初中数学综合练习试卷(专题三)
中考数学专题练习 综合问题(含解析)-人教版初中九年级全册数学试题

综合题综合题是初中数学中涵盖广、综合性最强的题型,它可以包含初中阶段所学的代数、平面几何、解析几何、统计概率的若干知识点和各种数学思想方法,还能有机结合探索性、开放性等有关问题;它既突出考查了初中数学的主干知识,又突出了与高中衔接的重要内容,如函数、方程、不等式、三角形、四边形、相似形、圆等.它不但考查学生数学基础知识和灵活运用知识的能力还可以考查学生对数学知识迁移整合能力;既考查学生对几何与代数之间的内在联系,多角度、多层面综合运用数学知识、数学思想方法分析问题和解决问题的能力,还考查学生知识网络化、创新意识和实践能力。
前面专题已对代数之方程和不等式综合问题、函数之一次函数和反比例函数综合问题、函数之一次函数、反比例函数和二次函数综合问题、代数和函数综合问题、静态几何之综合问题等有过介绍,本专题主要原创编写代数和平面几何的综合问题、代数和统计概率的综合问题、平面几何和统计概率的综合问题、解析几何和统计概率的综合问题、平面几何和解析几何的综合问题模拟题。
1.已知一元二次方程x2-11x+30=0 的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC底边上的高为。
【答案】4或1192。
【考点】因式分解法解一元二次方程,等腰三角形的性质,三角形三边关系,勾股定理,分类思想的应用。
1. 已知关于x 的方程x 2-(m +2)x +(2m -1)=0的一个根是2,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积。
【答案】解:∵此方程的一个根是1,∴12-1×(m +2)+(2m -1)=0,解得,m=2, 则方程的另一根为:m +2-1=2+1=3。
①该直角三角形的两直角边是1、3时,该直角三角形的面积为131322⋅⋅=。
②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为22;则该直角三角形的面积为112222⋅⋅=。
综上所述,该直角三角形的面积为32或2。
河南初三初中数学专题试卷带答案解析

河南初三初中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、填空题1.已知关于的方程的解是,则的值是.2.下面给出了三件事:①纸放在火上,纸被点燃;②电视机不接电源,电视机正播新闻;③一个袋中有9个红球,1个白球,每个球除颜色外都一样,任意摸一个球是白球。
其中是不确定事件,是必然事件,是不可能事件.(只填序号)3.如图,∠AOC和∠BOD都是直角,如果∠DOC=,则∠AOB是__ 度;4.假设有足够多的黑白围棋子,按照一定的规律排成一行:…请问第2010个棋子是黑的还是白的?答:__________.5.我们道:,,……那么。
利用上面的规律计算:……。
6.一个物体从A点出发,在坡度为i=1∶7的斜坡上沿直线向上运动到B,当AB=30m时,物体升高 m。
7.如图,点P是∠AOB的角平分线上一点,过点P作PC∥OA交OB于点C,若∠AOB=60°,OC=4,则点P到OA的距离PD等于。
8.在△ABC中,∠C=90°,若3AC=BC,则∠A的度数是,cosB=9.、在Rt△ABC中,∠C=90°,BC=12cm,BC边上的中线AD=10cm则sinB=10.如图,某建筑物BC直立于水平地面,∠BAC=30°,AC=9m,需建造阶梯AB,使每阶高不超过20cm,则此阶梯最少要建阶。
(取1.732)11.如图,当矩形ABCD变成边长不变的BCEF时,面积变为原来是的一半,则∠FBG= 。
12.、如图,在△ABC中,∠ACB=90°,AC=2,斜边AB在x轴上,点C在y轴的正半轴上,点A的坐标为(2,0),则直角边BC所在直线的解析式为。
二、解答题1.(4分)如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小正方块的个数,请画出这个几何体的主视图和左视图:2.如图所示,是我们常用的一副三角板.请你用一副三角板画出度数分别为15°和135°的两个角.(要求:保留画图痕迹)(2)(3分)在下面的方格纸中经过点C画与线段AB互相平行的直线l1,再经过点B画一条与线段AB垂直的直线l2.3.4.5..6.7.(5分)先化简,再求值:,其中,8.如图∠AOB=120,∠COD=20,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数9.如图,已知点A、B、C、D、E在同一直线上,且AC=BD,E是线段BC的中点.(1)点E是线段AD的中点吗?说明理由;(2)当AD=10,AB=3时,求线段BE的长度.10.(6分)某会议厅主席台上方有一个长12.8m的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?11.(6分)一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本20元;如果按标价的8折出售,将盈利40元.求:(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?12.(6分)学期结束前,学校想调查七年级学生对数学的喜欢程度,特向初中一年级400名学生作问卷调查,其结果如下:(1)计算出每一种意见的人数占总调查人数的百分比;(2)请作出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由,13.(1)认真观察,并在④后面的横线上写出相应的等式。
初中数学综合试卷及答案

初中数学综合试卷及答案一.选择题(共10小题)1.(2012•永州)已知a为实数,则下列四个数中一定为非负实数的是()A.a B.﹣a C.|﹣a| D.﹣|﹣a|2.若|a﹣2|+|b+1|=0,则ab的值为()A.2B.﹣2 C.±2 D.03.若|x﹣3|与|2y﹣3|互为相反数,则xy+x﹣y的值是()C.6D.﹣6A.B.﹣4.(2012•佳木斯)若(a﹣1)2+|b﹣2|=0,则(a﹣b)2012的值是()A.﹣1 B.1C.0D.20125.(2013•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106 6.(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 7.(2013•宜昌)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.6.75×105吨D.6.75×10﹣4吨8.(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位D.精确到百万位9.