spss学习系列30.主成份分析

合集下载

SPSS进行主成分分析

SPSS进行主成分分析

利用SPSS进行主成分分析【例子】以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据(未经标准化)第二步:打开“因子分析”对话框。

沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框的路径图3 因子分析选项框第三步:选项设置。

首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。

在本例中,全部8个变量都要用上,故全部调入(图4)。

因无特殊需要,故不必理会“Value ”栏。

下面逐项设置。

图4 将变量移到变量栏以后⒈设置Descriptives选项。

单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框在Statistics 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。

其它复选项一般不用,但在特殊情况下可以用到(本例不选)。

设置完成以后,单击Continue 按钮完成设置(图5)。

⒉ 设置Extraction 选项。

打开Extraction 对话框(图6)。

因子提取方法主要有7种,在Method 栏中可以看到,系统默认的提取方法是主成分(Principal Components ),因此对此栏不作变动,就是认可了主成分分析方法。

spss学习笔记之主成分分析

spss学习笔记之主成分分析

spss学习笔记:因子分析因子分析(主成分分析法)Analyse—>data reduction—>Factor除了variables对话框外,还有五个对话框。

descriptive对话框:提供描述性统计量与相关矩阵有关的统计量。

这个对话框关键是以下一些选项:1)statistics选项Initial solution:输出有comunalities(公因子方差),Total variance explained(提供特征值、各因子解释的方差比例和累计比例等信息)。

2)Correlation matrix选项:Coefficients输出观察变量的相关系数矩阵;Reproduced输出重构的相关系数矩阵(我用的spss版本显示的residual和produced correlation是分开的);KMO and Bartlett’s test ofsphericity:KMO测度和巴特里特球体检验。

KMO 值的可接受区间0.5~1。

球体检验则看显著性水平。

其他一般不必用。

Extraction对话框:Method选Principal components主成分分析法(系统默认)Analyse 选correlation matrix即可。

Display下的两个选项都选中。

分别输出未经旋转的因子矩阵和碎石图。

Extract决定提取因子的个数,有两种情况。

Eigenvalue over指定要提取因子的最小特征值;Number of factors直接指定要提取的因子数。

Rotation 对话框:Method下选择旋转方法:最常用的是varimax方差最大法;Direct Oblimin斜交旋转,在变量之间的相关性比较大时使用。

Display下:Rotated solution 输出旋转后的因子矩阵。

Loading Plots输出因子负载图(觉得这个东东没什么用,因子大于二时估计就已经看不清了)。

主成分分析在SPSS中的操作应用

主成分分析在SPSS中的操作应用

主成分分析在SPSS中的操作应用1.数据准备首先,将需要进行主成分分析的变量准备好,确保这些变量是数值型的,并且不含有缺失值。

如果有缺失值,可以选择删除这些观测值或者进行缺失值处理。

2.打开主成分分析对话框在SPSS软件的菜单栏中选择“Analyze”(分析)-> "Dimension Reduction"(降维)-> "Factor"(因子/主成分分析)。

弹出一个主成分分析对话框。

3.选择变量在主成分分析对话框的“Variables”(变量)栏中,选择要进行主成分分析的变量,并将其添加到“Variables”栏中。

可以使用“>”按钮将变量从“Variables”栏中添加到“Selected Variables”(已选择变量)栏中。

4.主成分提取方法5.成分数量在主成分分析对话框的“Extraction”选项卡中,还可以设置要提取的主成分数量。

可以手动设置数量,也可以选择提取具有特定特征值水平的主成分。

6.主成分旋转方法在主成分分析对话框的“Rotation”(旋转)选项卡中,可以选择主成分的旋转方法。

SPSS提供了多种方法,例如方差最大旋转法(Varimax Rotation)和直感旋转法(Quartimax Rotation)等。

选择适当的方法可以使得主成分更易解释。

7.结果解释8.导出结果在主成分分析结果中,可以选择导出一些结果,如旋转后的载荷矩阵,以便在后续分析中使用。

可以使用SPSS软件的导出功能,将结果保存为文本文件或Excel文件等格式。

总之,SPSS软件提供了简便而且强大的主成分分析功能,可以通过上述步骤进行操作应用。

熟悉主成分分析的相关知识,合理选择参数和方法,可以帮助我们更好地理解数据,并有效地进行数据压缩和特征提取。

spss主成分分析法

spss主成分分析法

spss主成分分析法SPSS主成分分析法(PrincipalComponentAnalysis,简称PCA)是一种常用的资料处理方法,通常被用于多种实际应用中,有助于分析资料的降维和发掘隐藏的资料特征。

