全等三角形练习题(含答案)
全等三角形经典50题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACAD BC BACDF21E5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD8. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB AD BC A9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF。
∵BC=ED,CF=DF,∠BCF=∠EDF。
∴三角形BCF全等于三角形EDF(边角边)。
∴BF=EF,∠CBF=∠DEF。
连接BE。
在三角形BEF中,BF=EF。
∴ ∠EBF=∠BEF 。
又∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
10. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CG∠CGD =∠EFD又EF ∥AB∴∠EFD =∠1∠1=∠2∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG又 EF =CG∴EF =AC11. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CB ACDF21 E证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC∴∠EAD =∠CAD∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS )∴∠E =∠C∵AC =AB+BD∴AE =AB+BD∵AE =AB+BE∴BD =BE∴∠BDE =∠E∵∠ABC =∠E+∠BDE∴∠ABC =2∠E∴∠ABC =2∠C12. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC又∵AC =AC∴△ADC ≌△AFC (SAS )CD B A∴AD =AF∴AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
全等三角形经典题型50题(含答案)

全等三角形证明经典50题(含答案)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 AD延长AD 至U E,使DE=AD, 则三角形ADC 全等于三角形EBD即 BE=AC=2 在三角形 ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=512.已知:D 是 AB 中点,/ ACB=90 °,求证: CD - AB2为BC=ED,CF=DF, / BCF= / EDF 。
所以 三角形BCF 全等于三角形 EDF (边角边)。
所以BF=EF, / CBF= / DEF 。
连接 BE 。
在三角形 BEF 中,BF=EF 。
所以 / EBF= / BEF 。
/ ABE= / AEB 。
所以 AB=AE 。
在三角形 ABF 和 / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF 。
所以/ C= / D , F 是 CD 中点,求证:/ 1 = / 2证明:连接BF 和EF 。
因又因为 / ABC= / AED 。
所以 三角形 AEF 中, AB=AE,BF=EF, 三角形ABF 和三角形AEF 全等。
所以 / BAF= / EAF ( / 仁/ 2)。
A3因为 EB = EF ,CE = CE , 所以△ CEBCEF 所以/ B = / CFE 因为/ B +/ D = 180° / CFE + / CFA = 180° 所以/ D = / CFA 因为 AC 平分/ BAD 所以/ DAC = / FAC 又因为 AC = AC 所以△ ADC 也厶AFC ( SAS ) 所以AD = AF 所以AE = AF + FE = AD + BE12.如图,四边形 ABCD 中,AB // DC ,BE 、CE 分别平分/ ABC 、/ BCD ,且点 E 在AD 上。
全等三角形练习题(含答案)

全等三角形练习题(含答案)篇一:全等三角形习题选(含)经典三角形证明题选讲(含答案)三角形辅助线做法线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验1.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADD1. 证明:延长AD到E,使DE=AD, 则△ADC≌△EBD ∴BE=AC=2 在△ABE中,AB-BE AE AB+BE ,∴10-2 2AD 10+2 4 AD 6又AD是整数,则AD=5思路点拨:三角形中有中线,延长中线等中线。
2.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠22.证明:连接BF和EF.∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ △BCF≌△EDF(边角边). ∴BF=EF,∠CBF=∠DEF. 连接BE.在△BEF中,BF=EF,∴∠EBF=∠BEF又∵ ∠ABC=∠AED,∴ ∠ABE=∠AEB. ∴ AB=AE在△ABF和△AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF. ∴△ABF≌△AEF∴∠1=∠2.思路点拨:解答本题的关键是能够想到证明AB=AE,而AB、AE在同一个△ABE 中,可利用∠ABE=∠AEB来证明.同一三角形中线段等,可用等角对等边3.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴△ADC≌△GDE(AAS)∴EG=AC ∵EF∥AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC 思路点拨:角平分线平行线,等腰三角形来添。