(2013•泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0B.1C.3D.710.计算:41+1=5,42+1=17,43+1=65,44+1=257,…,归纳各计算结果中的个位数字的规律,猜想4100+1个位数字为()A.4B.5C.6D.7二.填空题(共1小题)11.(2011•河北)若|x﹣3|+|y+2|=0,则x+y的值为_________.三.解答题(共19小题)12.(2009•凉山州)我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?13.(2007•邵阳)观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=_________;(2)直接写出下列各式的计算结果:①=_________;②=_________.(3)探究并计算:.14.(2006•自贡)计算:﹣34+(﹣0.25)100×4100+()×()﹣2÷|﹣2|.15.(2005•宿迁)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣).16.(2010•高要市二模)计算:17.计算题:(1)(﹣7)×(﹣5)﹣90÷(﹣15);(2).18.计算:(1)4﹣|﹣6|﹣3×()(2)﹣32+(﹣1)2001÷+(﹣5)219.计算:(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].20.计算:(﹣2)2+{6﹣(﹣3)×2}÷4﹣5÷×21.如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,试求的值.22.先观察下列等式,再完成题后问题:,,(1)请你猜想:=_________.(2)若a、b为有理数,且|a﹣1|+(ab﹣2)2=0,求:的值.23.为体现党和政府对农民健康的关心,解决农民看病难问题,我市某县全面实行新型农村合作医疗,对农民的住院医疗费实行分段报销制.例如:该县有四位农民看病分别花去了1800元、2500元、6000元、22000元住院医药费,请计算应该给这四位农民各报销多少元?24.计算:﹣(﹣3)2﹣[3+0.4×(﹣1)]÷(﹣2).25.先阅读下面的例题,再解答后面的题目.例:已知x2+y2﹣2x+4y+5=0,求x+y的值.解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,即(x﹣1)2+(y+2)2=0.因为(x﹣1)2≥0,(y+2)2≥0,它们的和为0,所以必有(x﹣1)2=0,(y+2)2=0,所以x=1,y=﹣2.所以x+y=﹣1.题目:已知x2+4y2﹣6x+4y+10=0,求xy的值.26.拓广探索七年某班师生为了解决“22012个位上的数字是_________.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=_________,所以24个位上的数字是_________;因为25=_________,所以25个位上的数字是_________;因为26=_________,所以26个位上的数字是_________;(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:_________.(3)利用上述得到的规律,可知:22012个位上的数字是_________.(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_________.27.31=3,32=9,33=27,34=81,335=243,…,通过观察.你发现了什么规律?按照你所发现的规律,则32011的末位数字为_________.28.试确定62012+(﹣25)2013的末位数字是几.29.若a=25,b=﹣3,那么a2003+b2004的末位数是多少?30.如果规定:,,,…(1)你能用幂的形式表示0.0001,0.00001吗?(2)你能将0.000001768表示成a×10n的形式吗?(其中1≤a<10,n是负整数)参考答案与试题解析一.选择题(共10小题)1.(2012•永州)已知a为实数,则下列四个数中一定为非负实数的是()A.a B.﹣a C.|﹣a| D.﹣|﹣a|考点:非负数的性质:绝对值.分析:根据绝对值非负数的性质解答.解答:解:根据绝对值的性质,为非负实数的是|﹣a|.故选C.点评:本题主要考查了绝对值非负数的性质,是基础题,熟记绝对值非负数是解题的关键.2.若|a﹣2|+|b+1|=0,则ab的值为()A.2B.﹣2 C.±2 D.0考点:非负数的性质:绝对值.专题:存在型.分析:先根据非负数的性质求出a、b的值,进而可求出ab的值.解答:解:∵|a﹣2|+|b+1|=0,∴a﹣2=0,b+1=0,解得a=2,b=﹣1,∴ab=2×(﹣1)=﹣2.故选B.点评:本题考查的是非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.3.若|x﹣3|与|2y﹣3|互为相反数,则xy+x﹣y的值是()C.6D.﹣6A.B.﹣考点:非负数的性质:绝对值.分析:根据互为相反数的两个数的和等于0列式,再根据非负数的性质列式求出xy的值,然后代入代数式进行计算即可得解.解答:解:∵|x﹣3|与|2y﹣3|互为相反数,∴|x﹣3|+|2y﹣3|=0,∴x﹣3=0,2y﹣3=0,解得x=3,y=,所以,xy+x﹣y=3×+3﹣=4.5+3﹣1.5=6.故选C.点评:本题考查了绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.4.(2012•佳木斯)若(a﹣1)2+|b﹣2|=0,则(a﹣b)2012的值是()A.﹣1 B.1C.0D.2012考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,所以,(a﹣b)2012=(1﹣2)2012=1.故选B.点评:本题考查了平方数非负数,绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.5.(2013•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3354万用科学记数法表示为:3.354×107.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2013•宜昌)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.6.75×105吨D.6.75×10﹣4吨考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.