SPSS是一种统计软件,它可以帮助用户处理收集的数据,例如对数据进行分析、估计、回归分析等等。

SPSS可以用来快速分析大量数据,以提取隐藏的趋势和关系,从而更充分地利用资料。

基本原理SPSS主成分分析是一种数据分析方法,它可以使研究者更有效地发掘资料中的内在规律,以获得有意义的信息。

PCA假定资料中有关变量之间存在某种相关性,并且可以根据这些变量彼此之间的相关性,利用变量之间的协方差矩阵系统地分解出新的特征变量,称为主成分。

主成分是由原有的变量的组合得到的新的变量,它是原有变量的最佳线性组合,它不含有任何原有变量的信息,而且它们的系数都是正值。

PCA的一般步骤1.据预处理:首先,用户需要整理和准备资料,其中包括检查数据中的缺失值,识别异常点,检查是否存在多重共线性(Multicollinearity)等。

2. 主成分的提取:从资料中提取主成分,这一步骤需要计算协方差矩阵,利用特征值分解对协方差矩阵进行分解,从而获得主成分的系数和权重。

3.主成分投影到新的变量空间中:通过将原始变量与主成分系数进行线性组合,将原始变量投影到新的主成分变量空间中,得到新空间上的变量。

4. 主成分变量的解释:识别主成分变量之间的关系,找到主要资料趋势,并尝试为主成分变量作出解释或提供有意义的标签。

应用SPSS主成分分析法可以用于多种应用,例如为统计预测模型提供非线性变量、降低回归模型中的自变量数、为数据可视化提供支持、帮助识别数据中的明显趋势、帮助发现隐藏的数据模式和改善数据的可读性等。

基于PCA的方法可以更好地发掘资料中的潜在规律,从而更有效地分析数据,改善数据的可读性。

结论SPSS主成分分析法是一种常用的数据分析方法,以及一种常用的资料处理技术,可以帮助用户发掘潜在的资料特征,改善数据的可读性,找到关键趋势,从而更有效地利用数据,为研究和决策获取有效的支持。

spss进行主成分分析及得分分析

spss进行主成分分析及得分分析

s p s s进行主成分分析及得分分析1将数据录入spss1. 2数据标准化:打开数据后选择分析→描述统计→描述,对数据进行标准化,选中将标准化得分另存为变量:2. 3进行主成分分析:选择分析→降维→因子分析,3. 4设置描述性,抽取,得分和选项:4. 5查看主成分分析和分析:相关矩阵表明,各项指标之间具有强相关性。

比如指标GDP总量与财政收入、固定资产投资总额、第二产业增加值、第三产业增加值、工业增加值的相关系数较大。

这说明他们之间指标信息之间存在重叠,适合采用主成分分析法。

(下表非完整呈现)5. 6由Total?Variance?Explained(主成分特征根和贡献率)可知,特征根λ1=9.092,特征根λ2=1.150前两个主成分的累计方差贡献率达93.107%,即涵盖了大部分信息。

这表明前两个主成分能够代表最初的11个指标来分析河南各个城市经济综合实力的发展水平,故提取前两个指标即可。

主成分,分别记作F1、F2。

6.7指标X1、X2、X3、X4、X5、X6、X7、X8、X9、X10在第一主成分上有较高载荷,相关性强。

第一主成分集中反映了总体的经济总量。

X11在第二主成分上有较高载荷,相关性强。

第二主成分反映了人均的经济量水平。

但是要注意:这个主成分载荷矩阵并不是主成分的特征向量,也就是说并不是主成分1和主成分2的系数,主成分系数的求法是:各自主成分载荷向量除以各自主成分特征值的算术平方根。

7.8成分得分系数矩阵(因子得分系数)列出了强两个特征根对应的特征向量,即各主要成分解析表达式中的标准化变量的系数向量。

故各主要成分解析表达式分别为:F1=0.32ZX11+0.33ZX12+0.31ZX13+0.31ZX14+0.32ZX15+0.32ZX16+0.32ZX 17+0.32ZX18+0.32ZX19+0.21ZX110+0.15ZX111F2=8.46ZX21+0.02ZX22-0.02ZX23-0.20ZX24-0.23Z25-0.04ZX26-0.15ZX27-0 .02ZX28+0.10ZX29+0.47ZX210+0.78ZX2118.9主成分的得分是相应的因子得分乘以相应的方差的算术平方根。