4.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 证明:延长AC到E使CE=CD,连接 ED,则∠CDE= ∠E∵ AB=AC+CD ∴AB=AC+CE=AE又∵∠BAD=∠EAD,AD=AD∴△BAD≌△EAD ∴∠B=∠E∵∠ACB=∠E+∠CDE,∴∠ACB=2∠B方法二在AC上截取AE=AB,连接ED A∵A D平分∠BAC∴∠EAD=∠BAD又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB CBD∵AC=AB+BD ,AC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C思路点拨:线段等于线段和,理应截长或补短5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE 证明:过C作CF⊥AD交AD的延长线于F.在△CFA和△CEA中∴∠CFA=∠CEA=90°又∵∠CAF=∠CAE, AC=AC∴△CFA≌△CEA ,∴AE=AF=AD+DF, CE=CF∵∠B+∠ADC=180°,∠FDC+∠ADC=180°∴∠B=∠FDCE在△CEB和△CFD中,CE=CF,∠CEB=∠CFD=90°, ∠B=∠FDCE∴△CEB≌△CFD∴BE=DF∴ AE=AD+BE思路点拨:图中有角平分线,可向两边作垂线。
全等三角形练习题(含答案)

1.下列图形中,和所给图形全等的图形是A.B.C.D.2.下列说法正确的有①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.A.1个B.2个C.3个D.4个3.如图,ΔABC≌ΔCDA,∠BAC=∠DCA,则BC的对应边是A.CD B.CA C.DA D.AB4.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为A.2 B.3 C.5 D.2.55.如图,△ABC≌△AED,∠C=40°,∠EAC=30°,∠B=30°,则∠EAD=A.30°B.70°C.40°D.110°6.如图,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是__________,图中相等的线段有__________.7.如图,△ABE≌△ACD,AE=5 cm,∠A=60°,∠B=30°,则∠ADC=__________°,AD=__________cm.8.如图,已知,△ABC≌△BAE,∠ABE=60°,∠E=92°,则∠ABC的度数为__________度.9.如图,△ACB与△BDA全等,AC与BD对应,BC与AD对应,写出其余的对应边和对应角.10.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.11.如图,△ABC≌△CDA,且AD=CB,下列结论错误的是A.∠B=∠D B.∠CAB=∠ACD C.BC=CD D.AC=CA12.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是A.PO B.PQ C.MO D.MQ13.已知△ABC≌△DEF,若AB=5,BC=6,AC=8,则△DEF的周长是__________.14.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,指出其他的对应边和对应角.15.如图,ΔABC≌ΔDEF,∠A=25°,∠B=65°,BF=3 cm,求∠DFE的度数和EC的长.16.(2016•厦门)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=A.∠B B.∠A C.∠EMF D.∠AFB4.【答案】B【解析】∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC−AE=5−2=3,故选B.5.【答案】D【解析】∵△ABC≌△AED,∴∠C=40°,∠B=30°,∴∠EAD=∠BAC=180°-∠B-∠C=110°,故选D.6.【答案】∠OBA;OA=OC,OB=OD,AB=CD【解析】∵△AOB≌△COD,∴∠D=∠OBA,OA=OC,OB=OD,AB=CD.故答案为:∠OBA;OA=OC,OB=OD,AB=CD.7.【答案】90;5【解析】在三角形ABE中,∠A=60°,∠B=30°,所以,∠AEB=180-∠A-∠B=90°.因为,△ABE≌△ACD,所以AD=AE=5 cm,∠ADC=∠AEB=90°.故答案为:90;5.11.【答案】C【解析】∵△ABC≌△CDA,∴∠CAB=∠ACD,CA=AC,∠D=∠B,故A、B、D正确,不符合题意,BC不一定等于CD,C错误,符合题意,故选C.12.【答案】B,则只需测出PQ的长即可求出M、N之间的距离.故选B.【解析】∵△PQO≌△NMO,∴PQ MN13.【答案】19【解析】∵AB=5,BC=6,AC=8,∴△ABC的周长=AB+BC+AC=5+6+8=19.∵△ABC≌△DEF,∴△DEF的周长等于△ABC的周长,∴△DEF的周长是19.故答案为:19.14.【解析】∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴点A的对应点是A,点B的对应点是C,点E的对应点是D,∴∠BAE与∠CAD是对应角,AB与AC,BE与CD,AD与AE是对应边.15.【解析】△ABC中,∠A=25°,∠B=65°,∴∠BCA=180°-∠A-∠B=180°-25°-65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3 cm,∴∠DFE=90°,EC=3 cm.16.【答案】A【解析】∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,故选A.。
(完整版)全等三角形练习题及答案

全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
初中数学:《全等三角形》测试题(含答案)