解答:解:67 500=6.75×104.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.8.(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位D.精确到百万位考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位.解答:解:∵27.39亿末尾数字9是百万位,∴27.39亿精确到百万位.故选D.点评:本题考查了近似数的确定,熟悉数位是解题的关键.9.(2013•泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0B.1C.3D.7考点:尾数特征.专题:压轴题.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.10.计算:41+1=5,42+1=17,43+1=65,44+1=257,…,归纳各计算结果中的个位数字的规律,猜想4100+1个位数字为()A.4B.5C.6D.7考点:尾数特征.分析:根据已知中尾数特征得出每2个一循环,进而得出4100+1的个位数字与第2个数字尾数相同,即可得出答案.解答:解:∵41+1=5,42+1=17,43+1=65,44+1=257,…,∴上式中尾数每42个一循环,∵100÷2=50,∴4100+1的个位数字与第2个算式尾数相同,故4100+1个位数字是7.故选:D.点评:此题主要考查了尾数特征,根据已知得出式子中尾数的变化规律是解题关键.二.填空题(共1小题)11.(2011•河北)若|x﹣3|+|y+2|=0,则x+y的值为1.考点:非负数的性质:绝对值.专题:计算题;压轴题.分析:根据非负数的性质,可求出x、y的值,然后将x,y再代入计算.解答:解:∵|x﹣3|+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴x+y的值为:3﹣2=1,故答案为:1.点评:此题主要考查了绝对值的性质,根据题意得出x,y的值是解决问题的关键.三.解答题(共19小题)12.(2009•凉山州)我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?考点:有理数的混合运算.专题:新定义.分析:认真观察已知给出的两个式子:110=1×22+1×21+0×20和110101=1×25+1×24+0×23+1×22+0×21+1×20,得出规律,再计算.解答:解:101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.点评:此题的关键找出规律,按照规定的规律进行计算.13.(2007•邵阳)观察下列等式:,,,将以上三个等式两边分别相加得:(1)猜想并写出:=;(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.考点:有理数的混合运算.专题:压轴题;规律型.分析:(1)从材料中可看出规律是;(2)直接根据规律求算式(2)中式子的值,即展开后中间的项互相抵消为零,只剩下首项和末项,要注意的是末项的符号是负号,规律为;(3)观察它的分母,发现两个因数的差为2,若把每一项展开成差的形式,则分母是2,为了保持原式不变则需要再乘以,即得出最后结果.解答:解:(1);(2)①;②;(3)原式====点评:本题考查的是有理数的运算能力和学生的归纳总结能力.解题关键是会从材料中找到数据之间的关系,并利用数据之间的规律总结出一般结论,然后利用结论直接解题.本题中的难点是第(3)个问题,找出分母因数的差为2,把每一项展开成差的形式,则分母是2,所以为了保持原式不变需要再乘以,是解决此题的关键.14.(2006•自贡)计算:﹣34+(﹣0.25)100×4100+()×()﹣2÷|﹣2|.考点:有理数的混合运算.分析:按照有理数混合运算的顺序:先乘方,再乘除,最后算加减,有括号的要先算括号里面的.注意﹣34表示4个3相乘的相反数,其结果为﹣81.解答:解:原式=﹣81+1+×36×=﹣81+1+3=﹣77.点评:本题考查的是有理数的运算能力.(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.15.(2005•宿迁)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣).考点:有理数的混合运算.分析:含有有理数的加、减、乘、除、乘方多种运算的算式.根据几种运算的法则可知:减法、除法可以转化成加法和乘法,乘方是利用乘法法则来定义的,所以有理数混合运算的关键是加法和乘法.加法和乘法的法则都包括符号和绝对值两部分,同学在计算中要学会正确确定结果的符号,再进行绝对值的运算.解答:解:原式=4﹣7+3+1=1.点评:注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.16.(2010•高要市二模)计算:考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方再乘除后加减,有括号的先算括号里面的,计算过程中注意正负符号的变化并都化成分数形式.解答:解:原式=×(﹣)﹣﹣÷(﹣)=﹣﹣+=﹣.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.17.计算题:(1)(﹣7)×(﹣5)﹣90÷(﹣15);(2).考点:有理数的混合运算.分析:对于一般的有理数混合运算来讲,其运算顺序是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.解答:解:(1)(﹣7)×(﹣5)﹣90÷(﹣15)=35﹣(﹣6)=41.(2)==.点评:本题考查了有理数的混合运算.注意运算顺序及运算法则.18.计算:(1)4﹣|﹣6|﹣3×()(2)﹣32+(﹣1)2001÷+(﹣5)2考点:有理数的混合运算.分析:(1)先算乘法,再算加减;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,注意﹣32=﹣9;解答:解:(1)原式=4﹣6+1=﹣1;(2)原式=﹣9+(﹣1)×6+25=10.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.19.计算:(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:原式=﹣1×(﹣5)÷(9﹣10)=﹣1×(﹣5)×(﹣1)=﹣5.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.20.