DOE PPT

合集下载

DOE实验设计ppt课件

DOE实验设计ppt课件

部分析因实验(正交实验)
由田口博士(Dr.Taguchi)田口玄一所提出的一套实验方法,它在工业上较具有实 际应用性,是以生产力和成本效益,而非困难的统计为依归。
参数
1
2
3
次数
1
1
1
1
2
1
2
2
3
2
1
2
4
2
2
1
L4(23)正交表 总共须做四次实验,最多只能配置三个因子
+
A
-
L4(23)正交表图解
实验设计降低开发成本
The DoE 的方法
Two factors at two levels
A low low high high middle
B low high low high middle
Result ? ? ? ? ?
• Centerpoint: 检测弯曲相互作用的存在 • Replicated centerpoint: 评估系统噪音
品质源于设计里的工艺空间
Characterized space
特征空间
Design space
设计空间
Operating space
操作空间
在设计空间内的操作不被监管机构认作是工艺改变
5. AKTA avant 25系统
目前金斯瑞所使用的系统。 GE Healthcare历经数年研制,对欧美及亚洲多家知名生物制药公司如 GSK, Amgen, Novo nordisk, Lilly, Wyeth等公司进行调研,开发出的新一代适 合现代工艺开发的AKTA设备,所以AKTATM avant 25 最突出的优点就是 Design of Experiment (DOE)实验条件智能优化,和UNICORN6.0软件配合堪 称是现代纯化工艺优化的最佳搭档。

DOE(试验设计)培训课件

DOE(试验设计)培训课件

随机性
确保每个试验单元被选 中的机会相同。
重复性
相同条件下进
试验结果能够反映实际 情况,具有实际意义。
可操作性
试验过程易于实施和控 制。
03
试验设计方法
完全随机设计
总结词
完全随机设计是一种简单易行的试验设计方法,适用于处理单个因素或多个因 素对试验结果的影响。
THANKS
谢谢您的观看
佳条件以达到预期的结果。
DOE旨在提高实验效率和降低 成本,同时减少实验次数和缩短
研发周期。
DOE的目的和意义
确定关键因素和最佳条件
通过DOE,可以确定对产品或过程性 能有显著影响的因素,并确定最佳条 件以获得最佳性能。
提高产品或过程性能
降低成本和减少变异
DOE有助于减少实验次数和缩短研发 周期,从而降低成本。此外,它还可 以减少产品或过程中的变异,提高可 重复性和可靠性。
性和完整性。
06
实际应用案例分析
案例一:提高某产品的良品率
总结词
通过DOE方法,提高产品良品率
详细描述
针对某产品良品率低的问题,采用 DOE方法进行试验设计,通过调整工 艺参数、优化原料配方等手段,提高 产品良品率,降低生产成本。
案例二:优化某生产过程的工艺参数
总结词
通过DOE方法,优化生产过程工艺参数
JMP
强大的统计分析功能和可视化工具
VS
JMP是SAS公司开发的一款强大的统 计分析软件,它提供了丰富的统计方 法和可视化工具,可以帮助用户进行 各种复杂的数据分析和试验设计。 JMP具有直观的用户界面和易于使用 的操作方式,使得用户可以轻松地进 行数据处理和分析。同时,JMP还支 持多种数据格式,可以与其他软件进 行数据交换和共享。

《doe试验设计讲义》课件

《doe试验设计讲义》课件

ABCD
Hale Waihona Puke 重复性原则在相同条件下进行多次试验,以提高结果的稳定 性和可靠性。
盲法原则
在试验过程中,尽量减少人为因素对试验结果的 影响,保证结果的客观性和准确性。
02
试验设计的基本方法
完全随机化设计
总结词
将试验单位随机分配到不同处理组,每个处理组有相同数量的试验单位。
详细描述
完全随机化设计是一种简单而常用的试验设计方法,其基本思想是将试验单位随机分配到不同的处理 组中,每个处理组有相同数量的试验单位。这种方法适用于处理组数较少且试验单位之间差异较小的 试验。
提高研究效率
科学的试验设计能够提高研究的效率,减少 不必要的浪费和重复。
保证研究质量
合理的试验设计能够保证研究的质量,减少 误差和偏见对结果的影响。
试验设计的基本原则
随机性原则
确保每个样本都有同等的机会被选中,避免主观 偏见对试验结果的影响。
对照原则
设置对照组,以排除其他因素的干扰,明确研究 因素的作用。
05
试验设计的发展趋势和 展望
基于计算机的试验设计
自动化试验
利用计算机技术实现试验过程的自动化,提高 试验效率。
模拟与仿真
通过计算机模拟和仿真试验,减少实际试验的 次数和成本。
数据处理与统计分析
利用计算机进行数据处理、统计分析和可视化,提高数据利用效率和准确性。
基于人工智能的试验设计
1 2
机器学习与优化算法
通过试验设计,探索农业可持续发展的路径和 方法,推动农业绿色发展,保护生态环境。
案例二:医学研究
总结词
验证新药的有效性和安全性
详细描述
通过试验设计,对新药的有效性和安全性进行 验证,为新药的研发和应用提供科学依据。