初中数学:《全等三角形》测试题(含答案)一、选择题(共7小题,每小题3分,满分21分)1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为()A.70°B.50°C.60°D.30°2.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2 B.2.5 C.3 D.3.53.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②4.如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD5.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠ED A=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°6.如图,射线OC是∠AOB的角平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A.DQ>5 B.DQ<5 C.DQ≥5 D.DQ≤57.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)8.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F 或AB∥EF 时,就可得到△ABC≌△FED.(只需填写一个即可)9.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为 5 米.10.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是 6 .11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 20 度.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.13.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= 6或12 .三、解答题(共5小题,满分0分)14.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.15.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN ⊥CD于N,求证:PM=PN.16.如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.17.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.18.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.《全等三角形》参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)1.如图,△ABC≌△DEC,∠A=70°,∠ACB=60°,则∠E的度数为()A.70°B.50°C.60°D.30°【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠B的度数,根据全等三角形的性质得到答案.【解答】解:∵∠A=70°,∠ACB=60°,∴∠B=50°,∵△ABC≌△DEC,∴∠E=∠B=50°,故选:B.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.2.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.2 B.2.5 C.3 D.3.5【考点】全等三角形的性质.【分析】根据全等三角形的性质求出AC=5,AE=2,进而得出CE的长.【解答】解:∵△ABC≌△DAE,∴AC=DE=5,BC=AE=2,∴CE=5﹣2=3.故选C.【点评】本题考查了全等三角形的性质的应用,关键是求出AC=5,AE=2,主要培养学生的分析问题和解决问题的能力.3.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】根据全等三角形的判定方法解答即可.【解答】解:带③去可以利用“角边角”得到全等的三角形.故选C.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD【考点】角平分线的性质.【分析】根据已知条件由角平分线的性质可得结论CD=DE,由此又可得出很多结论,对各选项逐个验证,证明.【解答】解:CD=DE,∴BD+DE=BD+CD=BC;又有AD=AD,可证△AED≌△ACD∴∠ADE=∠ADC即AD平分∠EDC;在△ACD中,CD+AC>AD所以ED+AC>AD.综上只有B选项无法证明,B要成立除非∠B=30°,题干没有此条件,B错误,故选B.【点评】本题主要考查平分线的性质,由已知证明△AED≌△ACD是解决的关键.5.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠B和∠C,根据三角形内角和定理求出∠BAC,根据角平分线定义求出即可.【解答】解:∵△ABC≌△EDF,∠EDA=20°,∠F=60°,∴∠B=∠EDF=20°,∠F=∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=100°,∵AD是∠BAC的平分线,∴∠DAC=∠BAC=50°,故选A.【点评】本题考查了全等三角形的性质,三角形内角和定理,角平分线定义的应用,能根据全等三角形的性质求出∠B和∠C是解此题的关键.6.如图,射线OC是∠AOB的角平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A.DQ>5 B.DQ<5 C.DQ≥5 D.DQ≤5【考点】角平分线的性质;垂线段最短.【分析】过点D作DE⊥OB于E,根据角平分线上的点到角的两边距离相等可得DP=DE,再根据垂线段最短解答.【解答】解:如图,过点D作DE⊥OB于E,∵OC是∠AOB的角平分线,DP⊥OA,∴DP=DE,由垂线段最短可得DQ≥DE,∵DP=5,∴DQ≥5.故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.7.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题(共6小题,每小题3分,满分18分)8.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F 或AB∥EF 时,就可得到△ABC≌△FED.(只需填写一个即可)【考点】全等三角形的判定.【专题】证明题.【分析】要得到△ABC≌△FED,现有条件为两边分别对应相等,找到全等已经具备的条件,根据全等的判定方法选择另一条件即可得等答案.【解答】解:AD=FC⇒AC=FD,又AB=EF,加BC=DE就可以用SSS判定△ABC≌△FED;加∠A=∠F或AB∥EF就可以用SAS判定△ABC≌△FED.故答案为:BC=ED或∠A=∠F或AB∥EF.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.9.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为 5 米.