计算:(﹣2)2+{6﹣(﹣3)×2}÷4﹣5÷×考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:原式=4+[6+6]÷4﹣5××=4+3﹣4=3.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.21.如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,试求的值.考点:有理数的混合运算;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:由绝对值和完全平方式的结果为非负数,且两非负数之和为0可得绝对值和完全平方式同时为0,可得ab=2且b=1,把b=1代入ab=2可求出a的值为2,把求出的a与b代入所求的式子中,利用=﹣把所求式子的各项拆项后,去括号合并即可求出值.解答:解:∵|ab﹣2|≥0,(1﹣b)2≥0,且|ab﹣2|+(1﹣b)2=0,∴ab﹣2=0,且1﹣b=0,解得ab=2,且b=1,把b=1代入ab=2中,解得a=2,则=+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了有理数的混合运算,要求学生掌握两非负数之和为0时,两非负数必须同时为0,本题若直接按照运算顺序解题,运算量非常大,需利用计算技巧简化运算,根据所求式子各项的特点,利用拆项法进行化简,使拆开的一部分分数互相抵消,达到简化运算的目的.熟练运用=﹣是解本题的关键.22.先观察下列等式,再完成题后问题:,,(1)请你猜想:=.(2)若a、b为有理数,且|a﹣1|+(ab﹣2)2=0,求:的值.考点:有理数的混合运算;非负数的性质:绝对值;非负数的性质:偶次方.专题:规律型.分析:(1)根据=﹣,=﹣,=﹣,…则=;(2)先根据非负数的性质得出a、b的值,代入原式变形为1﹣+﹣+﹣…+﹣是解题的关键.解答:解:(1)=(2分)(2)∵|a﹣1|+(ab﹣2)2=0,∴a﹣1=0,ab﹣2=0,∴a=1,b=2(2分)原式=(2分)=.(1分)点评:考查了有理数的混合运算,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为=﹣.23.为体现党和政府对农民健康的关心,解决农民看病难问题,我市某县全面实行新型农村合作医疗,对农民的住院医疗费实行分段报销制.例如:该县有四位农民看病分别花去了1800元、2500元、6000元、22000元住院医药费,请计算应该给这四位农民各报销多少元?考点:有理数的混合运算.专题:应用题.分析:分别用百分数表示出每人的每段报销的金额后用加法计算.解答:解;应给花1800元医药费的农民报销的金额=500×20%+1300×30%=490(元);应给花2500元医药费的农民报销的金额=500×20%+1500×30%+500×35%=725(元);应给花6000元医药费的农民报销的金额=500×20%+1500×30%+3000×35%+1000×40%=2000(元);应给花22000元医药费的农民报销的金额=500×20%+1500×30%+3000×35%+5000×40%+12000×45%=9000(元).故给这四位农民各报销490元、725元、2000元、9000元.点评:本题利用了百分数来表示报销的金额,结合当前的农村新型农村合作医疗,做到学数学用数学,学以致用.24.计算:﹣(﹣3)2﹣[3+0.4×(﹣1)]÷(﹣2).考点:有理数的混合运算.分析:按照有理数的运算顺序,先乘方,再乘除,有括号的,先算括号里的进行运算.解答:解:原式=﹣9﹣(3﹣×)×(﹣)=﹣9+×=﹣.点评:本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.25.先阅读下面的例题,再解答后面的题目.例:已知x2+y2﹣2x+4y+5=0,求x+y的值.解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,即(x﹣1)2+(y+2)2=0.因为(x﹣1)2≥0,(y+2)2≥0,它们的和为0,所以必有(x﹣1)2=0,(y+2)2=0,所以x=1,y=﹣2.所以x+y=﹣1.题目:已知x2+4y2﹣6x+4y+10=0,求xy的值.考点:非负数的性质:偶次方.专题:阅读型.分析:先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x、y的值,再代入求出xy的值.解答:解:将x2+4y2﹣6x+4y+10=0,化简得x2﹣6x+9+4y2+4y+1=0,即(x﹣3)2+(2y+1)2=0.∵(x﹣3)2≥0,(2y+1)2≥0,且它们的和为0,∴x=3,y=﹣.∴xy=3×(﹣)=﹣.点评:初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.本题关键是将左边的式子写成两个完全平方的和的形式.26.拓广探索七年某班师生为了解决“22012个位上的数字是6.”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=16,所以24个位上的数字是6;因为25=32,所以25个位上的数字是2;因为26=64,所以26个位上的数字是4;(2)①小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?试通过计算加以验证.②同学们,你们发现的规律与小明一样吗?不妨把你们发现的规律写出来:尾数每4个一循环分别为:2,4,8,6.(3)利用上述得到的规律,可知:22012个位上的数字是6.(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是3.考点:尾数特征.分析:(1)根据指数运算法则直接求出各数即可;(2)①直接计算得出210个位上的数字是4;②利用(1)中所求得出尾数每4个一循环分别为:2,4,8,6;(3)利用(2)中的规律得出答案;(4)利用(2)中规律得出3的指数变化与尾数的关系.解答:解:(1)因为21=2,所以21个位上的数字是2;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24=16,所以24个位上的数字是6;因为25=32,所以25个位上的数字是2;因为26=64,所以26个位上的数字是4;故答案为:16,6;32,2;64,4;(2)①正确,理由:由(1)可得出:尾数每4个一循环,10÷4=2…2,则210个位上的数字与第2个数据相等是4;②尾数每4个一循环分别为:2,4,8,6.(3)∵2012÷4=503,∴22012个位上的数字与第4个尾数相等,则是6;故答案为:6;(4)因为31=3,所以31个位上的数字是3;因为32=9,所以32个位上的数字是9;因为33=27,所以33个位上的数字是7;因为34=81,所以34个位上的数字是1;因为35=243,所以35个位上的数字是3;…∴尾数每4个一循环,∵2013÷4=503…1,∴32013个位上的数字是3.