福建省南平市2014年普通高中毕业班质量检查数学试题(理)及答案

合集下载

福州市高三质检数学理试题含解析

福州市高三质检数学理试题含解析

2014年福州市高中毕业班质量检测理科数学试卷第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)lg },{(,)}A x y y x B x y x a ====,若A B =∅,则是实数a 的取值范围是( )A. 1a <B. 1a ≤C. 0a <D. 0a ≤2.“实数1a =”是“复数(1)ai i +(,a R i ∈为虚数单位)的模为2”的 ( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不是充分条件又不是必要条件3.执行如图所示的程序框图,输出的M 值是 ( )开始M=2i=1i<5?11=-M Mi=i+1输出M结束否是A .2B .1-C .12D .2- 【答案】B4.命题“x R ∃∈,使得()f x x =”的否定是 ( ) A. x R ∀∈,都有()f x x = B.不存在x R ∈,使()f x x ≠ C. x R ∀∈都有()f x x ≠ D. x R ∃∈使()f x x ≠5.已知等比数列{}n a 的前n 项积记为n ∏,若3488a a a =,则 9∏= ( ) A.512 B.256 C.81 D.166.如图,设向量(3,1),(1,3)OA OB ==,若OC OA OB λμ=+,且1λμ≥≥,则用阴影表示C 点所有可能的位置区域正确的是 ( )DCBABABABABAOOOOxyxy xy xy7.函数()f x 的部分图像如图所示,则()f x 的解析式可以是 ( ) A. ()sin f x x x =+ B. cos ()xf x x=C. ()cos f x x x =D. 3()()()22f x x x x ππ=--3π2π2-π2-3π2Oxy考点:1.函数的图像.2.分类讨论.3.列举排除的数学思想.4.归纳化归的数学思想.8.已知1F 、2F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若双曲线左支上存在一点一点P 与点2F 关于直线bxy a=对称,则该双曲线的离心率为 ( ) A.52B. 5C. 2D. 29.若定义在R 上的函数f (x )满足f (-x )=f (x ), f (2-x )=f (x ),且当x ∈[0,1]时,其图象是四分之一圆(如图所示),则函数H (x )= |x e x|-f (x )在区间[-3,1]上的零点个数为 ( )A.5B.4C.3D.2Oyx11oxy【答案】B 【解析】试题分析:因为定义在R 上的函数f(x)满足f(-x)=f(x),所以函数()f x 为偶函数,又因为f(2-x)=f(x),所以函数()f x 关于直线1x =对称.因为函数H(x)= |xe x|-f(x)在区间[-3,1]上的零点即等价求方程()x f x xe =的解的个数.等价于函数xy xe =和函数()y f x =的图像的交点个数,由图象可得共有4个交点.故选B.考点:1.函数的性质.2.数形结合的思想.3.函数图像的正确表示及绘制.10.已知函数32()f x x bx cx d =+++(b 、c 、d 为常数),当(0,1)x ∈时取极大值,当(1,2)x ∈时取极小值,则221()(3)2b c ++-的取值范围是( ) A. 37(,5)2B. (5,5)C. 37(,25)4D. (5,25)4b+c+12=02b+c+3=0B DAobc第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题4分,共20分.11.5名同学站成一排,其中甲同学不站排头,则不同的排法种数是______________(用数字作答).12.如图所示,在边长为1的正方形OABC 中任取一点M ,则点M 恰好取自阴影部分的概率为________.y y=x 2ACoxB14.已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积为____________.俯视图侧视图正视图22215.已知函数1(1)sin 2,[2,21)2(),()(1)sin 22,[21,22)2nn x n x n n f x n N x n x n n ππ+⎧-+∈+⎪⎪=∈⎨⎪-++∈++⎪⎩,若数列{}m a 满足*()()2m ma f m N =∈,且{}m a 的前m 项和为m S ,则20142006S S -=_____________. 【答案】8042 【解析】试题分析:20142006S S -=20072008200920102011201220132014a a a a a a a a +++++++.因为200720072()2501222a f ==-+⨯+,2008(1004)2502a f ==⨯,200920092()25022a f ==⨯,2010(1005)125022a f ==-+⨯+,2011225022a =⨯+,20122503a =⨯,201322503a =+⨯,2014125032a =-+⨯+.所以20142006S S -=8042.考点:1.分段函数的问题.2.数列的思想.3.三角函数的周期性.4.分类列举的数学思想.三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分13分)在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:21006542098874286438210乙地甲地规定:当产品中的此种元素含量15≥毫克时为优质品.(Ⅰ)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数); (Ⅱ)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数ξ的分布列及数学期望()E ξ.(II)ξ的取值为1,2,3. 12823101(1),15C C P C ξ⋅===21823107(2),15C C P C ξ⋅===157)3(3100238=⋅==C C C P ξ 所以ξ的分布列为ξ1 2 3P115 715 715故的数学期望为17712123.1515155Eξ=⨯+⨯+⨯=() 考点:1.茎叶图的知识.2.列举对比的数学思想.3.数学期望的计算.4.概率知识.17.(本小题满分13分)已知函数2()2cos 23sin cos ().f x x x x x R =+∈.(Ⅰ)当[0,]2x π∈时,求函数)(x f 的单调递增区间;(Ⅱ)设ABC ∆的内角C B A ,,的对应边分别为c b a ,,,且3,()2,c f C ==若向量)sin ,1(A m =与向量)sin ,2(B n =共线,求b a ,的值.令-222,262k x k k Z πππππ+≤+≤+∈,18.(本小题满分13分) 如图,直角梯形ABCD 中,090,24ABC AB BC AD ∠====,点,E F 分别是,AB CD 的中点,点G 在EF 上,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(Ⅰ)当AG GC +最小时,求证:BD CG ⊥;(Ⅱ)当2B ADGE D GBCF V V --=时,求二面角D BG C --平面角的余弦值. F E A B D A D E F BG 【答案】(Ⅰ)参考解析;6【解析】试题分析:(Ⅰ)因为当AG GC +最小时,及连结AC 与EF 的交点即为G 点,通过三角形的相似可得到EG 的长度.需要证明直线与直线垂直,根据题意建立空间直角坐标系,即可得到相关各点的坐标,从而写出相(Ⅱ)解法一:设EG=k , AD ∥平面EFCB ,∴点D 到平面EFCB 的距离为即为点A 到平面EFCB 的距离. S 四形GBCF 12[(3- k )+4]×2=7-k D GBCFV S AE 四形GBCF 13=2(7)3k - 又B ADGEADGE V S BE 四形13=2(2)3k +,B ADGE D GBCF V V 2,∴4(2)3k +=2(7)3k -, 1k ∴=即EG =1设平面DBG 的法向量为1(,,)n x y z =,∵G (0,1,0),∴(2,1,0),BG =-BD =(-2,2,2),则 1100n BD n BG ⎧⋅=⎪⎨⋅=⎪⎩,即222020x y z x y -++=⎧⎨-+=⎩19.(本小题满分13分) 已知动圆C 过定点(1,0),且与直线1x =-相切.(Ⅰ)求动圆圆心C 的轨迹方程;(Ⅱ)设,A B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,①当2παβ+=时,求证直线AB 恒过一定点M ;②若αβ+为定值(0)θθπ<<,直线AB 是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.20.(本小题满分14分) 已知函数1()ln()f x x ax a =+-,其中a R ∈且0a ≠(Ⅰ)讨论()f x 的单调区间;(Ⅱ)若直线y ax =的图像恒在函数()f x 图像的上方,求a 的取值范围; (Ⅲ)若存在1210,0x x a-<<>,使得12()()0f x f x ==,求证:120x x +>. 【答案】(Ⅰ)参考解析;(Ⅱ)2e a >;(Ⅲ)参考解析 【解析】()h x ∴的最小值为1()2h a -,所以只需1()02h a-> 即1112()ln()022a a a a ⋅---+>,1ln 12a ∴<-,2e a ∴> (Ⅲ)由于当0a <时函数在),1(+∞-a上是增函数,不满足题意,所以0a >21.本小题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则安所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应提好右边的方框涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4-2:矩阵与变换.已知矩阵3A c ⎛= ⎝ 3d ⎫⎪⎭,若矩阵A 属于特征值6的一个特征向量为111α⎛⎫= ⎪⎭⎝,属于特征值1的一个特征向量232α⎛⎫= ⎪-⎭⎝.(Ⅰ)求矩阵A 的逆矩阵;(Ⅱ)计算314A ⎛-⎫ ⎪⎭⎝ 【答案】(Ⅰ)⎪⎪⎪⎪⎭⎫ ⎝⎛--=-213121321A ;(Ⅱ)429434⎛⎫ ⎪⎝⎭ 【解析】试题分析:(Ⅰ)因为已知矩阵3A c ⎛= ⎝ 3d ⎫⎪⎭,若矩阵A 属于特征值6的一个特征向量为111α⎛⎫= ⎪⎭⎝,属于特征值1的一个特征向量232α⎛⎫= ⎪-⎭⎝.通过特征向量与特征值的关系,可求矩阵A 中的相应参数的值,再通过逆矩阵的含义可求出矩阵A 的逆矩阵.同样可以从通过特征根的方程方面入手,求的结论.(2)(本小题满分7分)选修4-4:坐标与参数方程.在平面直角坐标系xoy 中,以O 为极点,x 轴非负半轴为极轴建立坐标系,已知曲线C 的极坐标方程为2sin 4cos ρθθ=,直线l 的参数方程为: 22242x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),两曲线相交于,M N 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程;(Ⅱ)若(2,4)P --求PM PN +的值.(3)(本小题满分7分)选修4-5:不等式选讲设函数()43f x x x =-+-,(Ⅰ)求()f x 的最小值m ;(Ⅱ)当23(,,)a b c m a b c R ++=∈时,求222a b c ++的最小值.【答案】(Ⅰ)1;(Ⅱ)114【解析】试题分析:(Ⅰ)因为()43f x x x =-+-,所以通过绝对值的基本不等式a b a b +≥-,即可得到最小值.另外也可以通过分类关键是去绝对值,求出不同类的函数式的最小值,再根据这些最小值中的最小值确定所求的结论.。

