2015年高考数学七大知识点复习指导
2015年高考数学高频考点_必考点复习资料

2015高考数学全套知识点(通用版)1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法)如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。
()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a aM a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象)8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型? ()()例:函数的定义域是y x x x =--432lg()()()(答:,,,)022334 10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_。
2015高考数学数列专题热点复习指导

2015年高考数学数列专题热点复习指导(一)基础题复习导引:数列是定义在正整数集或正整数子集上的函数,函数的图象是平面直角坐标系上的点集。
项an是n的函数,同数Sn也是n的函数,af(n)是复合函数,如下面的第2、3题。
等差、等比中项始终是高考(Q吧)拟题的知识点,如下面的第1、5题。
在数列问题中,从一般到特殊的思想方法,是重要的思路,如第3、5题。
1.若an是等差数列,首项a1>0,a2003+a2004>0,a2003·a20040成立的最大自然n是()A、4005B、4006C、4007D、4008解:∵a2003·a2004 ∴a2003与a2004中必有一个为负。
又a1>0只有 d a2003+a2004=2a1+4005d=a1+a1+4005d=a1+a4006>0 ∴S4006=-(a1+a4006)>0S4007=-(a1+a4007)=-·2a2004 ∴选B注:本题不同于当Sn最大时求n的值,在审题中注意区别。
2.已知两个等差数列an和bn的前n项和分别为An和Bn,且-=-,则使得-为整数的正整数n的个数是()A.2B.3C.4D.5解:∵an,bn为等差数列∴可设An=(7n+45)gn,Bn=(n+3)gnan=An-An-1=14n+38,bn=Bn-Bn-1=2n+2,(n2)-=-=k,k为正整数n=-,n为正整数,719K=8、9、10、11、13∴选D注:若{an}为等差数列,那么Sn=pn2+qn,是常数项为0,关于n的二次函数。
3.已知数列{an}、{bn}都是公差为1的等差数列,其首项分别为a1、b1,且a1+b1=5,a1,b1∈N*。
设cn=-(n∈N*),则数列{cn}的前10项和等于()A.55B.70C.85D.100解:某些数列问题经常用一般到特殊的思考方法。
c1=-=a1+(b1-1)·1c2=-=a1+(b2-1)·1c3=-=a1+(b3-1)·1c2-c1=b2-b1=1,c3-c2=b3-b2=1c1=a1+b1-1=4∴{cn}为c1=4,公差为1的等差数列∴S10=85选C注:-其中bn是项数,在数列中,项an是项数n的函数。
2015高考数学备考资料:主要考点大全

2015年高考数学备考资料:主要考点大全专题一:集合
考点1:集合的基本运算
考点2:集合之间的关系
专题二:函数
考点3:函数及其表示
考点4:函数的基本性质
考点5:一次函数与二次函数.
考点6:指数与指数函数
考点7:对数与对数函数
考点8:幂函数
考点9:函数的图像
考点10:函数的值域与最值
考点11:函数的应用
专题三:立体几何初步
考点12:空间几何体的结构、三视图和直视图
考点13:空间几何体的表面积和体积
考点14:点、线、面的位置关系
考点15:直线、平面平行的性质与判定
考点16:直线、平面垂直的判定及其性质
考点17:空间中的角
考点18:空间向量
专题四:直线与圆
考点19:直线方程和两条直线的关系
考点20:圆的方程
考点21:直线与圆、圆与圆的位置关系
专题五:算法初步与框图
考点22:算法初步与框图
专题六:三角函数
考点23:任意角的三角函数、同三角函数和诱导公式
考点24:三角函数的图像和性质
考点25:三角函数的最值与综合运用
考点26:三角恒等变换
考点27:解三角形
精心整理,仅供学习参考。
015年高考数学七大复习要点汇总

015年高考数学七大复习要点汇总第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几
何等九大章节
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三:数列
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何
解析几何是比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,这一类题有以下五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法,第二类是动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时计算量十分大。
第七:押轴题
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
这是高考所考的七大板块核心的考点。
2015高考数学备考

2015高考数学备考:做好高考数学题的12种方法方法一调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
方法二“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
方法三沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
方法四“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
2015高考数学必备提分知识点