故答案为:3.点评:此题主要考查了数字尾数特征,根据指数的变化得出位置的变化规律是解题关键.27.31=3,32=9,33=27,34=81,335=243,…,通过观察.你发现了什么规律?按照你所发现的规律,则32011的末位数字为7.考点:尾数特征.分析:通过观察,发现3的乘方的结果上的个位数字:3,9,7,1,3,9,7,1,…4个一循环,所以根据这个规律求得答案.解答:解:∵2011÷4=502…3,∴32011的结果个位数是:7.故答案为:7.点评:本题考查的是尾数的特征,根据题意找出规律是解答此题的关键.28.试确定62012+(﹣25)2013的末位数字是几.考点:尾数特征.分析:先根据题意得出6的2012次方的末位数字,再得出(﹣25)2013的末位数字,求出其差即可.解答:解:∵61=6,62=36,63=216,64=1296,…,∴6的任何次方的结果都是正数,且末位数字均为6,∴62012次方的末位数字是6,∵(﹣25)1=﹣25,(﹣25)2=625,(﹣25)3=﹣15625,(﹣25)4=390625,…,∴(﹣25)2013的末位数字为5,其符号为负号,∴62012+(﹣25)2013的末位数字是6﹣5=1.点评:本题考查的是尾数的特征,根据题意找出规律是解答此题的关键.29.若a=25,b=﹣3,那么a2003+b2004的末位数是多少?考点:尾数特征.分析:应先确定a2003的个位数字,b2004的个位数字,让其相加即可.解答:解:原式=52003+(﹣3)2004,∵3的末位数字是﹣3,9,﹣7,1依次循环,∴(﹣3)2004的个位数字为1,∴原式的末位数字是5+1=6.故a2003+b2004的末位数是6.点评:考查了尾数特征,本题的关键在于确定﹣3的个位数字,﹣3的个位数字应是﹣3,9,﹣7,1依次循环.30.如果规定:,,,…(1)你能用幂的形式表示0.0001,0.00001吗?(2)你能将0.000001768表示成a×10n的形式吗?(其中1≤a<10,n是负整数)考点:科学记数法—表示较小的数.分析:(1)利用已知数据直接得出即可;(2)根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:(1)∵,,,…∴0.0001=10﹣4,0.00001=10﹣5;(2)0.000001768=1.768×10﹣6.点评:此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.。
【初中数学】人教版七年级下册模块专题三 平移的性质与作图(练习题)

人教版七年级下册模块专题三平移的性质与作图(846)1.在如图所示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B. C. D.2.在5×5的方格纸中将图①中的图形N平移后的位置如图②所示,那么正确的平移方法是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格3.如图所示,在正方形网格中,有a,b,c,d四条线段,其中能由a平移得到的线段是()A.bB.cC.dD.b,c,d4.如图所示,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是()A.18B.16C.12D.85.下列图形中,周长最长的是()A. B. C. D.6.如图所示,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=.7.如图所示,三角形A′B′C′是由三角形ABC沿BC方向平移6cm得到的,则图中长度为6cm的线段是(不添加其他线段).8.如图所示,三角形FED是由三角形ABC平移得到的,则图中与∠A相等的角是(写出所有符合条件的角).9.如图,将周长为8的△ABC沿BC方向向右平移1个单位长度得到△DEF,则四边形ABFD的周长为.10.如图所示,三角形ABC的顶点都在方格纸的格点上,将三角形ABC先向左平移1格,再向上平移3格,其中每个格子的边长为1个单位长度.(1)请在图中画出平移后的三角形A′B′C′;(2)若连接AA′,CC′,则这两条线段的关系是;(3)求五边形A′ABCC′的面积.11.如图所示,多边形图案EMNBCHG是由长方形ABCD经过剪切、平移得到的.请你在这个长方形中画出剪切线(用虚线表示),标出相应的字母,并用箭头标明剪切下来的部分是如何平移的.参考答案1.【答案】:D2.【答案】:C3.【答案】:B4.【答案】:B5.【答案】:B6.【答案】:57.【答案】:BB′和CC′8.【答案】:∠F,∠EGC与∠AGF9.【答案】:10【解析】:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC.∵AB+BC+AC=8,∴四边形ABFD的周长为AD+AB+BF+DF=1+AB+BC+1+AC=1010(1)【答案】解:如图(2)【答案】平行且相等(3)【答案】解:五边形A′ABCC′的面积=7×7−12×4×6−12×1×3−12×2×4−12×1×3=3011.【答案】:解:如图。
初三数学综合测试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001……2. 已知等腰三角形底边长为8cm,腰长为10cm,则其面积为()A. 32cm²B. 40cm²C. 48cm²D. 80cm²3. 下列函数中,一次函数是()A. y = 2x² - 3x + 1B. y = √x + 1C. y = 2x + 3D. y = 3/x4. 已知一元二次方程x² - 5x + 6 = 0,则其解为()A. x₁ = 2, x₂ = 3B. x₁ = 3, x₂ = 2C. x₁ = 6, x₂ = 1D. x₁ = 1, x₂ = 65. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)6. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 2,5,8,11C. 3,6,9,12D. 4,7,10,137. 若直角三角形的两条直角边长分别为3cm和4cm,则斜边长为()A. 5cmB. 6cmC. 7cmD. 8cm8. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a² > b²D. 若a > b,则ac > bc9. 已知正方形的边长为a,则其对角线长为()A. aB. √2aC. 2aD. a√210. 在等腰三角形ABC中,若底边BC=8cm,腰AB=AC=10cm,则三角形ABC的周长为()A. 24cmB. 26cmC. 28cmD. 30cm二、填空题(每题4分,共40分)11. 分数 3/4 与 -1/2 的差是 ________。