《doe实验设计》课件

《doe实验设计》课件

DOE实验设计的典型方案
1 单因素实验设计
通过只改变一个因素的水平,观察其对结果 的影响,常用于初步筛选和优化。
2 方阵实验设计
通过选择一组特定的因素水平组合,在较少 的实验次数内获得较为全面的结果,常用于 因素交互作用研究。
3 中心组合实验设计
在方阵实验设计的基础上加入中心点实验, 更好地评估因素对结果的线性和二次影响, 常用于响应曲面建模。
DOE实验设计能够系统性地 分析因素对结果的影响,帮 助提高实验效率和准确性。
适用于不同的研究问题
不同的实验设计方案可以适 用于不同的研究问题,灵活 应用有助于得到准确的研究 结论。
数据分析方法的选择
选择适合的数据分析方法是 根据实验设计方案和具体情 况来确定,确保结果的可信 度和解释性。
《DOE实验设计》PPT课 件
欢迎来到《DOE实验设计》的PPT课件。本课件将带您深入了解DOE实验设计 的概念、步骤、典型方案、数据分析方法以及实际应用案例。
什么是DOE实验设计?
DOE,即设计实验设计,是一种用于研究和优化工艺或产品的实验方法。它 通过系统性地变动和控制因素来分析其对结果的影响,以获得最佳解决方 案。
实际应用案例
水泥掺合料最佳配比
通过DOE实验设计,确定水泥掺 合料的最佳配比,提高混凝土强 度和性能。
电影票房预测
利用DOE实验设计和回归分析, 分析影响电影票房的因素,预测 和优化票房收入。
电池寿命优化
通过DOE实验设计,研究电池寿 命与因素之间的关系,优化电池 设计和制造过程。
总结
提高实验效率和准确性
步骤3:进行实验
根据设计方案,进行实际实验,记录相 关数据和观察结果。
因素的分类

《DOE试验计划法》课件

《DOE试验计划法》课件
举例说明
02
CHAPTER
DOE试验计划法的实施步骤
确定试验要解决的问题和目标,确保试验计划与实际需求相符合。
明确试验目的
为确保试验效果可衡量,需要设定明确的度量指标,以便评估试验结果。
设定可度量指标
根据试验目标,设计多种可能的试验方案,并预测可能的结果。
为每个试验方案制定详细的时间表,包括试验准备、执行和数据收集等阶段。
建立完善的数据管理制度,确保数据的准确性和可靠性,为DOE试验计划法的结果提供可靠依据。
03
02
01
04
CHAPTER
DOE试验计划法在实践中的应用案例
VS
提升产品质量,减少质量缺陷
详细描述
在质量改进过程中,通过DOE试验计划法对质量管理体系进行试验和分析,确定最佳的质量控制参数和流程,从而提升产品质量,减少质量缺陷。
预测性
DOE试验计划法可以帮助优化产品或过程,提高其性能和效率,降低成本。
优化性
通过DOE试验计划法,可以对产品或过程进行可靠性评估,确保其满足预期要求。
可靠性
DOE试验计划法需要大量的试验和数据分析,因此成本较高。
试验成本高
由于需要进行多次试验和数据分析,DOE试验计划法的试验周期较长。
试验周期长
解释
DOE试验计划法是一种统计方法,它使用试验设计技术来系统地确定和优化影响产品、过程或系统性能的因素。这种方法通过精心设计的试验来收集数据,并使用统计工具来分析和解释这些数据,以确定哪些因素对性能有显著影响,以及这些因素的影响程度。
目的:DOE试验计划法的目的是通过优化产品、过程或系统的性能来提高生产效率、降低成本、提高质量、减少变异和缩短研发周期。
持续改进