2014年普通高等学校招生全国统一考试数学(福建卷)理 (2)

2014年普通高等学校招生全国统一考试数学(福建卷)理 (2)

2014年普通高等学校招生全国统一考试(福建卷)数学试题(理工农医类)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2014福建,理1)复数z=(3-2i)i 的共轭复数z 等于( ). A .-2-3i B .-2+3iC .2-3iD .2+3i答案:C解析:因为z=(3-2i)i =3i -2i 2=2+3i,所以z =2-3i .故选C .2.(2014福建,理2)某空间几何体的正视图是三角形,则该几何体不可能是( ). A .圆柱B .圆锥C .四面体D .三棱柱答案:A解析:因为圆锥、四面体、三棱柱的正视图均可以是三角形,而圆柱无论从哪个方向看均不可能是三角形,所以选A .3.(2014福建,理3)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ). A .8 B .10C .12D .14答案:C解析:因为S 3=3a 1+3×(3-1)2d=3×2+3×22d=12,所以d=2.所以a 6=a 1+(6-1)d=2+5×2=12.故选C .4.(2014福建,理4)若函数y=log a x (a>0,且a ≠1)的图象如图所示,则下列函数图象正确的是( ).答案:B解析:由图象可知log a 3=1,所以a=3.A 选项,y=3-x =(13)x 为指数函数,在R 上单调递减,故A 不正确.B 选项,y=x 3为幂函数,图象正确.C 选项,y=(-x )3=-x 3,其图象和B 选项中y=x 3的图象关于x 轴对称,故C 不正确.D 选项,y=log 3(-x ),其图象与y=log 3x 的图象关于y 轴对称,故D 选项不正确.综上,可知选B .5.(2014福建,理5)阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于( ).A.18B.20C.21D.40答案:B解析:该程序框图为循环结构,由S=0,n=1得S=0+21+1=3,n=1+1=2,判断S=3≥15不成立,执行第二次循环,S=3+22+2=9,n=2+1=3,判断S=9≥15不成立,执行第三次循环,S=9+23+3=20,n=3+1=4,判断S=20≥15成立,输出S=20.故选B.6.(2014福建,理6)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△OAB的面积为12”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件答案:A解析:k=1时,图象如图(1),此时△OAB的面积S=12×1×1=12,所以k=1是△OAB面积为12的充分条件;而当△OAB面积为12时,直线l有l1或l2两种可能,如图(2),k=1或k=-1.综上,可知选A.图(1)图(2)7.(2014福建,理7)已知函数f(x)={x2+1,x>0,cosx,x≤0,则下列结论正确的是().A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)答案:D解析:由题意,可得函数图象如下:所以f(x)不是偶函数,不是增函数,不是周期函数,其值域为[-1,+∞).故选D.8.(2014福建,理8)在下列向量组中,可以把向量a=(3,2)表示出来的是().A.e1=(0,0),e2=(1,2)B.e1=(-1,2),e2=(5,-2)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=(-2,3)答案:B解析:由平面向量基本定理可知,平面内任意一个向量可用平面内两个不共线向量线性表示,A 中e 1=0·e 2,B 中e 1,e 2为两个不共线向量,C 中e 2=2e 1,D 中e 2=-e 1.故选B .9.(2014福建,理9)设P ,Q 分别为圆x 2+(y-6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( ). A .5√2 B .√46+√2 C .7+√2 D .6√2答案:D 解析:设Q (x ,y ),则该点到圆心的距离d=√(x -0)2+(y -6)2=√x 2+(y -6)2=√10(1-y 2)+(y -6)2=√-9y 2-12y +46,y ∈[-1,1], ∴当y=--122×(-9)=-23时, d max =√-9×(-23)2-12×(-23)+46=√50=5√2.∴圆上点P 和椭圆上点Q 的距离的最大值为d max +r=5√2+√2=6√2.故选D .10.(2014福建,理10)用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a+b+ab 表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( ).A .(1+a+a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b+b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b+b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c+c 2+c 3+c 4+c 5) 答案:A解析:本题可分三步:第一步,可取0,1,2,3,4,5个红球,有1+a+a 2+a 3+a 4+a 5种取法;第二步,取0或5个蓝球,有1+b 5种取法;第三步,取5个有区别的黑球,有(1+c )5种取法.所以共有(1+a+a 2+a 3+a 4+a 5)(1+b 5)(1+c )5种取法.故选A .第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.11.(2014福建,理11)若变量x ,y 满足约束条件{x -y +1≤0,x +2y -8≤0,x ≥0,则z=3x+y 的最小值为 .答案:1解析:由线性约束条件画出可行域如下图阴影部分所示.由线性目标函数z=3x+y ,得y=-3x+z ,可知其过A (0,1)时z 取最小值,故z min =3×0+1=1. 故答案为1.12.(2014福建,理12)在△ABC 中,A=60°,AC=4,BC=2√3,则△ABC 的面积等于 . 答案:2√3解析:由题意及余弦定理得cos A=b 2+c 2-a 22bc=c 2+16-122×4×c=12,解得c=2.所以S=12bc sin A=12×4×2×sin 60°=2√3.故答案为2√3.13.(2014福建,理13)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 (单位:元). 答案:160解析:设池底长x m,宽y m,则xy=4,所以y=4x,则总造价为:f (x )=20xy+2(x+y )×1×10=80+80x+20x=20(x +4x)+80,x ∈(0,+∞). 所以f (x )≥20×2√x ·4x+80=160,当且仅当x=4x,即x=2时,等号成立. 所以最低总造价是160元.14.(2014福建,理14)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为 .答案:2e2解析:根据题意y=e x 与y=ln x 互为反函数,图象关于y=x 对称,所以两个阴影部分的面积相等.联立y=e 与y=e x 得x=1,所以阴影部分的面积S=2∫ 1(e -e x )d x=2(e x-e x )|01=2[(e -e)-(0-1)]=2,由几何概型可知所求概率为2e2.故答案为2e 2. 15.(2014福建,理15)若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a=1;②b ≠1;③c=2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是 . 答案:6解析:根据题意可分四种情况:(1)若①正确,则a=1,b=1,c ≠2,d=4,符合条件的有序数组有0个;(2)若②正确,则a ≠1,b ≠1,c ≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4); (3)若③正确,则a ≠1,b=1,c=2,d=4,符合条件的有序数组为(3,1,2,4);(4)若④正确,则a ≠1,b=1,c ≠2,d ≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2). 所以共有6个. 故答案为6.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)(2014福建,理16)已知函数f (x )=cos x (sin x+cos x )-12. (1)若0<α<π2,且sin α=√22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:首先结合已知角的范围,利用同角三角函数的基本关系式及已知的正弦值,求出余弦值,注意符号的判断,然后代入已知的函数关系式,得出结果.