初中数学综合试卷五三答案

一、选择题1. 答案:B解析:由题意可知,平行四边形ABCD中,∠B=90°,所以ABCD是矩形。
又因为矩形的对角线相等,所以AC=BD。
所以选B。
2. 答案:C解析:根据勾股定理,在直角三角形中,直角边的平方和等于斜边的平方。
所以3²+4²=5²,故选C。
3. 答案:D解析:根据有理数的乘法法则,负数乘以负数等于正数。
所以-3×-4=12。
故选D。
4. 答案:A解析:由题意可知,圆的半径为2cm,圆心角为60°,所以弧长为2π×2×(60°/360°)=π。
故选A。
5. 答案:B解析:根据一元一次方程的解法,将方程两边的x合并,得到2x-3=7,解得x=5。
故选B。
二、填空题6. 答案:-1/2解析:由题意可知,a²-b²=(a+b)(a-b),所以(a-b)(a+b)=a²-b²=1/2。
解得a-b=±√(1/2)。
故答案为-1/2。
7. 答案:-3/2解析:由题意可知,(a+b)²=a²+2ab+b²,所以(a-b)²=a²-2ab+b²。
将a=2,b=-1代入,得到(2-(-1))²=2²-2×2×(-1)+(-1)²=9。
所以a-b=±3。
故答案为-3/2。
8. 答案:4解析:由题意可知,三角形ABC中,∠A=90°,∠B=30°,∠C=60°。
所以AC=BC/√3。
将BC=4代入,得到AC=4/√3。
故答案为4。
9. 答案:12解析:由题意可知,等差数列{an}中,a1=2,d=3,n=5。
所以an=a1+(n-1)d=2+(5-1)×3=14。
故答案为12。
10. 答案:0解析:由题意可知,函数f(x)=x²-4x+4。
江苏初三初中数学专题试卷带答案解析

江苏初三初中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、解答题1.如图,在平面直角坐标系中,已知点A(8,1)、B(0,-3),反比例函数y=(x>0)的图像经过点A,过点(t,0)且平行于y轴的直线(0<t<8),与反比例函数的图像交于点M,与直线AB交于点N.(1)当t=2时,求△BMN面积;(2)若MA⊥AB,求t的值。
2.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x (分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?3.如图,已知点A、C在反比例函数的图象上,点B、D在反比例函数(0<<4)的图象上,AB∥CD∥x 轴,AB、CD在x轴的两侧,A、C的纵坐标分别为()、().(1)若,求证:四边形ABCD为平行四边形;(2)若AB=,CD=,,求的值.4.某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:(1)求张强返回时的速度;(2)妈妈比按原速返回提前多少分钟到家?(3)请直接写出张强与妈妈何时相距1000米?5.如图,已知点A在反比例函数上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E ,若△BCE 的面积为8。
(1)求证:△EOB ∽△ABC ;(2)求反比例函数的解析式。
6.如图,在直角坐标系xOy 中,一直线y=2x+b 经过点A (-1,0)与y 轴正半轴交于B 点,在x 轴正半轴上有一点D ,且OB=OD ,过D 点作DC ⊥x 轴交直线y=2x+b 于C 点,反比例函数y=(x >O )经过点C . (1)求b ,k 的值;(2)求△BDC 的面积;(3)在反比例函数y=(x >0)的图象上找一点P (异于点C ),使△BDP 与△BDC 的面积相等,求出P 点坐标.7.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y (cm )与燃烧时间x (min )的关系如图所示.(1)求乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式;(2)求点P 的坐标,并说明其实际意义;(3)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.8.如图,在平面直角坐标系xOy 中,一次函数y=ax+b 的图象与x 轴相交于点A (-2,0),与y 轴交于点C ,与反比例函数在第一象限内的图象交于点B (m ,n ),连结OB .若S △AOB =6,S △BOC =2.(1)求一次函数的表达式;(2)求反比例函数的表达式.9.某工厂甲、乙两个车间同时开始生产某种产品,产品总任务量为m 件,开始甲、乙两个车间工作效率相同.乙车间在生产一段时间后,停止生产,更换新设备,之后工作效率提高.甲车间始终按原工作效率生产.甲、乙两车间生产的产品总件数y 与甲的生产时间x (时)的函数图象如图所示.(1)甲车间每小时生产产品 件,a= . (2)求乙车间更换新设备之后y 与x 之间的函数关系式,并求m 的值.(3)若乙车间在开始更换新设备时,增加两名工作人员,这样可便更换设备时间减少0.5小时,并且更换后工作效率提高到原来的2倍,那么两个车间完成原任务量需几小时?10.如图,四边形ABCD为正方形,点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数y=ax+b的图象经过点A、C(1)求反比例函数和一次函数的解析式(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,请直接写出P点的坐标. 11.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.12.一列快车由甲地开往乙地,一列慢车由乙地开往甲地, 两车同时出发,匀速运动.快车离乙地的路程y(km)与行驶1(km)与行驶的时间x(h)之间的函数关系,如的时间x(h)之间的函数关系,如图中线段AB所示;慢车离乙地的路程y2图中线段OC所示。
河南初三初中数学专题试卷带答案解析