【考点】全等三角形的应用.【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB 即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,在△OA′B′和△OAB中,∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5m,故答案为:5.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OA′B′≌△OAB是解题的关键.10.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,则D到边AB的距离是 6 .【考点】角平分线的性质.【分析】首先由线段的比求得CD=6,然后利用角平分线的性质可得D到边AB的距离是.【解答】解:∵BC=15,BD:DC=3:2∴CD=6∵∠C=90°AD平分∠BAC∴D到边AB的距离=CD=6.故答案为:6.【点评】此题主要考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.做题时要由已知中线段的比求得线段的长,这是解答本题的关键.11.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2= 20 度.【考点】全等三角形的性质.【分析】△ABE≌△ACF得到∠EAB=∠FAC从而∠1=∠2,这样求∠2就可以转化为求∠1,在△AEM中可以利用三角形的内角和定理就可以求出.【解答】解:∵∠AME=∠CMD=70°∴在△AEM中∠1=180﹣90﹣70=20°∵△ABE≌△ACF,∴∠EAB=∠FAC,即∠1+∠CAB=∠2+∠CAB,∴∠2=∠1=20°.故填20.【点评】本题主要考查了全等三角形的性质,全等三角形的对应角相等,是需要识记的内容;做题时要认真观察图形,找出各角之间的位置关系,这也是比较重要的.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.【考点】全等三角形的判定;角平分线的性质.【分析】由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和Rt △AOP≌Rt△BOP.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在Rt △AEP与Rt△BFP中,,∴Rt △AEP≌Rt△BFP,∴图中有3对全等三角形,故答案为:3.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.13.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= 6或12 .【考点】全等三角形的性质.【专题】动点型.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=6,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC=12,P、C重合.【解答】解:①当AP=CB时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=6;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=12,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,AP=6或12.故答案为:6或12.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.三、解答题(共5小题,满分0分)14.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【专题】证明题.【分析】(1)由SAS容易证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出对应角相等∠B=∠DEF,即可得出结论.【解答】证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键.15.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN ⊥CD于N,求证:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD 和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【解答】证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.16.如图,O为码头,A、B两个灯塔与码头O的距离相等,OA,OB为海岸线,一轮船P离开码头,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A、B的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.【考点】作图—应用与设计作图.【分析】(1)直接利用角平分线的作法得出符合题意的图形;(2)利用全等三角形的判定与性质得出答案.【解答】解:(1)如图所示:OC即为所求.(2)没有偏离预定航行,理由如下:在△AOP与△BOP中,,∴△AOP≌△BOP(SSS).∴∠AOC=∠BOC,即点C在∠AOB的平分线上.【点评】此题主要考查了应用设计与作图以及全等三角形的判定与性质,正确应用角平分线的性质是解题关键.17.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【考点】全等三角形的判定与性质.【专题】证明题;探究型.【分析】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【解答】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.【点评】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形是仔细观察,认真推敲方可.做题时,有时需要先猜后证.18.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】先过点P作PE⊥OA于点E,PF⊥OB于点F,构造全等三角形:Rt△PCE 和Rt△PDF,这两个三角形已具备两个条件:90°的角以及PE=PF,只需再证∠EPC=∠FPD,根据已知,两个角都等于90°减去∠CPF,那么三角形全等就可证.【解答】解:PC与PD相等.理由如下:过点P作PE⊥OA于点E,PF⊥OB于点F.∵OM平分∠AOB,点P在OM上,PE⊥OA,PF⊥OB,∴PE=PF(角平分线上的点到角两边的距离相等)又∵∠AOB=90°,∠PEO=∠PFO=90°,∴四边形OEPF为矩形,∴∠EPF=90°,∴∠EPC+∠CPF=90°,又∵∠CPD=90°,∴∠CPF+∠FPD=90°,∴∠EPC=∠FPD=90°﹣∠CPF.在△PCE与△PDF中,∵,∴△PCE≌△PDF(ASA),∴PC=PD.【点评】本题考查了角平分线的性质,以及四边形的内角和是360°、还有三角形全等的判定和性质等知识.正确作出辅助线是解答本题的关键.。