在第(2)问中,结合式子特点,利用二倍角公式、两角和与差的三角函数公式以及辅助角公式,得出最终的目标——y=A sin(ωx+φ)+B 形式,运用T=2πω得出周期,再结合三角函数的图象与性质等基础知识求得单调区间,此时要注意复合函数的单调性.另外,也可先化简再分别求解.解法一:(1)因为0<α<π2,sin α=√22,所以cos α=√22.所以f (α)=√22(√22+√22)−12=12.(2)因为 f (x )=sin x cos x+cos 2x-12=12sin 2x+1+cos2x 2−12 =12sin 2x+12cos 2x =√22sin (2x +π4), 所以T=2π2=π.由2k π-π2≤2x+π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为[kπ-3π8,kπ+π8],k ∈Z .解法二:f (x )=sin x cos x+cos 2x-12=12sin 2x+1+cos2x 2−12=12sin 2x+12cos 2x =√22sin (2x +π4). (1)因为0<α<π2,sin α=√22,所以α=π4,从而f (α)=√22sin (2α+π4)=√22sin 3π4=12.(2)T=2π2=π.由2k π-π2≤2x+π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为[kπ-3π8,kπ+π8],k ∈Z .17.(本小题满分13分)(2014福建,理17)在平面四边形ABCD 中,AB=BD=CD=1,AB ⊥BD ,CD ⊥BD.将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图. (1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.分析:在第(1)问中,考查线线垂直问题,要寻求线线垂直的条件,可以是线面垂直或面面垂直.结合具体条件,利用面面垂直去证明线线垂直,只需在其中一个平面内的一条直线垂直于交线就可以了.在第(2)问中,欲求直线与平面所成角的正弦值,自然联想到借助于向量解决,建立合适的坐标系之后,求得平面的法向量n ,再在直线上确定一个方向向量,求得这两个向量夹角的余弦值,其绝对值即为线面角的正弦值.解:(1)∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD=BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD.又CD ⊂平面BCD ,∴AB ⊥CD.(2)过点B 在平面BCD 内作BE ⊥BD ,如图.由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD , ∴AB ⊥BE ,AB ⊥BD.以B 为坐标原点,分别以BE ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系. 依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M (0,12,12),则BC ⃗⃗⃗⃗⃗ =(1,1,0),BM ⃗⃗⃗⃗⃗⃗ =(0,12,12),AD ⃗⃗⃗⃗⃗ =(0,1,-1).设平面MBC 的法向量n =(x 0,y 0,z 0),则{n ·BC⃗⃗⃗⃗⃗ =0,n ·BM⃗⃗⃗⃗⃗⃗ =0,即{x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1).设直线AD 与平面MBC 所成角为θ,则sin θ=|cos <n ,AD ⃗⃗⃗⃗⃗ >|=|n ·AD ⃗⃗⃗⃗⃗⃗||n ||AD ⃗⃗⃗⃗⃗⃗ |=√63,即直线AD 与平面MBC 所成角的正弦值为√63.18.(本小题满分13分)(2014福建,理18)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.分析:在第(1)问中,主要考查古典概型概率问题,60元的组成为50+10,而摸到每个球都是等可能的,所以只要代入公式即可求得获得60元奖励的概率.而要求得分布列及期望值,依然利用古典概型,把X 的所有取值对应概率准确求出,再利用期望公式求出即可.(2)先根据两种方案中小球的面值估算期望值为60的各种可能:(10,10,50,50)和(20,20,40,40),再利用古典概型求出两种可能性方案对应的分布列和期望值进行验证;若两者的期望值相同,则需求出它的方差,利用方差大小确定更为合适的设计方案. 解:(1)设顾客所获的奖励额为X.①依题意,得P (X=60)=C 11C 31C 42=12,即顾客所获的奖励额为60元的概率为12. ②依题意,得X 的所有可能取值为20,60. P (X=60)=12,P (X=20)=C 32C 42=12,即X 的分布列为X 2060P 0.5 0.5所以顾客所获的奖励额的期望为E (X )=20×0.5+60×0.5=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),1的分布列为X 1的期望为E (X 1)=20×16+60×23+100×16=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003. 对于方案2,即方案(20,20,40,40),X 2的分布列为X 2的期望为E (X 2)=40×16+60×23+80×16=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003. 由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.19.(本小题满分13分)(2014福建,理19)已知双曲线E :x 2a 2−y 2b2=1(a>0,b>0)的两条渐近线分别为l 1:y=2x ,l 2:y=-2x.(1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.分析:在第(1)问中,已知渐近线方程,即a 与b 的关系,再结合双曲线本身a ,b ,c 的关系及离心率e=ca,便可求得离心率.(2)首先根据渐近线方程设双曲线方程,然后根据动直线l 的斜率是否存在进行分类讨论.显然斜率不存在时,由直线l 和双曲线有且只有一个公共点可知其方程为x=a ,此时只需检验△OAB 的面积是否为8即可;当直线l 的斜率存在时,设其方程为y=kx+m ,首先由△OAB 的面积为8求出k ,m 的关系式,然后根据直线和圆锥曲线有且只有一个公共点,利用判别式的符号判断其存在性. 解法一:(1)因为双曲线E 的渐近线分别为y=2x ,y=-2x ,所以b a=2, 所以√c 2-a 2a=2,故c=√5a ,从而双曲线E 的离心率e=ca=√5.(2)由(1)知,双曲线E 的方程为x 2a 2−y 24a2=1. 设直线l 与x 轴相交于点C.当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点, 则|OC|=a ,|AB|=4a , 又因为△OAB 的面积为8,所以12|OC|·|AB|=8,因此12a ·4a=8,解得a=2,此时双曲线E 的方程为x 24−y 216=1. 若存在满足条件的双曲线E ,则E 的方程只能为x 24−y 216=1. 以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24−y 216=1也满足条件. 设直线l 的方程为y=kx+m ,依题意,得k>2或k<-2,则C (-mk,0).记A (x 1,y 1),B (x 2,y 2).由{y =kx +m ,y =2x得y 1=2m 2-k ,同理得y 2=2m 2+k ,由S △OAB =12|OC|·|y 1-y 2|得,12|-m k |·|2m 2-k -2m2+k|=8,即m 2=4|4-k 2|=4(k 2-4).由{y =kx +m ,x 24-y 216=1得,(4-k 2)x 2-2kmx-m 2-16=0.因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16),又因为m 2=4(k 2-4),所以Δ=0,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24−y 216=1. 解法二:(1)同解法一.(2)由(1)知,双曲线E 的方程为x 2a 2−y 24a 2=1. 设直线l 的方程为x=my+t ,A (x 1,y 1),B (x 2,y 2). 依题意得-12<m<12.由{x =my +t ,y =2x 得y 1=2t 1-2m ,同理得y 2=-2t 1+2m.设直线l 与x 轴相交于点C ,则C (t ,0). 