555定时器的典型应用及OrCAD/PSpice仿真

合集下载

PSpice仿真555多谐振荡器课程设计报告

PSpice仿真555多谐振荡器课程设计报告

《PSpice电路设计与分析》课程设计报告题目:555定时器的应用:学号:班级:2015年 6 月 27 日目录1.设计任务及要求 (1)2.理论分析 (1)3.电路参数设计 (3)4.仿真结果及所得曲线 (4)5.曲线分析及总结 (7)6.心得体会 (8)参考文献 (8)1.设计任务及要求利用555定时器实现多谐振荡器要求:输出1,10,100,1k,10kHz的等宽方波信号;输出100Hz方波信号,占空比分别为10,30,50,70,90%。

2.理论分析2.1 555定时器构成的多谐振荡器电路图图2.1 多谐振荡器电路原理图2.2 555定时器构成的多谐振荡器理论分析电源电压Vcc=10V,可知定时器阀值输人端阀值电压为2/3Vcc,触发输人端阂值电压为1/3Vcc(1) 设电容初始状态为Vc1=0V(对应图2.2①位置),则在接通电源瞬时即t=0s时刻,定时器TH=O,TR_.=O,触发输人端有有效信号,定时器输出Vo为高电平(对应图2.2②位置).(2) 输出为高电平,放电三极管截止,则7端断开,2端触发输人端、6端阀值输人端对应集成运放输人端,几乎不取电流,也相当于断开,则电源V,会通过R1,R1对电容C,充电,电容C,两端电压Vc:上升(对应图2.2③位置).只要Vc1<2/3Vcc则始终有TH =0,输出为高电平.(3)当电容电压上升到Vc1=2/3Vcc时(对应图2.2④位置),TH =1,TR_=1,定时器输出为低电平(对应图2.2⑤位置).(4) 输出变为低电平,定时器放电三极管To饱和导通,尺3上端电位几乎为零,电容C,通过R,、定时器部放电三极管放电,电容两端电压下降(对应图2.2⑥位置).此时,TH =0,TR_=1,输出低电平不变.(5) 当电容电压下降到Vc1=1/3Vcc时(对应图2.2⑦位置),TH =O,TR_=0,定时器输出为高电平(对应图2.2⑧位置).(6) 输出为高电平,放电三极管截止,则7端断开,2端触发输人端、6端阂值输人端对应集成运放输人端,几乎不取电流,也相当于断开,则电源V1会通过R1,R1对电容C1充电,电容C1两端电压Vc在1/3Vcc的基础上上升(对应图2.2⑨位置).之后,电路的工作过程重复波形(3)到(9)多谐振荡器周期公式 T=0.7R1*C1+0.7R2*C1占空比q=R1/(R1+R2)3.电路参数设计输出1,10,100,1k,10kHz的等宽方波信号;4.仿真结果及所得曲线4.1 输出1,10,100,1k,10kHz的等宽方波信号V(U1:OUTPUT)Time图4.1输出1Hz等宽方波信号10V8V6V4V2V85.00ms85.05ms85.10ms85.15ms85.20ms85.25ms85.30ms85.35ms85.40ms85.45ms85.50msV(U1:OUTPUT)Time图4.2输出10Hz等宽方波信号8.0V6.0V4.0V2.0V0V-2.0V0s10ms20ms30ms40ms50ms60ms70ms80ms90ms100ms V(U2:OUTPUT)Time图4.3输出100Hz等宽方波信号10V8V6V4V2V0V-2V0s1ms2ms3ms4ms5ms6ms7ms8ms9ms10ms V(U2:OUTPUT)Time图4.4输出1KHz等宽方波信号10V8V6V4V2V0V-2V0s0.1ms0.2ms0.3ms0.4ms0.5ms0.6ms0.7ms0.8ms0.9ms 1.0ms V(U2:OUTPUT)Time图4.5输出10KHz等宽方波信号4.2输出100Hz方波信号,占空比分别为10,30,50,70,90%8.0V6.0V4.0V2.0V0V-2.0V0s10ms20ms30ms40ms50ms60ms70ms80ms90ms100ms V(U2:OUTPUT)Time图4.6输出占空比为10%波信号8.0V6.0V4.0V2.0V0V-2.0V0s10ms20ms30ms40ms50ms60ms70ms80ms90ms100ms V(U2:OUTPUT)Time图4.7输出占空比为30%波信号8.0V6.0V4.0V2.0V0V-2.0V0s10ms20ms30ms40ms50ms60ms70ms80ms90ms100ms V(U2:OUTPUT)Time图4.8输出占空比为50%波信号8.0V6.0V4.0V2.0V0V-2.0V0s10ms20ms30ms40ms50ms60ms70ms80ms90ms100ms V(U2:OUTPUT)Time图4.9输出占空比为70%波信号8.0V6.0V4.0V2.0V0V-2.0V0s10ms20ms30ms40ms50ms60ms70ms80ms90ms100ms V(U2:OUTPUT)Time图4.10输出占空比为90%波信号5.曲线分析及总结多谐振荡器周期公式 T=0.7R1*C1+0.7R2*C1占空比q=R1/(R1+R2)利用电容C1的充放电,得到不同的电平,555里面的两个比较在不同电平间翻转,进而给RS触发器提供输入,从而输出谐振方波来。