主成分分析在SPSS中的实现和案例

主成分分析在SPSS中的实现和案例

主成分分析在SPSS中的实现和案例
主成分分析(PCA)是一种常用的数据降维方法,可以将多个相关变量转化为少数几个无关的主成分。

在SPSS中实现PCA的步骤如下:
1. 打开SPSS软件,并打开需要进行PCA分析的数据集。

2. 选择“分析”菜单下的“降维”选项,再选择“因子”。

3. 在弹出的窗口中,选择需要进行PCA分析的变量,添加至“因子”列表中。

4. 点击“提取”按钮,选择提取主成分的方式,可以选择保留的主成分个数或者保留的方差比例。

5. 点击“确定”按钮,返回因子分析结果窗口,可以查看提取的主成分特征根、方差贡献率以及旋转后的载荷矩阵等信息。

下面介绍一个PCA的案例:假设研究人员要对顾客满意度进行研究,数据集包括顾客的年龄、性别、消费金额、服务态度、产品质量等变量。

为了降低变量维度,可以进行PCA分析。

在SPSS 中进行该分析的步骤如上述操作。

结果表明,经过PCA分析,可以选择保留3个主成分,解释总方差达到了80%以上。

第一主成分代表消费水平,第二主成分代表服务品质,第三主成分代表年龄和性别。

这说明顾客的满意度受到这3个方面的影响较大。

总之,主成分分析在SPSS中的实现方法简单易行,可以有效地解决多变量相关性较强的问题,为研究提供更加深入的解释和认识。

主成分分析法及其在SPSS中的操作

主成分分析法及其在SPSS中的操作

一、(一)主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。

从数学角度来看,这是一种降维处理技术。

思路:一个研究对象,往往是多要素的复杂系统。

变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。

原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则系数l ij 的确定原则:①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关;②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P ,的所有线性组合中方差最大者。

新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。

从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。

⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X 212222111211⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p pp x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............从数学上可以证明,它们分别是相关矩阵m 个较大的特征值所对应的特征向量。

如何用SPSS软件进行主成分分析

如何用SPSS软件进行主成分分析

如何用SPSS软件进行主成分分析一、引言主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维技术,用于分析多变量之间的互相干系。

通过将原始变量转化为一组线性无关的新变量,利用这些新变量来诠释原始变量的变化,从而降低数据的维度。

SPSS软件是一款广泛应用于社会科学、市场调研、数据分析等领域的统计分析工具,本文将介绍如何使用SPSS软件进行主成分分析。

二、数据筹办在进行主成分分析之前,起首需要筹办好待分析的数据。

SPSS 软件支持导入多种数据格式,包括Excel、CSV等。

在导入数据后,需要对数据进行清洗和预处理,确保数据的质量和一致性。

若果数据中存在缺失值,可以使用SPSS的数据清洗工具进行处理。

三、进行主成分分析1. 打开SPSS软件,并创建一个新的数据文件。

2. 在菜单栏中选择“分析(Analyze)”,然后选择“数据筹办(Data Preparation)”,再选择“主成分分析(Principal Components)”。

3. 在弹出的对话框中,选择要进行主成分分析的变量。

可以通过拖拽变量到“已选择”栏中或使用“添加”按钮来选择变量。

4. 在“变量列表”中,可以对每个变量选择分析方法。

默认为主成分分析(PCA),也可以选择常量法(Constant)、特殊值法(Special Value)等分析方法。

5. 点击“统计”按钮,在弹出的对话框中选择输出的统计量。

可以选择主成分得分、特征根等信息。

6. 点击“提取”按钮,在弹出的对话框中选择提取的因子个数。

可以通过查看特征根的大小来确定提取的因子个数。

7. 点击“旋转”按钮,选择因子旋转的方法。

常用的旋转方法包括方差最大旋转(Varimax)和直角旋转(Orthogonal)等。

8. 点击“选项”按钮,可以进一步设置分析的参数,如缺失值处理、小数位数等。

9. 点击“确定”按钮开始进行主成分分析。

四、诠释主成分分析结果在主成分分析完成后,SPSS将输出各个主成分的诠释信息和得分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S P S S学习系列30.主成份分析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN30. 主成份分析一、基本原理主成份分析,是数学上对数据降维的一种方法,是将多个变量转化为少数综合变量(集中了原始变量的大部分信息)的一种多元统计方法。