由S △OAB =12|OC|·|y 1-y 2|=8,得12|t|·|2t 1-2m +2t1+2m|=8, 所以t 2=4|1-4m 2|=4(1-4m 2). 由{x =my +t ,x 2a2-y 24a2=1得,(4m 2-1)y 2+8mty+4(t 2-a 2)=0.因为4m 2-1<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=64m 2t 2-16(4m 2-1)(t 2-a 2)=0, 即4m 2a 2+t 2-a 2=0,即4m 2a 2+4(1-4m 2)-a 2=0,即(1-4m 2)(a 2-4)=0, 所以a 2=4,因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24−y 216=1. 解法三:(1)同解法一.(2)当直线l 不与x 轴垂直时,设直线l 的方程为y=kx+m ,A (x 1,y 1),B (x 2,y 2).依题意得k>2或k<-2. 由{y =kx +m ,4x 2-y 2=0得,(4-k 2)x 2-2kmx-m 2=0,因为4-k 2<0,Δ>0,所以x 1x 2=-m 24-k2,又因为△OAB 的面积为8, 所以12|OA|·|OB|·sin ∠AOB=8, 又易知sin ∠AOB=45,所以25√x 12+y 12·√x 22+y 22=8,化简得x 1x 2=4.所以-m 24-k2=4,即m 2=4(k 2-4).由(1)得双曲线E 的方程为x 2a 2−y 24a2=1,由{y =kx +m ,x 2a2-y 24a2=1得,(4-k 2)x 2-2kmx-m 2-4a 2=0,因为4-k 2<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=4k 2m 2+4(4-k 2)(m 2+4a 2)=0, 即(k 2-4)(a 2-4)=0,所以a 2=4, 所以双曲线E 的方程为x 24−y 216=1. 当l ⊥x 轴时,由△OAB 的面积等于8可得l :x=2,又易知l :x=2与双曲线E :x 24−y 216=1有且只有一个公共点.综上所述,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24−y 216=1.20.(本小题满分14分)(2014福建,理20)已知函数f (x )=e x -ax (a 为常数)的图象与y 轴交于点A ,曲线y=f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x>0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x .分析:(1)由题意可知点A 的横坐标为0,先求出f (x )的导函数f'(x ),则曲线y=f (x )在点A 处的切线斜率为f'(0),由f'(0)=-1可求得a 的值.再利用求极值的步骤求解即可.对于(2),常对此类问题构造新函数g (x )=e x -x 2,只需g (x )>0在(0,+∞)上恒成立即可,利用导数得到g (x )的单调性,从而得证.(3)根据c的值与1的大小关系分类进行证明.当c≥1时,可直接根据(2)中的结论得证;当0<c<1时,证明的关键是找出x0.先将不等式转化为e x>1c x2,利用对数的性质,进一步转化为x>ln(1cx2)=2ln x-ln c,即可构造函数h(x)=x-ln x+ln c,然后利用导数研究其单调性,在该函数的增区间内找出一个值x0,使h(x0)>0即可得证.也可结合(2)的结论,合理利用e x>x2将x2中的一个x赋值,利用不等式的传递性来解决问题.解法一:(1)由f(x)=e x-ax,得f'(x)=e x-a.又f'(0)=1-a=-1,得a=2.所以f(x)=e x-2x,f'(x)=e x-2.令f'(x)=0,得x=ln2.当x<ln2时,f'(x)<0,f(x)单调递减;当x>ln2时,f'(x)>0,f(x)单调递增.所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=e ln2-2ln2=2-ln4,f(x)无极大值.(2)令g(x)=e x-x2,则g'(x)=e x-2x.由(1)得g'(x)=f(x)≥f(ln2)>0,故g(x)在R上单调递增,又g(0)=1>0,因此,当x>0时,g(x)>g(0)>0,即x2<e x.(3)①若c≥1,则e x≤c e x.又由(2)知,当x>0时,x2<e x.所以当x>0时,x2<c e x.取x0=0,当x∈(x0,+∞)时,恒有x2<c e x.②若0<c<1,令k=1c>1,要使不等式x2<c e x成立,只要e x>kx2成立.而要使e x>kx2成立,则只要x>ln(kx2),只要x>2ln x+ln k成立.令h(x)=x-2ln x-ln k,则h'(x)=1-2x =x-2x.所以当x>2时,h'(x)>0,h(x)在(2,+∞)内单调递增.取x0=16k>16,所以h(x)在(x0,+∞)内单调递增,又h(x0)=16k-2ln(16k)-ln k=8(k-ln2)+3(k-ln k)+5k,易知k>ln k,k>ln2,5k>0,所以h(x0)>0.即存在x0=16c,当x∈(x0,+∞)时,恒有x2<c e x.综上,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<c e x.解法二:(1)同解法一.(2)同解法一.(3)对任意给定的正数c,取x0=√c, 由(2)知,当x>0时,e x>x2,所以e x=e x2·ex2>(x2)2(x2)2,当x>x0时,e x>(x2)2(x2)2>4c(x2)2=1cx2,因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<c e x.解法三:(1)同解法一.(2)同解法一.(3)首先证明当x∈(0,+∞)时,恒有13x3<e x.证明如下:令h(x)=13x3-e x,则h'(x)=x2-e x.由(2)知,当x>0时,x2<e x,从而h'(x)<0,h(x)在(0,+∞)单调递减,所以h(x)<h(0)=-1<0,即13x3<e x.取x0=3c ,当x>x0时,有1cx2<13x3<e x.因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<c e x.21.(2014福建,理21)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4—2:矩阵与变换已知矩阵A 的逆矩阵A -1=(2 11 2).①求矩阵A ;②求矩阵A -1的特征值以及属于每个特征值的一个特征向量. 分析:①求得|A -1|的值,利用求逆矩阵的公式便可求得A .②结合A -1的特征多项式,解方程,从而求得A -1的特征值. 解:(1)因为矩阵A 是矩阵A -1的逆矩阵,且|A -1|=2×2-1×1=3≠0,所以A =13(2 -1-1 2)=(23 -13-13 23). (2)矩阵A -1的特征多项式为f (λ)=|λ-2 -1-1 λ-2|=λ2-4λ+3=(λ-1)(λ-3),令f (λ)=0,得矩阵A -1的特征值为λ1=1或λ2=3,所以ξ1=( 1-1)是矩阵A -1的属于特征值λ1=1的一个特征向量,ξ2=(11)是矩阵A -1的属于特征值λ2=3的一个特征向量.(2)(本小题满分7分)选修4—4:坐标系与参数方程已知直线l 的参数方程为{x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为{x =4cosθ,y =4sinθ(θ为参数).①求直线l 和圆C 的普通方程;②若直线l 与圆C 有公共点,求实数a 的取值范围.分析:①通过消参,直线是代入消去法,圆是利用平方关系便可求得直线和圆的普通方程.在②中,利用直线和圆的位置关系,得d ≤r ,从而求得a 的范围. 解:(1)直线l 的普通方程为2x-y-2a=0,圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点, 故圆C 的圆心到直线l 的距离d=√5≤4, 解得-2√5≤a ≤2√5.(3)(本小题满分7分)选修4—5:不等式选讲已知定义在R 上的函数f (x )=|x+1|+|x-2|的最小值为a. ①求a 的值;②若p ,q ,r 是正实数,且满足p+q+r=a ,求证:p 2+q 2+r 2≥3.分析:①利用绝对值不等式的性质容易得证,但要注意利用|a|+|b|≥|a±b|中的哪一个.②利用柯西不等式(a 2+b 2+c 2)(m 2+n 2+s 2)≥(am+bn+cs )2,结合所给式子特点,合理赋值,可得证结果. 解:(1)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a=3.(2)由(1)知p+q+r=3,又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r )2=9, 即p 2+q 2+r 2≥3.。