DOE实验设计 ppt课件

DOE实验设计 ppt课件

Page 8
AUO Proprietary & Confidential
DOE实验设计
實驗計畫法介紹 實驗的規劃
因子設計 田口設計與直交表 反應曲面設計
實驗的分析與結果解讀
ANOVA 田口輔助表 反應曲面法
實驗的再現性
Page 9
AUO Proprietary & Confidential
DOE实验设计
計量值:量測數值為連續量.
單一目標:ex.尺寸,電性,電壓,cell gap高度… 多重目標:需求不同,只要改變某一變數即可產生不同產 品.ex.經由三原色加入量的不同可做出不同顏色,此時對顏 色而言有無限多的目標
原則:
不要用「現象」來當特性值 能用計量數據,就不要用計數數據
Page 28
AUO Proprietary & Confidential
Y+
考慮因子本身的「誤差」,兩 水準間的差異最好 >6σ
Factor Settings
Δy
Page 32
Lo
B
BC AB
ABC
BC
important

C

AC



CA

AC

B 重要 or C 重要
Page 21
AUO Proprietary & Confidential
DOE实验设计 考慮所有效應(Full model)
只考慮主效應(Main effects model)
主效應+兩因子的交互作用 (Interaction model)
Introduction
AUO Proprietary & Confidential

《doe试验设计讲义》课件

《doe试验设计讲义》课件
《doe试验设计讲义》 PPT课件
本课件介绍了DOE试验设计的概念、重要性以及步骤和基本原则,同时还探讨 了DOE设计在不同类型的因子实验中的应用和常见的实验方法。此外,还讨论 了DOEs在产品优化中的作用和如何选择正确的设计方法。
I. 什么是DOE试验设计
介绍DOE试验设计的定义和原理,以及其在OE设计 方法
提供选择正确DOE设计方法的准则和决策流程,以帮助研究人员在实际应用中 做出合理的选择。
II. DOE设计的重要性
探讨为什么DOE设计在实验研究中至关重要,并介绍其在提高实验效率和减少 资源浪费方面的优势。
III. DOE的步骤和基本原则
详细解释DOE设计的步骤,包括确定目标、选择因子和水平、确定实验计划等,并介绍DOE设计中 的基本原则。
IV. 设计实验前的准备工作
介绍在进行DOE实验设计之前需要完成的准备工作,如对实验系统的了解、数据收集方法的确定 等。
V. 响应面法(RSM)的概念和 应用
介绍响应面法的基本概念和原理,并讨论其在DOE设计中的应用和优势。
VI. 设计三种不同类型的因子实 验
详细介绍完全随机设计、随机分组设计和区组设计这三种不同类型的因子实 验设计的特点和适用情况。
VII. 常见的DOE实验设计方法
概述常用的DOE实验设计方法,如二进制设计、Taguchi方法、韦伯设计等,并讨论其优缺点。

DOE(试验设计)培训课件

DOE(试验设计)培训课件

正交设计
利用正交表安排多因素多水平的 试验,寻找最优组合。
均匀设计
在一定范围内均匀选取试验点, 进行多因素多水平的试验,寻找 最优组合。
03
试验设计的应用
试验设计在产品研发中的应用
80%
确定产品性能指标
通过试验设计,确定产品的性能 指标,确保产品能够满足用户需 求。
100%
优化产品设计
试验设计可以帮助优化产品设计 ,提高产品的性能、可靠性和安 全性。
DOE的重要性
• 试验设计在生产或制造过程中具有非常重要的意义。通过试验设计,可以有效地确定影响产品或过程的关键因素,提高产品质量和生效率 。此外,试验设计还可以帮助企业优化资源配置,降低生产成本,提高市场竞争力。
DOE的发展历程
试验设计作为一种科学方法,最初起源于20世纪20年代的农业科 学研究。随着工业革命的推进,试验设计逐渐被应用于工业制造 领域。在20世纪60年代,美国通用电气公司成功应用试验设计方 法优化了其生产过程,取得了显著的经济效益。此后,试验设计 逐渐受到全球各行各业的关注和应用。
DOE(试验设计)培训课件
汇报人:
2023-12-05