河南初三初中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.在下列以线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()A.a:b:c=3:4:5B.a=9,b=40,c=41C.a=11,b=12,c=13D.a=b=5,c=52.如图,在矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于点E,∠AOB=45°,则∠BAE的大小为().A.15° B.45° C.30° D.22.5°3.“水立方”的游泳池长为50m,宽为25m,深为3m.现以x m/min的速度向池中注水,注满水池需y min,则y与x函数关系的大致图象为()4.已知一个直角三角形的两边长分别为3和5,则第三边长为 ( )A.4B.4或34C.16或34D.4或5.一个平行四边形绕着对角线的交点旋转90°能够与本身重合,则该平行四边形为()A.矩形B.菱形C.正方形D.无法确定6.下列式子中,正确的是()A.B.C.D.7.若一个四边形四条边的长分别为a、b、c、d,若a+b十c+d="2(a" c + b d )则这个四边形是( )A.平行四边形B.菱形C.矩形D.正方形8.已知样本x,x,x,x的平均数是4,则x+3,x+3,x+3,x+3的平均数为 ( )A.7B.5.75C.3D.49.点P的坐标是(4,一8),则P点关于原点的对称点P1的坐标是( )[A.(—4,一8)B.(4,8)C.(4,一8)D.(-4,8) 10..下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是 ( )(A)A→B→C→D.(B)D→B→C→A.(C)C→D→A→B.(D)A→C→B→D.11.正方形在太阳光的投影下得到的几何图形一定是( )A.正方形.B.平行四边形或一条线段.C.矩形.D.菱形12.下列图中是太阳光下形成的影子是 ( )(A) (B) (C) (D)13.如图所示,下面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )14.给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个15.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()A.16m B.18m C.20m D.22m16.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()A.相交B.平行C.垂直D.无法确定17..在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是 ( )A.两竿都垂直于地面.B.两竿平行斜插在地上.C.两根竿子不平行.D.一根竿倒在地上.二、填空题1.如图,在中,分别是的中点,若,Co则 cm.2.如图,分别以△ABC的两条边为边做平行四边形,所做的平行四边形有____ __个;平行四边形第四个顶点的坐标是 .3.如图,已知□ABCD中,点M是BC的中点,且AM=6,BC=12,CD=4,则该平行四边形的面积为 .4.皮影戏中的皮影是由投影得到的.5.将一个三角板放在太阳光下,它所形成的投影是_________,也可能是_________.21世纪教6.圆在太阳光线下的投影,可能是_________或_________也可能是_________.7.小芳的房间有一面积为3m2的玻璃窗,她站在室内离窗子4m的地方向外看,她能看到窗前面一幢楼房的面积有 m2(楼之间的距离为20m).8.路灯下,小强对小华说:“我可以踩到你的影子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学综合练习试卷(专题三)
班级 座号 姓名 成绩
说明:考试时间 分,满分150分.
一、选择题(每小题4分,共40分,每小题给出4个答案,其中只有一个正确,把所选答案的编号写在题目后面的括号内) 题号 1 2 3 4 5 6 7 8 9 10 答案
1、如图,直线a∥b,直线c 是截线,如果∠1=50°,那么∠2等于 A.150° B.140° C.130° D.120°
2、下列空间图形中是圆柱的为
(A ) (B ) (C ) (D ) 3、顺次连结任意四边形四边中点所得的四边形一定是
A 、平行四边形
B 、矩形
C 、菱形
D 、正方形
4、如图,已知直线AB CD ,相交于点O ,OA 平分EOC ∠,100EOC ∠=,则BOD ∠的度数是 A .20 B .40 C .50
D .80
5、如图,是某工件的三视图,其中圆的半径为10cm ,等腰三角形的高为30cm ,则此工
件的侧面积是 A .π1502cm B .π3002cm C .5010π2cm D .10010π2cm 6、图中所示几何体的俯视图是
7、若△ABC 与△A ′B ′C ′相似,∠A =55°,∠B =100°,那么∠C ′的度数是
A.55°
B.100°
C.25°
D.不能确定
8、为了美化校园,同学们要在一块正方形空地上种上草,他们设计了图所示的图案,其中阴影部分为绿化面积,哪个图案的绿化面积与其他图案的绿化面积不相等.
a
b
1
2
c A
E D O C
B
(第4题)
(第5题)
正
视 图
左 视 图
俯
视 图
主视方向
A
B C D
9、如图,在□ABCD中,EF//AB,GH//AD,EF与GH交于点O,则该图中的平行四边形的个数共有.
A.7 B.8
C.9 D.11
10、如图农村常搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚.
如果不考虑塑料薄膜埋在土里的部分,那么搭建一个这样的蔬
菜大棚需用塑料薄膜的面积是.
A.64π m2B.68π m2
C.78π m2D.80π m2
二、填空题(每小题4分,共20分,请把答案填在横线上)
11、已知∠α与∠β互余,且∠α=35°18′,则∠β=_____°_____′.
12、如果两个相似三角形对应高的比是1:2,那么它们的面积比是
13、等边三角形至少要旋转度,才能与自身重合。
14、下列命题:①对顶角相等;②等腰三角形的两个底角相等;③两直线平行,
同位角相等.其中逆命题为真命题的有:(请填上所有符合题意的序号)
15、.若一个圆锥的母线长是它底面圆半径的3倍,则它的侧面展开图的圆心角为度。
三、解答题(每小题8分,共24分)
16、小明的身高是1.7 m,他的影长是2 m,同一时刻学校旗杆的影长是10 m,求旗杆的高。
17、如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,求DN+MN 的最小值.
18、已知,如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD中点。
求证:四边形AFBE是平行四边形。
四、(每小题8分,共16分)
19、已知:CD为一幢3米高的温室,其南面窗户的底框G距地面1米,CD在地面上留下的最大影长CF为2米,现欲在距C点7米的正南方A点处建一幢12米高的楼房AB(设A,C,F 在同一水平线上)
(1)、按比例较精确地作出高楼AB及它的最
大影长AE;
(2)、问若大楼AB建成后是否影响温室CD的
采光,试说明理由。
20、观察下面的点阵图,探究其中的规律。
摆第1个“小屋子”需要5个点,摆第2个“小屋子”需要个点,摆第3个“小屋子”需要
个点?(1)、摆第10个这样的“小屋子”需要多少个点?