数学高考真题-2014福建卷理科

数学高考真题-2014福建卷理科

2014年普通高等学校招生考试福建卷(理科数学)第I卷(选择题共60分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的)1.复数z=(3-2i)i的共轭复数z等于()A.-2-3i B.-2+3iC.2-3i D.2+3i2.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱3.等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于()A.8 B.10 C.12 D.144.若函数y=log a x(a>0,且a≠1)的图像如图1-1所示,则下列函数图像正确的是()图1-1A BC D 图1-2图1-35.阅读如图1-3所示的程序框图,运行相应的程序,输出的S 的值等于( )A .18B .20C .21D .406.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( ) A .f (x )是偶函数 B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)8.在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3)9.设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+ 2 C .7+ 2 D .6 210.用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置)11.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.12.在△ABC 中,A =60°,AC =4,BC =2 3,则△ABC 的面积等于________.13.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).14.如图1-4,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.图1-415.若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是________.三、解答题(本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分13分)已知函数f (x )=cos x (sin x +cos x )-12. (1)若0<α<π2,且sin α=22,求f (α)的值; (2)求函数f (x )的最小正周期及单调递增区间.17.(本小题满分13分)在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.图1-518.(本小题满分13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: (i)顾客所获的奖励额为60元的概率;(ii)顾客所获的奖励额的分布列及数学期望.(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(本小题满分13分)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率.(2)如图1-6,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.图1-620.(本小题满分14分)已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x .21.本题设有(1)(2)(3)三个选考题,每题7分.请考生任选两题作答,满分14分,如果多做,按所做的前两题计分.(Ⅰ)选修4-2:矩阵与变换已知矩阵A 的逆矩阵A -1=2112⎛⎫ ⎪⎝⎭.(1)求矩阵A ;(2)求矩阵A -1的特征值以及属于每个特征值的一个特征向量.(Ⅱ)选修4-4:坐标系与参数方程已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.(Ⅲ)选修4-5:不等式选讲已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a .(1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.。

2014-2015年福建省南平市高三上学期期末数学试卷(理科)和答案

2014-2015年福建省南平市高三上学期期末数学试卷(理科)和答案

3. (5 分)下列函数是偶函数的是( A.y=sin2x B.y=lnx
D.y=|x| )
4. (5 分)以 y=±x 为渐近线且经过点(2,0)的双曲线方程为( A. ﹣ =1 B. ﹣ =1
C.

=1
D.

=1
5. (5 分)甲:函数,f(x)是 R 上的单调递增函数;乙:∃ x1<x2,f(x1)<f (x2) ,则甲是乙的( A.充分不必要条件 C.充要条件 ) B.必要不充分条件 D.既不充分也不必要条件 )
二、填空题:本大题共 5 个小题,每小题 4 分,共 20 分 11. (4 分)设五个数值 31,38,34,35,x 的平均数是 34,则这组数据的方差 是 .
第 2 页(共 22 页)
12. (4 分)在平面直角坐标系中,不等式组 区域的面积是 16,那么实数 a 的值为 .
(a 为常数)表示的平面
18. (13 分)现有 4 个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加 者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己 去参加哪个游戏,掷出点数为 1 或 2 的人去参加甲游戏,掷出点数大于 2 的 人去参加乙游戏.
第 3 页(共 22 页)
(1)求这 4 个人中恰有 2 人去参加甲游戏的概率; (2)用 X,Y 分别表示这 4 个人中去参加甲、乙游戏的人数,记 ξ=|X﹣Y|,求 随机变量 ξ 的分布列与数学期望 E(ξ) . 19. (13 分)已知椭圆 C: 的离心率为 ,直线 l:y=x+2
【选修 4-4:坐标系与参数方程】 22. (7 分)在直角坐标系 xOy 中,直线 C 的参数方程为 为参数) ,曲
线 P 在以该直角坐标系的原点 O 的为极点,x 轴的正半轴为极轴的极坐标系 下的方程为 ρ2﹣4ρcosθ+3=0. (1)求直线 C 的普通方程和曲线 P 的直角坐标方程;

2014年普通高等学校招生全国统一考试数学理试题(福建卷,小题解析)

2014年普通高等学校招生全国统一考试数学理试题(福建卷,小题解析)

2014年高考真题——理科数学〔福建卷〕 解析版 小题局部一.选择题:本大题共10小题,每一小题5分,共50分.在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.1.复数(32)z i i =-的共轭复数z 等于〔 〕.23A i --.23B i -+.23C i -.23D i +2.某空间几何体的正视图是三角形,如此该几何体不可能是〔 〕.A 圆柱 .B 圆锥 .C 四面体 .D 三棱柱3.等差数列{}n a 的前n 项和n S ,假设132,12a S ==,如此6a =( ).8A .10B .12C .14D4.假设函数log (0,1)a y x a a =>≠且的图像如右图所示,如此如下函数图像正确的答案是〔 〕5.阅读右图所示的程序框图,运行相应的程序,输出的S 得值等于〔 〕.18A .20B .21C .40D6.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,如此"1"k =是“OAB ∆的面积为12〞的〔 〕 .A 充分而不必要条件 .B 必要而不充分条件.C 充分必要条件 .D 既不充分又不必要条件7.函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 如此如下结论正确的答案是〔 〕 A.()x f 是偶函数 B. ()x f 是增函数 C.()x f 是周期函数 D.()x f 的值域为[)+∞-,18.在如下向量组中,可以把向量()2,3=a 表示出来的是〔 〕A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e eC.)10,6(),5,3(21==e eD.)3,2(),3,2(21-=-=e e9.设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,如此Q P ,两点间的最大距离是〔 〕A.25B.246+C.27+D. 2610.用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理与乘法原理,从1个红球和1个篮球中取出假设干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1〞表示一个球都不取、“a 〞表示取出一个红球,面“ab 〞用表示把红球和篮球都取出来.以此类推,如下各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出假设干个球,且所有的篮球都取出或都不取出的所有取法的是A. ()()()555432111c b a a a a a +++++++B. ()()()554325111c b b b b b a +++++++ C. ()()()554325111c b b b b b a +++++++ D.()()()543255111c c c c c b a +++++++二.填空题11.假设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≤+-008201x y x y x 如此y x z +=3的最小值为________.【答案】1【解析】试题分析:依题意如图可得目标函数过点A 时截距最大.即min 1z =.考点:线性规划.12.在ABC ∆中,60,4,23A AC BC =︒==,如此ABC ∆的面积等于_________.13.要制作一个容器为43m ,高为m 1的无盖长方形容器,该容器的底面造价是每平方米20元,侧面造价是每平方米10元,如此该容器的最低总造价是_______〔单位:元〕.14.如图,在边长为e 〔e 为自然对数的底数〕的正方形中随机撒一粒黄豆,如此他落到阴影局部的概率为______.15.假设集合},4,3,2,1{},,,{=d c b a 且如下四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,如此符合条件的有序数组),,,(d c b a 的个数是_________.。

