被小刀割伤过,但想到那些雕刻大师,他 们从小就开始练习, 经过多少次伤痛才能拥有今天的成果,累累伤痕见证着他 们的辛苦付出,也是成功的必经之路。和他们相比,我的这些困难又算得了什 么。 想到这里我又重新鼓起勇气,拿起铅笔从头开始, 计算、绘图、修改…… 开始雕刻时,我深吸一口气,静下心来仔细的雕刻着,顺着铅笔的痕迹, 一点一点的雕刻着
把 y 3 代入②,得 6x 5 3 17
∴ 6x 15 17
∴ x1
3
∴
x
1 3
y 3
(1)检验一下,所得结果是否正确?
x (2)用②-①可以消掉 吗?是用①-②,还是用②
-①计算比较简单?
x (3)把 y 3 代入①, 的值是多少?是代入①计算
简单还是代入②计算简单?
总结1
点?
解:①+②,得 6x 18
把 x 3 代入①,得 9 2 y 13
∴ y2
∴
x 3
y
2
试比较用这种方法得到的 x 、y 值是否与用代入法得到
的相同?
问题1:上面方程组的两个方程中,因为y 的系数互
为相反数,所以我们把两个方程相加,就消去了y
x .观察一下, 的系数有何特点?方程①和方程
用加减法解二元一次方程组的条件是某个未知数的系 数绝对值相等.
例2 解方程组
9x 2y 15 (1)
3x
4
y
10
(2)
(1)上面的方程组是否符合用加减法消元的条件? (2)如何转化可使某个未知数系数的绝对值相等?
解: 略
总结2
如果两个方程中,未知数系数的绝对值都不相等,可 以在方程两边都乘以同一个适当的数,使两个方程中 有一个未知数的系数绝对值相等,然后再加减消元.
②经过怎样的变化可以消去 x?
问题2:①比较上面解二元一次方程组的方法,是 用代入法简单,还是用加减法简单?
②在什么条件下可以用加减法进行消元?
③什么条件下用加法、什么条件下用减法?
例1 解方程组
6x 7 y 19 (1)
6x 5y 17
(2)
ห้องสมุดไป่ตู้
解:①-②,得 12 y 36
∴ y 3