高中数学必备公式结论1.集合(1)n 元集合有2n个子集,有21n-个真子集,有22n-个非空真子集 (2)空集是任何一个集合的子集,是一切非空集合的真子集 (3)交集“”;并集“”;补集“AU C ”2.函数(1)映射可以多对一,但是不能一对多,从m 元集合到n 元集合可以形成mn 个不同的映射 (2)函数的奇偶性 ①常见的奇函数:21k y x+=,xxy a a -=-,11x x a y a -=+,)y x =,sin y x =②常见的偶函数:y x =,2k y x =,x x y a a -=+,cos y x =,y C =(C 为常数) ③奇函数±奇函数=奇函数;偶函数±偶函数=偶函数奇函数⨯奇函数=偶函数⨯偶函数=偶函数;奇函数⨯偶函数=奇函数 (3)函数的单调性①增函数+增函数=增函数;减函数+减函数=减函数 增函数-减函数=增函数;减函数-增函数=减函数 ②复合函数单调性:同增异减 (4)指对幂函数运算法则 (1)m n m na a a +⋅=;m n m n a a a -÷=;()m n mna a=;()m m m a b ab =(2)log a bab =;log log log ()a a a M N MN +=;log log log a a aMM N N-= log log log m a m N N a=;log log m na a nb b m =;1log log a b b a =2.常见函数的导函数(1)'0C =(C 为常数)(2)'1()n n x nx -=;特别地,'=,'211()x x =-(3)'()ln x x aa a =;特别地,'()x x e e =(4)'11(log)log ln a a x e x x a ==;特别地,'1(ln )x x= (5)'(sin )cos x x =;'(cos )sin x x =-3.三角函数公式(1)圆心角弧度:l R α=;扇形面积公式:12S l R =⋅;180rad π︒=,'157.35718rad ︒︒≈= (2)1cos sin 22=+αα;αααtan cos sin = (3)诱导公式:(4)和角公式:①两角和与差的正余弦,正切公式:cos()cos cos sin sin cos()cos cos sin sin αβαβαβαβαβαβ+=-⎧⎨-=+⎩ s i n ()s i nc o sc o s ss i n ()s i n c o s c o s s i nαβαβαβαβαβαβ+=+⎧⎨-=-⎩ tan tan tan()1tan tan tan tan tan()1tan tan αβαβαβαβαβαβ+⎧+=⎪-⎪⎨-⎪-=⎪+⎩②倍角公式:αααcos sin 22sin =;ααα2tan 1tan 22tan -=;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;③辅助角公式:sin cos )a x b x x ϕ+=+,其中tan baϕ=。
2015高考数学备考指导

2015年高考数学备考指导1.认真研读《说明》《考纲》《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。
命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。
《考纲》明确指出“创新意识是理性思维的高层次表现”。
因此试题都比较新颖,活泼。
所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。
2.多维审视知识结构高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。
知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。
你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。
3.把答案盖住看例题参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。
如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。
4.研究每题都考什么数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。
但做题不是搞题海战术,要通过一题联想到很多题。
你要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。
一节课与其抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。
高考数学七大板块知识点及复习方法