全等三角形习题精选(含答案)

全等三角形进步演习1.如图所示,△ABC ≌△ADE,BC 的延伸线过点∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 2.如图,△AOB 中,∠B=30°,将△AOB绕点O 到△A ′OB ′,边A ′B ′与边OB 交于点C (A ∠A ′CO的度数为若干?3.如图所示,在△ABC 中,∠A=90°,D.E 分离是△ADB ≌△EDB ≌△EDC,则∠C 的度数是若干?4.如图所示,把△ABC 绕点C 顺时针扭转35°C,A ′B ′交AC 于点D,若∠A ′DC=90°,则∠A=5.已知,如图所示,AB=AC,AD ⊥BC 于D,且AB+BD+AD=40cm,则AD 是若干?6.如图,Rt △ABC 中,∠BAC=90°,AB=AC,分离过点的垂线BC.CE,垂足分离为D.E,若BD=3,CE=2,7.如图,AD 是△ABC 的角等分线,DE ⊥AB,DF ⊥衔接EF,交AD 于G,AD 与EF 8.如图所示,在△ABC 中,AD 为∠⊥AC 于F,△ABC 的面积是28cm 2,AB=20cm,AC=8cm,求DE 的长.9.已知,如图:AB=AE,∠B=∠E,∠BAC=∠EAD,∠CAF=∠DAF,求证:AF ⊥CD10.如图,AD=BD,AD ⊥BC 于D,BE ⊥AC 于E,AD 与BE BH 与AC 相等吗?为什么?A B'CBB11.如图所示,已知,AD 为△ABC 的高,E 为ACF,且有BF=AC,FD=CD,求证:BE ⊥AC12.△DAC.△EBC 均是等边三角形,AF.BD求证:(1)AE=BD (2)CM=CN(4)MN ∥BC13.已知:如图1,点C 为线段AB 上一点,△ACM.△CBN 都是等边三角形,AN 交MC 于点E,BM 交CN于点F(1) 求证:AN=BM(2)求证:△CEF 为等边三角形14.如图所示,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH 等分∠AHD;④∠AHC=60°;⑤△BFG 是等边三角形;⑥FG ∥AD,个中准确的有( )A .3个个15.已知:F 在BD 上的延伸线上 16.如图:在△ABC 中,BE.CF 分离是AC.AB 双方上的高,在BE 上截取BD=AC,在CF 的延伸线上截取 求证:(1)AD=AG(2)AD 与AG 的地位关系若何17.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE求证:AF=AD-CFAA BB18.如图所示,已知△ABC 中,AB=AC,D 是CB 延伸线上一点, ∠ADB=60°,E 是AD 上一点,且DE=DB,19.如图所示,已知在△AEC 中,∠E=90°⊥AC,垂足为F,DB=DC,求证:BE=CF20.已知如图:AB=DE,直线AE.BD 订交于°,AF ∥DE,交BD 于F,求证:CF=CD21.如图,OC 是∠AOB 的等分线⊥OA 于D,PE ⊥OB 于E,F 是OC上一点,衔接DF 和EF,求证:DF=EF22.已知:如图,BF ⊥AC 于点F,CE ⊥AB 于点E,且BD=CD,求证:(1)△BDE ≌△CDF (2) 点D 在∠A 的等分线上23.如图,已知AB ∥CD,O 是∠ACD 与∠BAC 的等分线的交点,OE ⊥AC 于E,且OE=2,则AB 与CD 24.如图,过线段AB BN,按下列请求绘图并答复:画∠MAB.∠NBA 的等分线交于E (1)∠AEB 是什么角?(2)过点E 作一向线交AM 于D,交BN 于C,不雅察线段DE.CE,你有何发明?(3)无论DC 的两头点在AM.BN 若何移动,只要DC 经由点E,①AD+BC=AB;②.25.如图,△ABC 长分离是20.30.40,其三条角等分线将△ABC 分为三个三角形,则S △BCC26.正方形ABCD 中,AC.BD 交于O,∠EOF=90°,已知AE=3,CF=4,则S △BEF 为若干?27.如图,在Rt △ABC 中,∠ACB=45°,∠BAC=90°,AB=AC,点D 是AB 的中点,AF ⊥CD 于H,交BC 于F,BE ∥AC 交AF 的延伸线于E,求证:BC 垂直且等分DE28.在△ABC 中,∠ACB=90°,AC=BC,直线MN 经由点C,且AD ⊥MN 于D,BE ⊥MN 于E(1)当直线MN 绕点C 扭转到图①的地位时,求证:DE=AD+BE (2)当直线MN 绕点C 扭转到图②的地位时,求证:DE=AD-BE (3)当直线MN 绕点,试问DE.AD.BE 具有1 解:∵△ABC ≌△∴∠D=∠B=50° ∵∠ACB=105°∴∠ACE=75°∵∠CAD=10° ∠ACE=75°∴∠EFA=∠CAD+∠ACE=85°(三角形的一个外角等于和它不相邻的两个内角的和)同理可得∠DEF=∠EFA-∠D=85°-50°=35°2 依据扭改变换的性质可得∠B′=∠B,因为△AOB 绕点O 顺时针扭转52°,所以∠BOB′=52°,而∠A'CO 是△B′OC 的外角,所以∠A′CO=∠B′+∠BOB′,然子女入数据进行盘算即可得解. 解答:解:∵△A′OB′是由△AOB 绕点O 顺时针扭转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB 绕点O 顺时针扭转52°,∴∠BOB′=52°,∵∠A′CO 是△B′OC 的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D .3 全等三角形的性质;对顶角.邻补角;三角形内角和定理.AA剖析:依据全等三角形的性质得出∠A=∠DEB=∠DEC,∠ADB=∠BDE=∠EDC,依据邻补角界说求出∠DEC.∠EDC的度数,依据三角形的内角和定理求出即可.