其主要目的是将变量减少,并使其改变为少数几个相互独立的线性组合形成的新变量(主成份,其方差最大),使得原始资料在这些成份上显示最大的个别差异来。

在所有的线性组合中所选取的F1应该是方差最大的,称为第一主成分。

如果第一主成分不足以代表原来所有指标的信息,再考虑选取第二个线性组合F2, 称为第二主成分。

为了有效地反映原有信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1,F2)=0. 依此类推可以构造出第三、第四、…、第p个主成分。

主成份分析,可以用来综合变量之间的关系,也可用来减少回归分析或聚类分析中的变量数目。

设有n个样品(多元观测值),每个样品观测p项指标(变量):X1,…,X p,得到原始数据资料阵:其中,X i = (x1i,x2i,…,x ni)T,i = 1, …, p.用数据矩阵X的p个列向量(即p个指标向量)X1,…,X p作线性组合,得到综合指标向量:简写成:F i = a1i X1 + a2i X2+…+a pi X p i = 1, …, p限制系数a i = (a1i,a2i,…,a pi)T为单位向量,即且由下列原则决定:(1)F i与F j互不相关,即COV(F i, F j)= a i T∑a i=0,其中∑为X 的协方差矩阵;(2)F1是X1,X2,…,X p的所有满足上述要求的线性组合中方差最大的,即F2是与F1不相关的X1,…,X p所有线性组合中方差最大的,…,F p 是与F1,…,F p-1都不相关的X1,…,X p所有线性组合中方差最大的。

满足上述要求的综合指标向量F1,F2,…,F p就是主成分,这p个主成分从原始指标所提供的信息总量中所提取的信息量依次递减,每一个主成分所提取的信息量用方差来度量,主成分方差的贡献就等于原指标相关系数矩阵相应的特征值λi,每一个主成分的组合系数a i = (a1i,a2i,…,a pi)T就是特征值λi所对应的单位特征向量。

方差的贡献率为αi越大,说明相应的主成分反映综合信息的能力越强。

注:主成分分析是将原始变量组成的坐标系进行平移变换,使得新的坐标原点和数据群点的重心重合。

新坐标第一轴与数据变化最大方向对应。

F1,F2,…,F p可以理解为p维空间中互相垂直的p 个坐标轴。

基本步骤:(1)计算样品数据协方差矩阵Σ = (s ij)p p,其中(2)求出Σ的特征值及相应的特征向量λ1>λ2>…>λp>0, 及相应的正交化单位特征向量:则X的第i个主成分为F i= a i T X,i=1, …, p.(3)选择主成分在已确定的全部p个主成分中合理选择m个来实现最终的评价分析。

一般用方差贡献率解释主成分F i所反映的信息量的大小,m的确定是用累计贡献率达到足够大(一般在85%以上)为原则。

(4)计算n个样品在m个主成分得分注:标准化后变量的协方差矩阵Σ = (s ij)p?p,与原变量的相关系数矩阵R= (r ij) p?p相同,故主成分分析可以从原始变量数据的相关系数矩阵,也可以从标准化数据的协方差矩阵出发做分析。

二、主成分分析实例例1对我国30个省市经济发展的8个指标做主成份分析。

数据文件如下:x1=GDP;x2=居民消费水平;x3=固定资产投资;x4=职工平均工资;x5=货物周转量;x6=居民消费价格;x7=商品价格指数;x8=工业总产值。

1. 【分析】——【降维】——【因子分析】,打开“因子分析”窗口,将变量“x1-x8”选入【变量】框;2. 点【描述】,打开“描述统计”子窗口,勾选【统计量】下的“单变量描述性”、“原始分析结果”,【相关矩阵】下的“系数”;点【继续】;其它保持默认即可,【抽取】选项,抽取方法默认就是“主成份”,默认只选取特征值大于1的主成分。

注意:SPSS进行因子(主成份)分析时,自动对原始变量进行标准化处理,输出结果中的变量通常都是指标准化后的变量。

点【确定】,得到描述统计量均值标准差分析 NGDP 1921.0927 1474.80603 30居民消费水平1745.9333 861.64193 30固定资产投资511.5083 402.88548 30职工平均工资5447.6333 1317.44330 30货物周转量666.1200 459.93526 30居民消费价格指数117.2867 2.02531 30商品价格指数114.9067 1.89808 30工业总产值862.9980 584.58726 30描述各变量的基本信息:均值、标准差、样本数。