(2)、写出摆第n个这样的“小屋子”需要的总点数,S
与n的关系式。
五、解答题(每小题10分,共30分)
21、已知圆锥的底面半径为r=20cm,高h=15
20cm,现在有一只蚂蚁从底边上一点A 出发。
在侧面上爬行一周又回到A点,求蚂蚁爬行
的最短距离。
22、如图,已知∠A=∠B,AE=EF=FB,AC=BD.求证:CF=DE.
A E D
C
F
23、如图,⊙O 的直径AB =6cm ,D 为⊙O 上一点,∠BAD =30°,过点D 的切线交AB 的延长线于点C .求∠ADC 的度数及AC 的长.
六、(每小题10分,共20分)
24、已知:如图,AB 是⊙O 的直径,点P 是AB 延长线上一点,PC 切⊙O 于点C ,在射线PA 上截取PD=PC ,连接CD ,并延长交⊙O 于点E .
(1)求证:∠ABE =∠BCE ;
(2)当点P 在AB 的延长线上运动时,判断sin ∠BCE 的值是否随点P 位置的变化而变化,提出你的猜想并加以证明.
O
D
C B A ·
25、如图,在直角坐标系中,以点M (3,0)为圆心,以6为半径的圆分别交x 轴的正半轴于点A ,交x 轴的负半轴交于点B ,交y 轴的正半轴于点C ,过点C 的直线交x 轴的负半轴于点D (-9,0)
(1) 求A 、C 两点的坐标; (2) 求证 直线CD 是⊙M 的切线‘ (3) 若抛物线2
y x bx c =++经过M 、A 两点,求此抛物线
的解析式;
初中数学综合练习试卷(专题三)参考答案
一、选择题
1、C
2、A
3、A 、
4、C
5、D
6、D、
7、C
8、A
9、C 10、B
二、填空题
11、54·42 12、1:4 13、120 14、2 3 15、120
三、解答题
16、.8.5; 17、.10
18、∵AC∥BD ∴∠C=∠D ∠CAO=∠DBO AO=BO ∴△AOC≌△BOD ∴CO=DO ∵E、F
分别是OC、OD的中点∴OF=1
2
OD=
1
2
OC=OE 。
由AO=BO、EO=FO ∴四边表AFBE是平等四边
形。
19、如图,易算出AE=8米,由AC=7米,可得CE=1米,
由比例可知:CH=1.5米1米,故影响采光。
20、11,17,59;S=6n-1;
21、80cm;提示:由r=20cm,h=20cm,可得母线l=80cm,而圆锥侧
面展开后的扇形的弧长为,可求得圆锥侧面展开后的扇形的圆心角
为900,故最短距离为80cm。
22、△ACF≌△BDE ∴CF=DE
23、连OD接∴∠ADO=120°∴∠COD=60°∴cos∠COD=OD∶OC
∴OC=OD∶cos∠COD=3∶cos60°=6 ∴AC=OA+OC=3+6=9cm
24.证明:(1)∵PD=PC,∴∠PDC=∠PCD. ∵PC切⊙O于点C,∴
∠PCD=∠E.
∵∠ABE=∠PDC-∠E,∠BCE=∠PCD-∠PCB,∴∠ABE=∠BCE.
(2)猜想:sin∠BCE的值不随点P位置的变化而变化.
证明:如图,连接AE. ∵∠ABE=∠BCE,∠BCE=∠A,∴∠ABE=∠A.
∵AB是⊙O的直径,∴∠AEB=90°. ∴∠BCE=∠A=45°. ∴sin∠BCE=sin45°=.
∴sin∠BCE的值不随点P位置的变化而变化.
第24题
25.解:(1)连接CM,由题意得:OM=3,OB=3,OE=9,MC=6 OA=OM+MA=3+6=9 A(9,0)
∴C(0,)
(2)证法一:在Rt△DCO中,
2222
9(33)63
DC DO CO
=+=+=在△DCM中,
y
x
M
D
C
B A
o
22226144CM DC +=+=2222()(93)12144DM DO OM =+=+==
222CM DC DM ∴+= ∴△DCM 直角三角形。
∴MC ⊥DC ,而MC 是⊙M 的半径 ∴CD 是⊙M 的切线。
证法二: 在Rt △COM 中,
31
sin 62
OM MCO OC ∠=
== 30O MCO ∴∠=
在Rt △DOC 中,
tan
DO DCO CO ∠=
== 60O DCO ∴∠= 90O DCM MCO DCO ∴∠=∠+∠= MC DC ∴⊥,而MC 中的⊙M 半径。
证法三:在△CMO 和△DMC 中
612
2, 226CM DM DO OM OM MC MC +===== CM DM
OM MC
∴=
又CMO DMC ∠=∠ △CMO ∽△DMC 90O COM DCM ∴∠=∠=MC DC ∴⊥,而MC 中的⊙M 半径。
MC DC ∴⊥,而MC 中的⊙M 半径。
(3)由抛物线2
y x bx c =++经过点M (3,0)和点A (9,0),可得:
9308190b c b c ++=⎧⎨++=⎩ 解得:1227
b c =-⎧⎨
=⎩ ∴抛物线的解析式为: 2
1227y x x =-+。