解答:解:∵△ADB≌△EDB≌△EDC,∴∠A=∠DEB=∠DEC,∠ADB=∠BDE=∠EDC,∵∠DEB+∠DEC=180°,∠ADB+∠BDE+EDC=180°,∴∠DEC=90°,∠EDC=60°,∴∠C=180°-∠DEC-∠EDC,=180°-90°-60°=30°.4剖析:依据扭转的性质,可得知∠ACA′=35°,从而求得∠A′的度数,又因为∠A的对应角是∠A′,即可求出∠A的度数.解答:解:∵三角形△ABC绕着点C时针扭转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.点评:此题考核了扭转地性质;图形的扭转是图形上的每一点在平面上绕某个固定点扭转固定角度的地位移动.个中对应点到扭转中间的距离相等,扭转前后图形的大小和外形没有改变.解题的症结是准确肯定对应角.5因为AB=AC 三角形ABC是等腰三角形所以 AB+AC+BC=2AB+BC=50BC=50-2AB=2(25-AB)又因为AD垂直于BC于D,所以 BC=2BDBD=25-ABAB+BD+AD=AB+25-AB+AD=AD+25=40AD=40-25=15cm6 解:∵BD⊥DE,CE⊥DE∴∠D=∠E∵∠BAD+∠BAC+∠CAE=180°又∵∠BAC=90°,∴∠BAD+∠CAE=90°∵在Rt△ABD中,∠ABD+∠BAD=90°∴∠ABD=∠CAE∵在△ABD与△CAE中{∠ABD=∠CAE∠D=∠EAB=AC∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE∵DE=AD+AE∵BD=3,CE=2∴DE=57证实:∵AD是∠BAC的等分线∴∠EAD=∠FAD又∵DE⊥AB,DF⊥AC∴∠AED=∠AFD=90°边AD公共∴Rt△AED≌Rt△AFD(AAS)∴AE=AF即△AEF为等腰三角形而AD是等腰三角形AEF顶角的等分线∴AD⊥底边EF(等腰三角形的顶角的等分线,底边上的中线,底边上的高的重合(简写成“三线合一”)8 AD等分∠BAC,则∠EAD=∠FAD,∠EDA=∠DFA=90度,AD=AD所以△AED≌△AFDDE=DFS△ABC=S△AED+S△AFD28=1/2(AB*DE+AC*DF)=1/2(20*DE+8*DE)DE=29AB=AE,∠B=∠E,∠BAC=∠EAD则△ABC≌△AEDAC=AD△ACD是等腰三角形∠CAF=∠DAFAF等分∠CAD则AF⊥CD10 解:∵AD⊥BC∴∠ADB=∠ADC=90∴∠CAD+∠C=90∵BE⊥AC∴∠BEC=∠ADB=90∴∠CBE+∠C=90∴∠CAD=∠CBE∵AD=BD∴△BDH≌△ADC (ASA)11 解:(1)证实:∵AD⊥BC(已知),∴∠BDA=∠ADC=90°(垂直界说),∴∠1+∠2=90°(直角三角形两锐角互余).在Rt△BDF和Rt△ADC中,∴Rt△BDF≌Rt△ADC().∴∠2=∠C(全等三角形的对应角相等).∵∠1+∠2=90°(已证),所以∠1+∠C=90°.∵∠1+∠C+∠BEC=180°(三角形内角和等于180°),∴∠BEC=90°.∴BE⊥AC(垂直界说);12 证实:(1)∵△DAC.△EBC均是等边三角形,∴AC=DC,EC=BC,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,AC=DC ∠ACE=∠DCB EC=BC∴△ACE≌△DCB(SAS).∴AE=BD(2)由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CDN.∵△DAC.△EBC均是等边三角形,∴AC=DC,∠ACM=∠BCE=60°.又点A.C.B在统一条直线上,∴∠DCE=180°-∠ACD-∠BCE=180°-60°-60°=60°,即∠DCN=60°.∴∠ACM=∠DCN.在△ACM和△DCN中,∠CAM=∠CDN AC=DC ∠ACM=∠DCN∴△ACM≌△DCN(ASA).∴CM=CN.(3)由(2)可知CM=CN,∠DCN=60°∴△CMN为等边三角形(4)由(3)知∠CMN=∠CNM=∠DCN=60°∴∠CMN+∠MCB=180°∴MN//BC13剖析:(1)由等边三角形可得其对应线段相等,对应角相等,进而可由SAS得到△CAN≌△MCB,结论得证;(2)由(1)中的全等可得∠CAN=∠CMB,进而得出∠MCF=∠ACE,由ASA得出△CAE≌△CMF,即CE=CF,又ECF=60°,所以△CEF为等边三角形.解答:证实:(1)∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,在△CAN和△MCB中,AC=MC,∠ACN=∠MCB,NC=BC,∴△CAN≌△MCB(SAS),∴AN=BM.(2)∵△CAN≌△CMB,∴∠CAN=∠CMB,又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°,∴∠MCF=∠ACE,在△CAE和△CMF中,∠CAE=∠CMF,CA=CM,∠ACE=∠MCF,∴△CAE≌△CMF(ASA),∴CE=CF,∴△CEF为等腰三角形,又∵∠ECF=60°,∴△CEF为等边三角形.点评:本题重要考核了全等三角形的剖断及性质以及等边三角形的剖断问题,可以或许控制并闇练应用.14考点:等边三角形的性质;全等三角形的剖断与性质;扭转的性质.剖析:由题中前提可得△ABE≌△CBD,得出对应边.对应角相等,进而得出△BGD≌△BFE,△ABF≌△CGB,再由边角关系即可求解题中结论是否准确,进而可得出结论.解答:解:∵△ABC与△BDE为等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABE=∠CBD,即AB=BC,BD=BE,∠ABE=∠CBD∴△ABE≌△CBD,∴AE=CD,∠BDC=∠AEB,又∵∠DBG=∠FBE=60°,∴△BGD≌△BFE,∴BG=BF,∠BFG=∠BGF=60°,∴△BFG是等边三角形,∴FG∥AD,∵BF=BG,AB=BC,∠ABF=∠CBG=60°,∴△ABF≌△CGB,∴∠BAF=∠BCG,∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,∴∠AHC=60°,∵∠FHG+∠FBG=120°+60°=180°,∴B.G.H.F四点共圆,∵FB=GB,∴∠FHB=∠GHB,∴BH等分∠GHF,∴题中①②③④⑤⑥都准确.故选D.点评:本题重要考核了等边三角形的性质及全等三角形的剖断及性质问题,可以或许闇练控制.15考点:全等三角形的剖断与性质.剖析:细心剖析题意,若能证实△ABF≌△GCA,则可得AG=AF.在△ABF和△GCA中,有BF=AC.CG=AB这两组边相等,这两组边的夹角是∠ABD和∠ACG,从已知前提中可推出∠ABD=∠ACG.