基于PSPICE的555定时器电路仿真分析

基于PSPICE的555定时器电路仿真分析

摘要:555定时器作为应用广泛的一种数字一模拟混合集成电路,其原理分析比较复杂。

作者在文中应用PSPICE对555定时器构成的施密特触发器、单稳态触发器和多谐振荡器的工作特性进行了仿真分析和研究,针对PSPICE 中555定时器构成的多谐振荡器不起振的问题提出了模拟振荡电路的有效起振方法,对电子电路的分析与设计具有一定的参考意义。

0 引言555定时器是一种应用非常广泛的中规模数字一模拟混合集成电路,利用它能很方便地构成施密特触发器、单稳态触发器和多谐振荡器等功能电路由于其使用灵活、方便,因而被广泛应用于信号的产生与变换、控制与检测、家用电器以及电子玩具等领域。

PSPICE作为著名的电路设计与仿真软件之一,具有仿真速度快、精度高等优点,并且集成了几乎所有电子电路设计和分析所需的器件、信号源、电源、万用表和示波器。

PSPICE用于电路仿真时,以源程序或图形方式输入,能自动进行电路检查、生成图表、模拟和计算电路。

它不仅可以对模拟电子线路进行不同输入状态的时间响应、频率响应、噪声和其它性能的分析优化,以达到电路最优的性能指标设计,还可以分析数字电子线路和模数混合电路。

1 施密特触发器的工作特性仿真分析在PSPICE的Schematics绘图编辑器中,555定时器的图形符号及管脚图如图1所示,其中管脚1是公共端,管脚2为触发端,管脚3为输出端,管脚4为复位端,管脚5是控制电压输入端,管脚6为阈值端,管脚7是内部三极管的放电端,管脚8是电源端。

利用PSPICE的Schematics绘图编辑器绘制的555定时器构成的施密特触发器电路如图2所示。

输入信号V1为三角波,用分段线性源VPWL来实现,其幅值在0V与5V之间线性变化,管脚8接直流电压源Vcc=5V。

利用PSPIC E的瞬态分析功能进行仿真,瞬态分析(Time Domain Transient)是指在给定输入激励信号的作用下,计算电路输出端的瞬态响应,其实质就是计算时域响应。

(Proteus数电仿真)555电路应用

(Proteus数电仿真)555电路应用

实验9 555定时器应用电路设计一、实验目的:1.了解555定时器的工作原理。

2.学会分析555电路所构成的几种应用电路工作原理。

3.熟悉掌握EDA软件工具Multisim的设计仿真测试应用。

二、实验设备及材料:仿真计算机及软件Proteus。

附:集成电路555管脚排列图三、实验原理:555电路是一种常见的集模拟与数字功能于一体的集成电路。

只要适当配接少量的元件,即可构成时基振荡、单稳触发等脉冲产生和变换的电路,其内部原理图如图1所示,其中(1)脚接地,(2)脚触发输入,(3)脚输出,(4)脚复位,(5)脚控制电压,(6)脚阈值输入,(7)脚放电端,(8)脚电源。

图1555集成电路功能如表1所示。

表1:注:1.(5)脚通过小电容接地。

2.*栏对CMOS 555电路略有不同。

图2是555振荡电路,从理论上我们可以得出: 振荡周期:C R R T ⋅+=)2(7.021 (1)高电平宽度:C R R t W ⋅+=)(7.021 (2)占空比:q =21212R R R R ++ (3)图3为555单稳触发电路,我们可以得出(3)脚输出高电平宽度为:RC t W 1.1 ............................................................4四、计算机仿真实验内容及步骤、结果:1. 时基振荡发生器:(1). 单击电子仿真软Proteus 基本界面左侧左列真实元件工具条按钮,然后点击图4中所示的P 按钮,会弹出图5所示的对话框,在对话框keywords 中输入ne555就可以找到555器件了图4图5(2). 从电子仿真软件proteus 基本界面左侧左列真实元件工具条中调出其它元件,并从基本界面左侧调出虚拟双踪示波器,按图6在电子平台上建立仿真实验电路。