相关矩阵GDP 居民消费水平固定资产投资职工平均工资货物周转量居民消费价格指数商品价格指数工业总产值相关GDP 1.000 .267 .951 .187 .617 -.273 -.264 .874 居民消费水平.267 1.000 .426 .716 -.151 -.235 -.593.363 固定资产投资.951 .426 1.000 .396 .431 -.280 -.359 .792 职工平均工资.187 .716 .396 1.000 -.357 -.145 -.543 .099 货物周转量.617 -.151 .431 -.357 1.000 -.253 .022 .659 居民消费价格指数-.273 -.235 -.280 -.145 -.253 1.000 .763 -.125 商品价格指数-.264 -.593 -.359 -.543 .022 .763 1.000 -.192 工业总产值.874 .363 .792 .099 .659 -.125 -.192 1.000 相关系数矩阵,可以看出“固定资产投资”、“工业总产值”与“GDP”有较高的相关性;“消费价格指数”与“商品价格指数”有较高的相关性;……相关性较强说明确实有变量在信息上重叠,从而可以做主成份或因子分析。

公因子方差初始提取GDP 1.000 .945居民消费水平 1.000 .799固定资产投资 1.000 .902职工平均工资 1.000 .873货物周转量 1.000 .857居民消费价格指数 1.000 .957商品价格指数 1.000 .928工业总产值 1.000 .904提取方法:主成份分析。

公因子方差,表示各变量中所含原始信息能被提取的主成份所表示的程度。

基本都在0.80以上,表示提取的主成份各变量有较强的解释能力。

主成份提取法,自动提取特征值大于1的主成分,共3个。

【初始特征值】的“合计”列为每一个主成分的特征值,其值越大表示该主成分在解释8个变量的变异时越重要;“方差的%”列为每个提取因素可以解释的变异百分比。

“累积%”列为解释的变异的累积百分比。

8个变量(初始特征值=1)总特征值为8,第一个特征值=3.754, 3.754/8 = 46.924%,即主成份1能解释总方差的46.924%,前3个主成分共能解释89.551%(>85%)的总变异。

因此,用前三个主成分就可以很好地概括这组数据。

成份矩阵a成份1 2 3GDP .884 .385 .120居民消费水平.606 -.596 .277固定资产投资.911 .163 .213职工平均工资.465 -.725 .362货物周转量.486 .737 -.279居民消费价格指数-.510 .257 .794商品价格指数-.621 .596 .433工业总产值.822 .429 .210提取方法 :主成份。

a. 已提取了 3 个成份。

给出主成份系数矩阵,3列分别是3个主成份在各个变量上的载荷,从而可得到各主成份的表达式:F1=0.884 Z x1+0.606 Z x2+0.911 Z x3+0.465 Z x4+0.486 Z x5-0.510 Z x6-0.621 Z x7+0.822 Z x8F2=0.385 Z x1-0.596 Z x2+0.163 Z x3-0.725 Z x4+0.737Z x5+0.257 Z x6+0.596 Z x7+0.429 Z x8F3=0.120 Z x1+0.277Z x2+0.213 Z x3+0.362 Z x4-0.279Z x5+0.794 Z x6+0.433 Z x7+0.210 Z x8注意:这里的各变量不是原始变量,而是标准化后的变量(从而各主成份的均值为0)。

可见,第一主成分中x3、x1、x8的系数最大;因此,可以把第一主成分看成是由固定资产投资(x3)、GDP(x1)、工业总产值(x8)所刻画的反映经济发展水平的综合指标。

第二主成分中x5、x7具有较大的正系数,x4、x2则具有较大的负系数;把第二主成分看成是由货物周转量(x5)、职工平均工资(x4)、居民消费水平(x2)、商品零售价格指数(x7)所刻画的与人民生活水平有关的综合指标。

第三主成分中x6的系数最大,远远超过其他指标的影响。

把第三主成分单独看成是居民消费价格指数(x6)的影响指标。

注1:各主成份的涵义并不十分明确,若要主成份更容易解释,需要做旋转,即因子分析;注2:若要计算每个样本的各个主成分的得分,可在【因子分析】窗口,点【得分】,勾选“保存为变量”默认采用“回归”方法计算,点【继续】得到利用变量FAC1_1, FAC2_1, FAC3_1, 可以计算每个样本的综合得分,具体见下篇【第31篇:因子分析】。

11。

相关文档
最新文档