在Rt△AGE中,∠G+∠GAE=90°,而∠G=∠BAF,则可得出∠GAF=90°,即AG⊥AF.解答:解:AG=AF,AG⊥AF.∵BD.CE分离是△ABC的边AC,AB上的高.∴∠ADB=∠AEC=90°∴∠ABD=90°-∠BAD,∠ACG=90°-∠DAB,∴∠ABD=∠ACG在△ABF和△GCA中 BF=AC ∠ABD=∠ACG AB=CG .∴△ABF≌△GCA(SAS)∴AG=AF∠G=∠BAF又∠G+∠GAE=90度.∴∠BAF+∠GAE=90度.∴∠GAF=90°∴AG⊥AF.点评:本题考核了全等三角形的剖断和性质;要肄业生应用全等三角形的剖断前提及等量关系灵巧解题,考核学生对几何常识的懂得和控制,应用所学常识,造就学生逻辑推理才能,规模较广.16 1.证实:∵BE⊥AC∴∠AEB=90∴∠ABE+∠BAC=90∵CF⊥AB∴∠AFC=∠AFG=90∴∠ACF+∠BAC=90,∠G+∠BAG=90∴∠ABE=∠ACF∵BD=AC,CG=AB∴△ABD≌△GCA (SAS)∴AG=AD2.AG⊥AD证实∵△ABD≌△GCA∴∠BAD=∠G∴∠GAD=∠BAD+∠BAG=∠G+∠BAG=90∴AG⊥AD17过E做EG⊥AF于G,衔接EF∵ABCD是正方形∴∠D=∠C=90°AD=DC∵∠DAE=∠FAE,ED⊥AD,EG⊥AF∴DE=EGAD=AG∵E是DC的中点∴DE=EC=EG∵EF=EF∴Rt△EFG≌Rt△ECF∴GF=CF∴AF=AG+GF=AD+CF18因为:角EDB=60°DE=DB所以:△EDB是等边三角形,DE=DB=EB过A作BC的垂线交BC于F因为:△ABC是等腰三角形所以:BF=CF,2BF=BC又:角DAF=30°所以:AD=2DF又:DF=DB+BF所以:AD=2(DB+BF)=2DB+2BF=【2DB+BC】(AE+ED)=2DB+BC,个中ED=DB所以:AE=DB+BC,AE=BE+BC19填补:B是FD延伸线上一点;ED=DF(角等分线到双方上的距离相等);BD=CD;角EDB=FDC(对顶角);则三角形EDB全等CDF;则BE=CF;或者填补:B在AE边上;ED=DF(角等分线到双方上的距离相等);DB=DC则两直角三角形EDB全等CDF(HL)即BE=CF20解:∵AF//DE∴∠D=∠AFC∵∠B+∠D=180°,,∠AFC+∠AFB=180°∴∠B=∠AFB∴AB=AF=DE△AFC和△EDC中:∠B=∠AFB,∠ACF=∠ECD(对顶角),AF=DE∴△AFC≌△EDC∴CF=CD21 证实:∵点P在∠AOB的角等分线OC上,PE⊥OB,PD⊥AO,∴PD=PE,∠DOP=∠EOP,∠PDO=∠PEO=90°,∴∠DPF=∠EPF,在△DPF和△EPF中PD=PE∠DPF=∠EPFPF=PF (SAS),∴△DPF≌△EPF∴DF=EF.22 考点:全等三角形的剖断与性质.专题:证实题.剖析:(1)依据全等三角形的剖断定理ASA证得△BED≌△CFD;(2)衔接AD.应用(1)中的△BED≌△CFD,推知全等三角形的对应边ED=FD.因为角等分线上的点到角的双方的距离相等,所以点D在∠A的等分线上.解答:证实:(1)∵BF⊥AC,CE⊥AB,∠BDE=∠CDF(对顶角相等),∴∠B=∠C(等角的余角相等);在Rt△BED和Rt△CFD中,∠B=∠CBD=CD(已知)∠BDE=∠CDF,∴△BED≌△CFD(ASA);(2)衔接AD.由(1)知,△BED≌△CFD,∴ED=FD(全等三角形的对应边相等),∴AD是∠EAF的角等分线,即点D在∠A的等分线上.点评:本题考核了全等三角形的剖断与性质.经常应用的剖断办法有:ASA,AAS,SAS,SSS,HL等,做题时需灵巧应用.23考点:角等分线的性质.剖析:请求二者的距离,起首要作出二者的距离,过点O作FG⊥AB,可以得到FG⊥CD,依据角等分线的性质可得,OE=OF=OG,即可求得AB与CD之间的距离.解答:解:过点O作FG⊥AB,∵AB∥CD,∴∠BFG+∠FGD=180°,∵∠BFG=90°,∴∠FGD=90°,∴FG⊥CD,∴FG就是AB与CD之间的距离.∵O为∠BAC,∠ACD等分线的交点,OE⊥AC 交AC于E,∴OE=OF=OG(角等分线上的点,到角双方距离相等),∴AB与CD之间的距离等于2•OE=4.故答案为:4.点评:本题重要考核角等分线上的点到角双方的距离相等的性质,作出AB与CD之间的距离是准确解决本题的症结.24考点:梯形中位线定理;平行线的性质;三角形内角和定理;等腰三角形的性质.专题:作图题;探讨型.剖析:(1)由两直线平行同旁内角互补,及角等分线的性质不可贵出∠1+∠3=90°,再由三角形内角和等于180°,即可得出∠AEB 是直角的结论;(2)过E点作帮助线EF使其平行于AM,由平行线的性质可得出各角之间的关系,进一步求出边之间的关系;(3)由(2)中得出的结论可知EF为梯形ABCD的中位线,可知无论DC的两头点在AM.BN若何移动,只要DC经由点E,AD+BC的值总为必定值.解答:解:(1)∵AM∥BN,∴∠MAB+∠ABN=180°,又AE,BE分离为∠MAB.∠NBA的等分线,∴∠1+∠3=12(∠MAB+∠ABN)=90°,∴∠AEB=180°-∠1-∠3=90°,即∠AEB为直角;(2)过E点作帮助线EF使其平行于AM,如图则EF∥AD∥BC,∴∠AEF=∠4,∠BEF=∠2,∵∠3=∠4,∠1=∠2,∴∠AEF=∠3,∠BEF=∠1,∴AF=FE=FB,∴F为AB的中点,又EF∥AD∥BC,依据平行线等分线段定理得到E为DC中点,∴ED=EC;(3)由(2)中结论可知,无论DC的两头点在AM.BN若何移动,只要DC经由点E,总知足EF为梯形ABCD中位线的前提,所以总有AD+BC=2EF=AB.点评:本题是盘算与作图相联合的摸索.对学生应用作图对象的才能,以及应用直角三角形.等腰三角形性质,三角形内角和定理,及梯形中位线等基本常识解决问题的才能都有较高的请求.25如图,△ABC的三边AB,BC,CA长分离是20,30,40,其三条角等分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5考点:角等分线的性质.专题:数形联合.剖析:应用角等分线上的一点到角双方的距离相等的性质,可知三个三角形高相等,底分离是20,30,40,所以面积之比就是2:3:4.解答:解:应用同高不合底的三角形的面积之比就是底之比可知选C.故选C.