2014年福建省南平市中考数学试卷附答案

2014年福建省南平市中考数学试卷附答案

2014年福建省南平市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)D2.(4分)(2014•南平)如图,几何体的主视图是().C D.可能性为5.(4分)(2014•南平)将直尺和三角板按如图的样子叠放在一起,则∠1+∠2的度数是()=3.2=2.98.(4分)(2014•南平)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票10.(4分)(2014•南平)如图,将1、、三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是().C D二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.(3分)(2014•南平)请你写出一个无理数_________.12.(3分)(2014•南平)已知点P在线段AB的垂直平分线上,PA=6,则PB=_________.13.(3分)(2014•南平)五名学生的数学成绩如下:78、79、80、82、82,则这组数据的中位数是_________.14.(3分)(2014•南平)点P(5,﹣3)关于原点的对称点的坐标为_________.15.(3分)(2014•南平)同时掷两枚硬币,两枚硬币全部正面朝上的概率为_________.16.(3分)(2014•南平)分解因式:a3﹣2a2+a=_________.17.(3分)(2014•南平)将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′=_________°.18.(3分)(2014•南平)如图,等圆⊙O1与⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,点A在x轴的正半轴上,两圆分别与x轴交于C、D两点,y轴与⊙O2相切于点O1,点O1在y轴的负半轴上.①四边形AO1BO2为菱形;②点D的横坐标是点O2的横坐标的两倍;③∠ADB=60°;三、解答题(本大题共8小题,共86分.请在答题卡的相应位置作答)19.(14分)(2014•南平)(1)计算:﹣(π﹣3)0+()﹣1+|﹣1|.(2)化简:(﹣)•.20.(8分)(2014•南平)解不等式组:.21.(8分)(2014•南平)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.22.(10分)(2014•南平)在2014年巴西世界杯足球赛开幕之前,某校团支部为了解本校学生对世界杯足球赛的关注情况,随机调查了部分学生对足球运动的喜欢程度,绘制成如下的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)随机抽查了_________名学生;(2)补全图中的条形图;(3)若全校共有500名学生,请你估计全校大约有多少名学生喜欢(含“较喜欢”和“很喜欢”)足球运动.23.(10分)(2014•南平)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线.(2)若∠A=34°,AC=6,求⊙O的周长.(结果精确到0.01)24.(10分)(2014•南平)如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.25.(12分)(2014•南平)如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D 分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连接EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.26.(14分)(2014•南平)在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为_________°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为_________°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为_________°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.2014年福建省南平市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)D2.(4分)(2014•南平)如图,几何体的主视图是().C D.可能性为5.(4分)(2014•南平)将直尺和三角板按如图的样子叠放在一起,则∠1+∠2的度数是()=3.2=2.98.(4分)(2014•南平)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票9.(4分)(2014•南平)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()AB.10.(4分)(2014•南平)如图,将1、、三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,.C D、)表示的数是,二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.(3分)(2014•南平)请你写出一个无理数π.12.(3分)(2014•南平)已知点P在线段AB的垂直平分线上,PA=6,则PB=6.14.(3分)(2014•南平)点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3).15.(3分)(2014•南平)同时掷两枚硬币,两枚硬币全部正面朝上的概率为..16.(3分)(2014•南平)分解因式:a3﹣2a2+a=a(a﹣1)2.17.(3分)(2014•南平)将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′=65°.18.(3分)(2014•南平)如图,等圆⊙O1与⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,点A在x轴的正半轴上,两圆分别与x轴交于C、D两点,y轴与⊙O2相切于点O1,点O1在y轴的负半轴上.①四边形AO1BO2为菱形;②点D的横坐标是点O2的横坐标的两倍;③∠ADB=60°;④△BCD的外接圆的圆心是线段O1O2的中点.以上结论正确的是①③.(写出所有正确结论的序号)BD三、解答题(本大题共8小题,共86分.请在答题卡的相应位置作答)19.(14分)(2014•南平)(1)计算:﹣(π﹣3)0+()﹣1+|﹣1|.(2)化简:(﹣)•.1+2+;•.20.(8分)(2014•南平)解不等式组:.21.(8分)(2014•南平)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.∴22.(10分)(2014•南平)在2014年巴西世界杯足球赛开幕之前,某校团支部为了解本校学生对世界杯足球赛的关注情况,随机调查了部分学生对足球运动的喜欢程度,绘制成如下的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)随机抽查了50名学生;(2)补全图中的条形图;(3)若全校共有500名学生,请你估计全校大约有多少名学生喜欢(含“较喜欢”和“很喜欢”)足球运动.23.(10分)(2014•南平)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线.(2)若∠A=34°,AC=6,求⊙O的周长.(结果精确到0.01)24.(10分)(2014•南平)如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.上,∴)代入∴一次函数的解析式为AB25.(12分)(2014•南平)如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D 分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连接EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.)代入然后根据﹣根据题意,得;)代入∴∴∵26.(14分)(2014•南平)在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为60°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为45°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为36°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.(×APE=BCD=.参与本试卷答题和审题的老师有:星期八;wdzyzlhx;王开东;dbz1018;2300680618;zhjh;zcx;caicl;CJX;sjzx;lanchong;HJJ;sks;zjx111;73zzx;守拙(排名不分先后)菁优网2015年1月27日。

【南平市5月质检】福建省南平市2014届高三5月质量检查(数学理)

【南平市5月质检】福建省南平市2014届高三5月质量检查(数学理)

2014年普通高中毕业班质量检查(二)数学(理)试题第I 卷 (选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数1()tan f x x x =-在区间(0,2π)内的零点个数是 A .0 B .1 C .2 D .32.在△ABC 中,若角A 、B 、C 的对边分别是a 、b 、c ,则“a 2+b 2=b 2+ac ”,是“A 、B 、C 依次成等差数列”的 A .既不充分也不必要条件 B .充分不必要条件 C .必要不充分条件 D .充要条件 3.已知等比数列{n a }中,各项都是正数,且1321,,22a a a 成等差数列,则8967a a a a ++等于7.设0(cos sin ),a x x π=-⎰则二项式26()ax x+展开式中的x 3项的系数为A .一20B .20C .一160D .160A .13B .12C .11D .10第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置. 11.已知()1,f x x i =+是虚数单位,复数(1)1f ai i+-为纯虚数,则实数a 的值为 .12.已知一个几何体是由上下两部分构成的组合体,其三视图如右图所示,若图中圆的半径为1则该几何体的体积是 .13.已知函数2(),,f x x mx n m n =-+-是区间[0,4]内任意 两个实数,则事件“f(1)<0”发生的概率为 . 14.倾斜角为锐角的直线,与抛物线y 2=2x 相交于A 、B 两点,三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本题满分13分) 为减少“舌尖上的浪费”,某学校对在该校食堂用餐的学生能否做到“光盘”,进行随机调查,从中随机抽取男、女生各15名进行了问卷调查,得到了如下列联表:17.(本小题满分13分)已知函数())cos().66f x x x ππ=-+- (I)当x ∈A 时,函数f(x)取得最大值或最小值,求集合A ;(Ⅱ)将集合A 中x ∈(0,+∞)的所有x 的值,从小到大排成一数列,记为{a n },求数列{ a n }的通项公式;(Ⅲ)令21n n n b a a π+=⋅,求数列{b n }的前n 项和T n .18.(本小题满分13分)19.(本小题满分13分)已知椭圆2222:1(0)x y T a b a b+=>>.(I)若椭圆T z 轴的直线被椭圆截得弦长为83.(i)求椭圆方程;(ii)过点P(2,1)的两条直线分别与椭圆F 交于点A ,C 和B ,D ,若AB //CD ,求直线AB 的斜率;(II)设P(x 0,y 0)为椭圆T 内一定点(不在坐标轴上),过点P 的两条直线分别与椭圆厂交于点A ,C 和B ,D ,且彻∥CD ,类比(I)(ii)直接写出直线彻的斜率.(不必证明) 20.(本题满分14分)21.本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4--2:矩阵与变换(2)(本小题满分7分)选修4--4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,工轴的非负半轴为极轴建立极坐标系.已知曲线C 的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ参数),直线三的极坐标方程为(I )写出曲线C 的普通方程与直线三的直角坐标方程。