高考数学七大板块知识点及复习方法〔关键词〕高考数学;函数;导数;数列;极限;概率;统计;三角函数;不等式;解析几何;立体几何;复习方法将七大板块知识点综合起来,我们称为知识网络的交汇点.教育部考试中心也一再地强调:在知识网络的交汇点设计试题,在综合中考查能力,力图实现全面考查数学基础和数学素质的目标.因此,熟悉知识网络的交汇点是很有必要的.这七大板块知识点是:函数和导数这部分内容在高考试题中所占比例最大,是复习的重中之重.不单在选择题、填空题中会出现,在大题中也会出现,并且还需要应用函数的性质解决其他综合问题.在选择题和填空题中会更多地涉及本部分基础知识的重点内容.例如,在考察函数部分时与数学思想方法相结合,一般都是从求导开始,所以要掌握好求导公式、法则,不犯计算方面的错误.导数及其应用以导数的应用为主,研究函数的单调性和最值,可能与函数、不等式相结合,同时引入含参变量;也可能与物理等学科相结合,研究导数的实际意义,考查实际应用能力.如,2010年普通高等学校招生全国统一考试理科数学第20题:已知函数f(x)=(x+1)lnx-x+1.(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范围;(Ⅱ)证明:(x-1)f(x)≥0.数列与极限数列是特殊的函数列,高考常以数列为工具,设计应用型、探索型问题,考查创新意识与实践能力.复习时,可能感觉数列的内容不多,但在高考中,这部分内容也占有重要位置.高考试题中有关数列的试题有大题也有小题,题目所用数列往往是一般数列,涉及数列的一般性质.数列与其他问题相结合的题目,对能力有较高的要求.解题时涉及八种思想:方程思想、函数思想、整体思想、化归思想、归纳思想、分类思想、极限思想和建模思想.如,2010年普通高等学校招生全国统一考试理科数学第4题:已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则a4a5a6是多少;第22题:已知数列{an}中,a1=1,an+1=c-.(Ⅰ)设c=,bn=,求数列{bn}的通项公式;(Ⅱ)求使不等式an<an+1<3成立的c的取值.概率与统计概率的计算,特别是等可能事件的概率、互斥事件的概率、独立事件有一个发生的概率和次独立重复试验的概率及实际应用是重点.在连续五年的高考试题中,都有一道关于这部分知识的解答题目.如,2010年普通高等学校招生全国统一考试理科数学第18题:投到某杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)记X表示投到该杂志的4篇稿件中被录用的篇数,求X的分布列及期望.三角函数三角函数是继指数函数、对数函数之后的又一类函数,高考突出考查三角函数的图象和性质,对三角公式的考查或与图象和性质的问题相结合,或直接用公式化简.如,2010年普通高等学校招生全国统一考试理科数学第17题:已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.不等式不等式部分虽然单独考查不多,但一般会与其他知识点结合在一起命题.如,2010年普通高等学校招生全国统一考试理科数学第10题:已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是什么?解析几何解析几何是高中数学的重要内容,高考主要考察圆锥曲线的基本性质、基本运算,直线和圆锥曲线的交点、弦长、轨迹等.解题时应特别注意对向量工具的使用,因为向量有坐标,有坐标运算,坐标法使得平面向量与平面解析几何自然、有机地联系起来.根据统计,解析几何在高考试题中至少占到22分,表现为一道大题、至少一道选择题或填空题.在解题中计算所占比例较大,是对计算要求比较高的知识点.在计算过程中,要注重利用换元法和曲线的性质将计算简化.如,2010年普通高等学校招生全国统一考试理科数学第9题:已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为多少?已知⊙O的半径为1,PA、PB为该圆的两条切线,A、B为切点,那么·的最小值为多少?立体几何空间直线、平面与简单几何体突出空间立体,即把对线段、线面、面面的位置关系考查置于某几何体的情景中.几何体以棱柱、棱锥为重点,棱柱又以三棱柱、正方体为重点.立体几何在高考试题中所占比例与解析几何大体相当,基本上保持着一道大题、至少一道小题的形式,但难度比解析几何要小一些,主要考查空间想象能力.如,2010年普通高等学校招生全国统一考试理科数学第7题:正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的余弦值为多少?高考数学的复习方法第一轮是优化基础.要熟练掌握以下知识:1.主体知识.在第一轮复习时就要将七大板块知识网络化,这也是提高综合解题能力的基础.2.综合知识.历年高考主要有这些交汇点:函数、方程与不等式的综合,函数与数列的综合,解析几何与几何、代数、三角的综合,导数的应用,向量的应用等等.3.新增知识.与旧课程高考相比,数学新课程高考中增加了简易逻辑、向量、线性规划、概率、统计、导数等新内容,这些内容都是现代数学重要的基础知识,蕴涵着丰富的数学思想方法和数学语言,提供了应用广泛的数学工具,是当代数学基础教育的重要组成部分,也是进一步学习的基础.4.新型试题.高考命题逐年加大考查新型题的力度,稳中求新,稳中求变,积极进行新型题的改革试验,在新型题中考查探究能力.这些新型题主要包括:动手能力题、开放题、探索题及小发现题,面对此类试题,一定要沉着应对.第二轮是专题综合训练.首先,第二轮要重点复习主要知识交汇点,分专题进行.同时,在各个专题中提炼出五种数学思想,这五种数学思想是:猜证结合思想、化归思想、分类与分步思想、数形结合思想、函数与方程思想.其次,不搞题海战术,要强化自我总结.每做一题都要总结:1.数学基础是否熟练;2.数学思想方法有什么提高.在考前顶多做八套模拟题即可,不要做更多的题.做题应该越做越少,要有针对性,针对自己的薄弱环节,全力突破数学思想方法.高考试卷的结构十分清晰,一共分成三段:第一段是选择、填空题,这是基础题,应该取得70分.这就要基本上全部答对,顶多错两个小题,因此平时的训练要高要求自己,用数学思想方法高速解答选择、填空题,力争做到一分钟一道题.第二段是解答题的前三题,这三道解答题都是数学基础题,应争取答满40分.第三段是最后三道“三难”题,这三道题不应只做第一问的问题,而应该猜想评分标准,按步骤由前向后争取高分.考前复习时间紧,面面俱到、从头来过一遍是根本办不到的.时间短、内容多,那么只能紧紧围绕重点方法、重要知识、基本数学思想和方法及近几年的“热点”题型,狠抓过关.高考试题从总体分析来看,基础性强了,但能力要求也不低,其加强能力考查的途径之一就是提高基础知识的灵活运用,可见缺漏的知识将是影响能力发挥的致命点.因此遇到缺漏的知识点就应该及时翻阅教材加以弥补.学习数学,重点在于培养数学地思考问题的能力,重点在于学习解决数学问题的思想和方法,“死记硬背”、“硬套模式”肯定行不通,同样“题海战术”也不是有效的方法,所以练习要适度,要领悟和总结数学思想方法,开发大脑.一份高考试卷一般有16个客观题(选择与填空题),6个解答题,共22题,客观题占76分,解答题占74分,客观题解答时间用得少,就可以有充裕的时间完成解答题,客观题完成的正确率高,就直接影响考试成绩.因此,考前复习一定要加强速度和正确率的强化训练,要在速度、正确率上狠下工夫.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一,函数与导数。
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。
是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。
以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。
考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。
训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。