点评:本题重要考核了角等分线上的一点到双方的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式异常重要的.26解:正方形ABCD∵AB=BC,AO=BO=CO,∠ABC=∠AOB=∠COB=90,∠ABO=∠BCO =45∴∠BOF+∠COF=90∵∠EOF=90∴∠BOF+∠BOE=90∴∠COF=∠BOE∴△BOE≌△COF (ASA)∴BE=CF∵CF=4∴BE=4∵AE=3∴AB=AE+BE=3+4=7∴BF=BC-CF=7-4=3∴S△BEF=BE×BF/2=4×3/2=627考点:线段垂直等分线的性质;全等三角形的剖断与性质.专题:证实题.剖析:证实出△DBP≌△EBP,即可证实BC垂直且等分DE.解答:证实:在△ADC中,∠DAH+∠ADH=90°,∠ACH+∠ADH=90°,∴∠DAH=∠DCA,∵∠BAC=90°,BE∥AC,∴∠CAD=∠ABE=90°.又∵AB=CA,∴在△ABE与△CAD中,∠DAH=∠DCA∠CAD=∠ABEAB=AC∴△ABE≌△CAD(ASA),∴AD=BE,又∵AD=BD,∴BD=BE,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,故∠ABC=45°.∵BE∥AC,∴∠EBD=90°,∠EBF=90°-45°=45°,∴△DBP≌△EBP(SAS),∴DP=EP,即可得出BC垂直且等分DE.点评:此题症结在于转化为证实出△DBP≌△EBP.经由过程应用图中所给信息,证实出两三角形类似,而证实类似可以经由过程证实角相等和线段相等来实现.28 1)证实:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB,∴Rt△ADC≌Rt△CEB(AAS),∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证实:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE;(3)DE=BE-AD.证实的办法与(2)雷同已赞成9| 评论(2)。
全等三角形练习题含答案

全等三角形练习题含答案全等三角形练题一、选择题:1、以两条边长为10和3及另一条边组成边长都是整数的三角形一共有()。
A.3个 B.4个 C.5个 D.无数多个2、若一个三角形的一个角等于其它两个角的差,则这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都有可能3、具备下列条件的两个三角形,全等的是()A.两个角分别相等,且有一边相等B.一边相等,且这边上的高也相等C.两边分别相等,且第三边上的中线也相等D.两边且其中一条对应边的对角对应相等4、等腰三角形中有一个角是50°,它的一条腰上的高与底边的夹角是()A.25° B.40° C.25°或40° D.大小无法确定5、一个三角形的一边为2,这边的中线为1,另两边之和为3+1,那么这个三角形的面积为()A.1 B.3/2 C.3 D.不能确定二、解答题:1、已知:如图,△ABC中,AB=AC,AD=BD,AC=DC求:∠B的度数2、已知:Rt△ABC中,∠BAC=90°,AD是BC边上的高,BF平分∠ABC,交AD于E。
求证:△AEF是等腰三角形3、已知:如图AB=CD,AC和BD的垂直平分线相交于O点。
求证:∠ABO=∠CDO4、已知:如图△ABC中,BC边中垂线DE交∠BAC的平分线于D,DM⊥AB于M,DN⊥AC于N。
求证:BM=CN5、已知:如图,△ABC中,∠ACB=90°,M为AB的中点,DM⊥AB于M,CD平分∠ACB,交AB于E求证:DE=DF6、在△ABC中,∠C=90°,AC=BC,AD=BD,PE⊥AC 于点E,PF⊥BC于点F。
求证:DE=DF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡西市第四中学2011—2012年度下学期初二数学导学案
第十八章 练习题
编制人:吴丹丹 复核人: 使用日期:2012.6.18 编号:39
◆【学习目标】
进一步利用三角形全等条件和判定来解决问题
◆【思维导航】
证明边或角相等,可以先通过两个三角形全等来证明两个边或角相等
一、选择题:
1、以两条边长为10和3及另一条边组成边长都是整数的三角形一共有( )。
A .3个
B .4个
C .5个
D .无数多个
2、若一个三角形的一个角等于其它两个角的差,则这个三角形一定是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .以上都有可能
3、具备下列条件的两个三角形,全等的是( )
A .两个角分别相等,且有一边相等
B .一边相等,且这边上的高也相等
C .两边分别相等,且第三边上的中线也相等
D .两边且其中一条对应边的对角对应相等
4、等腰三角形中有一个角是50︒,它的一条腰上的高与底边的夹角是( )
A .25︒
B .40︒
C .25︒或40︒
D .大小无法确定
5、一个三角形的一边为2,这边的中线为1,另两边之和为31+,那么这个三角形的面积为(
) A .1 B .3
2 C .
3 D .不能确定
二、解答题、
1已知:如图,∆ABC 中,AB =AC ,AD=BD ,AC=DC
求:∠B 的度数
2、已知:Rt ABC ∆中,∠BAC =90︒,AD 是BC 边上的高,BF 平分∠ABC ,交AD 于E 。
求证:∆AEF 是等腰三角形
3、已知:如图AB=CD ,AC 和BD 的垂直平分线相交于O 点。
求证:∠ABO =∠CDO
4、已知:如图∆ABC 中,BC 边中垂线DE 交∠BAC 的平分线于D ,DM ⊥AB 于M ,DN ⊥AC 于N 。
求证BM =CN
5、已知:如图,∆ABC 中,∠ACB =90︒,M 为AB 的中点,DM ⊥AB 于M ,CD 平分∠ACB ,交AB 于E
求证:MD=AM
6、在△ABC 中,∠C=90°,AC=BC ,AD=BD ,PE ⊥AC 于点E , PF ⊥BC 于点F 。
求证:DE=DF
课后反思:
参考答案
一、选择题:
1、C
2、B
3、C
4、C
5、B
二、解答题
1 ∠B为36︒。
2、提示:根据等角的余角相等,可证∠AFE=∠BED,又因为∠BED=∠AEF,
所以∠AFE=∠AEF。
3、提示:连结OA,OC,证∆AOB≌∆COD
5、提示:连结DB、DC。
根据线段中垂线的性质,可得DB=DC,根据角平分线的性质,可得DM=DN,因此,可得∆。
∆≌Rt DNC
Rt DMB
6、提示:连结CM,作CF⊥AB于F。
根据直角三角形斜边中线等于斜边一半,可知CM=AM,所以,只需证CM=DM,再证∠D=∠MCE。
因为∠BCF=∠A=∠ACM,∠ACE=∠BCE
所以∠MCE=∠FCE 再证∠FCE=∠D
7、提示:连接CD 证明ΔAED与ΔCFD全等。