2014年福建省高考数学试卷(理科)答案与解析

2014年福建省高考数学试卷(理科)答案与解析

2014年福建省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.4.(5分)(2014•福建)若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是().B...=5.(5分)(2014•福建)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()6.(5分)(2014•福建)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB 的面积为”的(),d=的面积为×=的面积为,则S=××==的面积为7.(5分)(2014•福建)已知函数f(x)=,则下列结论正确的是()8.(5分)(2014•福建)在下列向量组中,可以把向量=(3,2)表示出来的是().=(0,0),=(1,2)=(﹣1,2),=(5,﹣2)=(3,5),=(6,10)=(2,﹣3),=(﹣2,3),计算判别即可.解:根据列出方程解方程是关键,9.(5分)(2014•福建)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,5+,半径为=≤,5=610.(5分)(2014•福建)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的1+c c+二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)(2014•福建)若变量x,y满足约束条件,则z=3x+y的最小值为1.12.(4分)(2014•福建)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于2.BC=2,=故答案为:13.(4分)(2014•福建)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是160(单位:元)214.(4分)(2014•福建)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.().故答案为:15.(4分)(2014•福建)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是6.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)(2014•福建)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.<=,,()﹣.)﹣sin2x+2x+T=﹣2x+≤+≤,﹣]17.(13分)(2014•福建)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.即可得出.M.=,,.的法向量,则=|==.|=18.(13分)(2014•福建)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.,元的概率为=P×+60×=40,=19.(13分)(2014•福建)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.)依题意,可知c=的方程为=1的方程为﹣=1|OC|的方程为﹣=1=2ae==的方程为﹣|OC|a的方程为﹣=1的方程为﹣(﹣,,同理得,|OC||﹣|=8的方程为﹣=1在21-23题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修4-2:矩阵与变换20.(14分)(2014•福建)已知函数f(x)=e x﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<ce x.x)时,恒有xx,当时,有21.(7分)(2014•福建)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.A==,﹣,,所以=对应的一个特征向量为.五、选修4-4:极坐标与参数方程22.(7分)(2014•福建)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.的参数方程为.,即22六、选修4-5:不等式选讲23.(2014•福建)已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省南平市2014年普通高中毕业班质量检查数学(理)试题本试卷分第1卷(选择题)和第Ⅱ卷(非选择题),第Ⅱ卷第21题为选考题,其他题为必考题.本试卷共6页.满分150分.考试时间120分钟. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上. 2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效. 3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚. 4.做选考题时,考生按照题目要求作答,并用213铅笔在答题卡上把所选题目对应的题号涂黑. 5.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回. 参考公式:第I 卷 (选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数1()tan f x x x =-在区间(0,2π)内的零点个数是 A .0 B .1 C .2 D .32.在△ABC 中,若角A 、B 、C 的对边分别是a 、b 、c ,则“a 2+b 2=b 2+ac ”,是“A 、B 、C 依次成等差数列”的 A .既不充分也不必要条件 B .充分不必要条件 C .必要不充分条件 D .充要条件 3.已知等比数列{n a }中,各项都是正数,且1321,,22a a a 成等差数列,则8967a a a a ++等于7.设0(cos sin ),a x x dx π=-⎰则二项式26()ax x+展开式中的x 3项的系数为A .一20B .20C .一160D .160A .13B .12C .11D .10第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置. 11.已知()1,f x x i =+是虚数单位,复数(1)1f ai i+-为纯虚数,则实数a 的值为 .12.已知一个几何体是由上下两部分构成的组合体,其三视图如右图所示,若图中圆的半径为1 则该几何体的体积是 .13.已知函数2(),,f x x mx n m n =-+-是区间[0,4]内任意 两个实数,则事件“f(1)<0”发生的概率为 .14.倾斜角为锐角的直线l ,与抛物线22y x =相交于A 、B 两点,O 为坐标原点,若OA OB ⊥,且OAB ∆的面积为l 的方程为__________________.15.函数11|cos ||sin |()|sin ||cos ||sin ||cos |x x f x x x x x =+++的最小值为________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本题满分13分) 为减少“舌尖上的浪费”,某学校对在该校食堂用餐的学生能否做到“光盘”,进行随机调查,从中随机抽取男、女生各15名进行了问卷调查,得到了如下列联表:17.(本小题满分13分)已知函数())cos().66f x x x ππ=-+- (I)当x ∈A 时,函数f(x)取得最大值或最小值,求集合A ;(Ⅱ)将集合A 中x ∈(0,+∞)的所有x 的值,从小到大排成一数列,记为{a n },求数列{ a n }的通项公式;(Ⅲ)令21n n n b a a π+=⋅,求数列{b n }的前n 项和T n .18.(本小题满分13分)19.(本小题满分13分)已知椭圆2222:1(0)x y T a b a b+=>>.(I)若椭圆T z 轴的直线被椭圆截得弦长为83.(i)求椭圆方程;(ii)过点P(2,1)的两条直线分别与椭圆F 交于点A ,C 和B ,D ,若AB //CD ,求直线AB 的斜率;(II)设P(x 0,y 0)为椭圆T 内一定点(不在坐标轴上),过点P 的两条直线分别与椭圆厂交于点A ,C 和B ,D ,且彻∥CD ,类比(I)(ii)直接写出直线彻的斜率.(不必证明)20.(本题满分14分)21.本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4--2:矩阵与变换(2)(本小题满分7分)选修4--4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,工轴的非负半轴为极轴建立极坐标系.已知曲线C的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ参数),直线三的极坐标方程为(I )写出曲线C 的普通方程与直线三的直角坐标方程。