CONTENCT

• DOE简介 • DOE基本原理 • 试验设计的应用 • DOE案例分析 • DOE实践建议 • 相关工具介绍
01
DOE简介
什么是DOE
• DOE(Design of Experiments)是试验设计的英文缩写,它是一种系统性的方法,用于确定和优化在生产或制造过程中影 响关键输出的因素。试验设计通过合理地选择试验因子和水平,以及科学地安排试验顺序,来揭示影响关键输出的因素, 并为优化关键输出提供依据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Design of Experiment 实验设计
Apply to Plastic Injection Molding Process
Good Year Electronic Mfg. Co., Ltd Internal
1
Design of Experiment 实验设计
What is DOE? - It is a method of testing and data analysis. - It is used to gain insight on how things work. - It is one of the most powerful Quality and Statistical Tools available in gaining knowledge in any situation. - It is based on the Scientific Method.
Critical Characteristic: Housing mounting Inside Diameter.
Question: What Inside Diameter should we have? Answer ID Spec: 0.5”+/-0.010”
Good Year Electronic Mfg. Co., Ltd Internal
200 200
400 400
0.504 0.488
0.512 0.497
0.004 0.002
0.002 0.001
Ave. ID at 200 psi = (0.504 + 0.488)/2 = 0.4960 Ave. ID at 400 psi = (0.512 + 0.497)/2 = 0.5045 (increase of 0.0085”) Ave. ID at 300 F = (0.504 + 0.512)/2 = 0.5080 Ave. ID at 500 F = (0.488 + 0.497)/2 = 0.4925 (decrease of 0.0155”) Changing the mold pressure from 200 to 400F will, on the average increase the mounting hole ID by 0.0085”. This is called the Main effect of pressure on the mounting hole ID.
Good Year Electronic Mfg. Co., Ltd Internal
6
Design of Experiment 实验设计
Approach 1: Not using DOE Testing One Parameter at a Time: Keep the Mold Temperature constant, do some testing with the Mold Pressure. Set the Mold Temperature at 300F, Mold some parts (30 shots) at 200 psi. Collect and measure molded parts Results: n=30; Mounting hole ID Average = 0.504” Mounting hole ID std. dev. = 0.004” Specs: 0.500”+/-0.010”or(0.490”, 0.510”) Question: What did we do? Cpl = 1.17, Cpu = 0.5, Cpk = 0.50 Ppm (low) = 22,700, ppm (high) = 50,000 Ppm out of spec = 50,000 We need to be closer to the target Std dev is large, we should make it smaller
Changing the mold temperature from 300 to 500 psi will, on the average, decrease the mounting hole ID by 0.0155”. This is called the Main effect of the mold temperature on the mounting hole ID.
This is a 2-Factor, 2-level design, Sample Size = 30, Spec 0.500”+/-0.010”
Run order 1 4 2 Temp. 300 (-) 300 (-) Pressure 200 (-) 400 (+) Ave, 0.504 0.488 0.512 Sd 0.004 0.002 0.002 Cp 1.17 1.66 1.66
Good Year Electronic Mfg. Co., Ltd Internal
2
Design of Experiment 实验设计
DOE in Product Design: It helps us determine what we need to have in order for the product to meet its intended functions. Example: Designing LF antenna housing mounting hole
Why use DOE? Application of DOE in Industry - Basic Research and Knowledge gathering; - Product / Process Design; - Product / Process Optimization and Robustness; - Quality / Productivity Improvement; - Problem Solving / Trouble Shooting;
300 (+) 200 (-)
3
300 (+) 400 (+)
0.497
0.001
3.33
Good Year Electronic Mfg. Co., Ltd Internal
9
Design of Experiment 实验设计
Temp. Pressure Ave, Sd Cp
300 500
300 500
10
Design of Experiment 实验设计
Good Year Electronic Mfg. Co., Ltd Internal
3
Design of Experiment 实验设计
DOE in Molding Process: It helps us determine what process setting we need to have in order for the molded part to meet its requirements. Critical Characteristics in Molding: Typical Characteristics of Interest in Molding: (Response Variables): - Part Dimensions; - Tensile Strength; - Weight - Appearance such as bow, warp, flash, sink marks Typical Process Parameters for Molding: (Experimental Factors): - Mold Temperature; - Mold Pressure; - Holding Time; - Injection Speed; - Barrel Temperature; - And others.
Good Year Electronic Mfg. Co., Ltd Internal
8
Design of Experiment 实验设计
Approach 2: Using a DOE We run 4 tests under the following configuration:
Temp. 300 (-) 300 (+) 300 (-) 300 (+) Pressure 200 (-) 200 (-) 400 (+) 400 (+)
Good Year Electronic Mfg. Co., Ltd Internal 4
Design of Experiment 实验设计
Other Parameters affecting molded parts: - Material Type; - % Regrind; - Moisture Content; - And Others Key Question: What mold settings should we use so that the molded parts would meet the ID requirement? Hence, we know that, the only key molding parameters are: - Mold Temperature; - Mold Pressure Expected parameter settings: Mold temperature: Between 300 and 500 F Mold Pressure: Between 200 and 400 psi
Good Year Electronic Mfg. Co., riment 实验设计
Next Step: Keep trying different combination of pressure and temperature. This process may continue for a while we eventually find a commodation of the process settings that meet the requirements. (Temp: Between 300 and 500F) (Pressure: Between 200 and 400 psi) This process: 1) Is time consuming; 2) May not result in an optimum setting; 3) Will not provide full understanding of the process.
相关文档
最新文档