(II )P 为曲线C 上一点,求尸到直线工距离的最小值. (3)(本小题满分7分)选修4--5:不等式选讲 已知函数()|1||2|.f x x x =--+ (I )求()f x 的最大值;(Ⅱ)|21|()t f x -≥恒成立,求实数f 的取值范围.2014年南平市高中毕业班适应性考试 理科数学试题参考答案及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分50分.1.B ; 2.D ; 3.C ; 4.B ; 5.A ; 6.C ; 7.C ; 8.A ; 9.A ; 10.D . 二、填空题:本题考查基础知识和基本运算,每小题4分,满分20分.11.2; 12.34π; 13.3223; 14.02=--y x ; 15.222+ 三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤. 16.本题满分13分.解:(Ⅰ)…………3分由已知数据得 635.6652.613171515)531012(3022>≈⨯⨯⨯⨯-⨯=K ,所以,有99%以上的把握认为“在学校食堂用餐的学生能否做到‘光盘’与性别有关”…………6分 (Ⅱ)X 的可能取值为0,1,2…………7分73)0(215210===C C X P ,2110)1(21515110=⋅==C C C X P ,212)2(21525===C C X P …………10分所以X 的分布列为:X 的数学期望为321221170)(=⨯+⨯+⨯=X E …………13分17.本题满分13分.解:(Ⅰ))]6cos(21)6sin(23[2)(ππ-+-=x x x f …………1分 x x sin 2]6)6sin[(2=+-=ππ…………3分当函数)(x f 取得最值时,集合},2{Z k k x x A ∈+==ππ…………4分 (Ⅱ)),0(+∞∈x 的所有x 的值从小到大依次是,2)12(,,25,23,2ππππ-n . …………6分即数列}{n a 的通项公式是2)12(π-=n a n …………8分 (Ⅲ)由(Ⅱ)得 )121121(2)12)(12(412+--=+-=⋅=+n n n n a a b n n n π…………10分)121121()5131()311[(2+--++-+-=∴n n T n …………11分124)1211(2+=+-=nn n …………13分18.本题满分13分.(Ⅰ)证明:在正方体ABCD -A 1B 1C 1D 1中, ∵1111AC B D ⊥,111BB AC ⊥ ………… 1分∵E ,F 分别为A 1B 1,B 1C 1的中点,∴11//EF AC …………2分∴11EF B D ⊥,1EF BB ⊥,1111B D BB B ⋂=,∴11BB D D EF ⊥面又EF DEF ⊂面…………3分∴11BB D D DEF ⊥面面 …………4分(Ⅱ)∵OP 与DM 相交,∴OP 与DM 确定一个平面α,P 为正方体底面ABCD 上的点…………5分 ∴平面ABCD DP α=⋂面,平面1111A B C D OM α=⋂面…………6分∵在正方体ABCD -A 1B 1C 1D 1中,1111//ABCD A B C D 面面∴//DP OM …………7分(Ⅲ)如图以1D 为原点,11D A ,11D C ,1D D 所在直线分别为x 轴, y 轴,z 轴建立空间直角坐标系,则),,,(0021A ),,,(),,,(),,,(),,,(20001102002211D O C B (2,1,0)E ,(1,2,0)F …………8分设(,,0)M m n ,由EF EM 32=,得(2,1,0)m n --=2(1,1,0)3- 解得43m =,53n =,即45(,,0)33M …………10分由(Ⅱ)可知:面CPD 与面ABCD 共面,x面DOP 与面DOM 共面,面ABCD 的一个法向量为),,(1001=n 设面DOM 的一个法向量为),,(z y x n =2, ),,211(--=,),,03231(=OM ∴由⎪⎩⎪⎨⎧=⋅=⋅0022n OD n ,可得⎪⎩⎪⎨⎧=+=+--0323102y x z y x 令1=z ,则4=x ,2-=y , 即),,(1242-=n …………12分21212111=⨯=, 故2121cos =θ…………13分19.本题满分13分.解:(Ⅰ)(ⅰ)由题意得⎪⎪⎩⎪⎪⎨⎧=-=953822222a b a a b 解得⎩⎨⎧==23b a …………2分则椭圆Г的方程为14922=+y x .…………3分 (ⅱ)设点.),,(),,(),,(),,(44332211y x D y x C y x B y x A λ= 则),2(231-=-x x λ=-11y )1(3-y λ,故λλ13)1(2x x -+=,λλ13)1(y y -+=.…………5分因为点C 在椭圆上,所以1492323=+y x ,则14])1[(9])1(2[221221=-++-+λλλλy x 整理得 49)492)(1(2)4194()1(2121112y x y x ++++-++λλ=2λ…………6分 由点A 在椭圆上知1492121=+y x , 故.1)492)(1(2)4194()1(2112-=++-++λλλy x ①…………7分又AB ∥CD ,则.PD BP λ=同理可得 .1)492)(1(2)4194()1(2222-=++-++λλλy x ②…………8分①-②得 .0)(41)(921212=-+-y y x x由题意可知21x x ≠,则直线AB 的斜率为981212-=--=x x y y k .…………10分 (Ⅱ)直线AB 的斜率为0202y a x b -.…………13分20.本题满分14分.解:(Ⅰ)曲线方程为x y ln =,设切点为)ln ,(00x x由x y 1='得切线的斜率01x k =,则切线方程为)(1ln 000x x x x y -=-…………2分 因为切线过点)1,0(-P ,所以1ln 10-=--x ,即10=x 故所求切线方程为.01=--y x …………3分(Ⅱ)函数)(x g y =的定义域为),0(+∞,xm x x x m x x g +-=+-='2222)(2. 令0)(>'x g 并结合定义域得,0222>+-m x x对应一元二次方程的判别式)21(4m -=∆.…………5分① 当0≤∆,即21≥m 时,0)(≥'x g ,则函数)(x g 的增区间为 ),0(+∞;② 当210<<m 时,函数)(x g 的增区间为 (0, ),2211(),2211+∞-+--mm ;③ 当0≤m 时,函数)(x g 的增区间为 ).,2211(+∞-+m…………7分(Ⅲ)xm x x x m x x g +-=+-='2222)(2,令0)(='x g 得,0222=+-m x x 由题意知方程有两个不相等的正数根)(,b a b a <,则⎪⎩⎪⎨⎧>>-=∆02,0)21(4m m解得210<<m , 解方程得2211mb -+=,则121<<b . …………9分又由0222=+-m b b 得b b m 222+-=,所以)(b g =b b b b b b m b b ln )22(12ln 12222+-++-=++-,).1,21(∈bb b b b b b b g ln )21(422ln )24(22)(--=-++-+-='当)1,21(∈b 时,0)(>'b g ,即函数)(b g 是)1,21(上的增函数所以0)(42ln 21<<-b g ,故)(b g 的取值范围是)0,42ln 21(-. 则1)]([-=b g .…………11分同理可求210<<a ,)(a g =a a a a a ln )22(1222+-++-,a ).21,0(∈0ln )21(4)(<--='a a a g ,即函数)(a g 是)21,0(上的减函数所以1)(42ln 21<<-a g ,故)(a g 的取值范围是)1,42ln 21(- 则)]([a g =1-或)]([a g =0…………12分当)]([a g =1-时,)]([)]([sin b g a g >)])()][(cos([b g a g ;当)]([a g =0时,)]([)]([sinb g a g <)])()][(cos([b g a g .…………14分21.本题满分14分.(1)解(Ⅰ)由121112a b -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭…………1分得 21122a b -+=⎧⎨-+=⎩ 解得 0a =,4b = …………2分 0114M ⎛⎫= ⎪⎝⎭…………3分(Ⅱ)100101211416NM ⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭…………4分设(,)P x y 为10x y ++=上任一点,在NM 变换作用下的对应点为)(y x P ''',,则''0116x x y y ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭…………5分 得 ⎩⎨⎧'=+'=y y x x y 6,代入10x y ++=得 015=+'-'x y …………6分即所求的曲线方程为510x y --=…………7分(2)解:(Ⅰ)由2cos sin x y θθ=⎧⎨=⎩得曲线C 的普通方程:2214x y +=…………1分=cos 2sin ρθθ+可化为(cos 2sin )ρθθ+=…………2分即直线L的直角坐标方程:20x y +-=…………3分(Ⅱ)解法一:设曲线C 上任一点为2cos sin )(,P θθ它到直线的距离为d ==5分 当sin()14πθ+=时,min d =…………7分 解法二:设与直线L 平行且与曲线C 相切的直线方程为20x y m ++= 由222014x y m x y ++=⎧⎪⎨+=⎪⎩ 可化得 228440y my m ++-=…………5分 2221632(4)80m m m ∆=--=-=得m =±6分当m =-曲线C 上点到直线L距离取最小值min d ==7分(3)解:(Ⅰ)x x x f +--=21)(≤321=++-x x …………2分当且仅当x ≤-2时等号成立,∴max ()3f x = …………3分(说明:通过数形结合直接答出max ()3f x =也给3分) (Ⅱ)由21()t f x -≥恒成立得 max 21()t f x -≥…………4分 即 213t -≥,213t -≥或213t -≤-…………5分解得:2t ≥ 或 1t ≤-…………6分∴实数t 的取值范围是][2,)(,1⋃+∞-∞-…………7分。

相关文档
最新文档