图6(3). 打开仿真开关,双击示波器图标,观察屏幕上的波形,示波器面板设置参阅图 3.12.7。

利用屏幕上的读数指针对波形进行测量,并将结果填入表3.12.2中。

555定时器及其应用

555定时器及其应用
双极型产品 单555型号的最后几位数码 双555型号的最后几位数码 优点 电源电压工作范围 负载电流 555 556 驱动能力较大 5~18V 可达200mA CMOS产品 7555 7556 低功耗、高输入阻抗 3~18V 可达4mA
一、555定时器的组成及逻辑功能 定时器的组成及逻辑功能 555定时器由电阻分压器、电压比较器、基本 定时器由电阻分压器、 定时器由电阻分压器 电压比较器、 RS触发器、放电管和缓冲器几部分组成。 触发器、 触发器 放电管和缓冲器几部分组成。器 由三个5K 电阻组成, 电阻组成, 由三个 故称555定时器。其作用是为电压比较器提供 定时器。 故称 定时器 参考电压。 参考电压。 (2)电压比较器——C1和C2的参考电压 电 )电压比较器 和 的参考电压(电 的参考电压 压比较的基准)UR1和UR2由电源 由电源UCC经三个 压比较的基准 和 由电源 经三个 5k 的电阻分压给出。控制电压输入端 的电阻分压给出。控制电压输入端UCO 悬空时, 悬空时,U R1 = 2 U CC , U = 1 U
2 1 输出均为1, 当 U 6 < 3 U CC , U 2 > 3 U CC 时,C1和C2输出均为 , 和 输出均为
555定时器功能表 定时器功能表 RD U6(TH) TH) U2( TR ) U2( U0 V1
0 1 1 1
×
2 < 3 UCC 2 > UCC 3 < 2 UCC 3
×
1 <3 UCC 1 > UCC 3 1 > 3UCC
1 U CC 时,RS触发器置 1, 触发器置 , 3
2 当电容C上的电压 上的电压UC略微超过 当电容 上的电压 略微超过 3 U CC (即U6和U2均 时即 和 均 2 大于等于 U CC 时), RS触发器置 0,使输出电压 , 触发器置 , 3

基于PROTEL的555定时器仿真分析

基于PROTEL的555定时器仿真分析

基于PROTEL的555定时器仿真分析应用仿真软件对具体电路进行性能分析已成为现代工程设计中一种行之有效的手段,通过计算机完成电路的性能分析、功能设计、时序测试以及印刷线路板的设计和布线,在计算机中调用元器件和仪器搭接电路,电路的各种参数容易调整,电路分析的过程十分清晰、直观。

标签:555定时器;仿真软件;电路分析Protel是Altium公司推出的EDA软件,Protel是个完整的板级全方位电子设计系统,它包含了电原理图绘制、模拟电路与数字电路混合信号仿真、多层印制电路板设计、可编程逻辑器件设计、图表生成、电子表格生成、支持宏操作等功能,并具有Client/Server(客户/服务器)体系结构,同时还兼容一些其它设计软件的文件格式,如ORCAD,PSPICE,EXCEL等。

1 555集成定时器简介555集成定时器是一种多用途的模拟电路和数字电路相结合的集成电路,利用它可以很方便地实现多种脉冲电路。

集成定时器分为双极型和单极型两类,产品型号繁多,但所有定时器的产品型号后三位数码均为555,且同型号器件的功能和外部引脚的排列完全相同,所以将它们统称为555定时器。

555定时电路是由三个5千欧电阻组成分压器、两个高精度电压比较器、一个基本R-S触发器、一个作为放电通路的三极管及输出驱动电路组成。

它的逻辑电路图和电路符号如下图所示:2 应用仿真软件进行仿真的基本方法(1)555构成的单稳态触发器仿真。

555构成的单稳态触发器仿真电路如下图,输入引脚只在初始阶段输入一个负脉冲。

R、C为外接定时元件。

静态时uI为高电平,VCC通过R对C充电,uC上升,当uC≥2VCC/3时,复位控制端TH>2VCC/3,而uI高电平使置位控制端TR>VCC/3,定时器复位,Q=0,Q=1,放电管饱和导通,C经过放电,uC下降,由于uI高电平使TR>VCC/3,因此即使uC≥2VCC/3,定時器也仍然保持复位,Q=0,=1,放电管始终饱和导通,C逐渐将电放完,uC≈0,电路处于稳态。

PSpice仿真555多谐振荡器课程设计报告

PSpice仿真555多谐振荡器课程设计报告

《PSpice电路设计与分析》课程设计报告题目:555定时器的应用姓名:学号:班级:2015年 6 月 27 日目录1.设计任务及要求............................................. 错误!未定义书签。

2.理论分析................................................... 错误!未定义书签。

555定时器构成的多谐振荡器电路图.............................. 错误!未定义书签。

555定时器构成的多谐振荡器理论分析............................ 错误!未定义书签。

3.电路参数设计............................................... 错误!未定义书签。

4.仿真结果及所得曲线........................................ 错误!未定义书签。

5.曲线分析及总结............................................. 错误!未定义书签。

6.心得体会................................................... 错误!未定义书签。

通过此次仿真实验的学习,让我学习到很多,懂得如何使用PSpice软件,如何用此软件作图。

在做这个实验的时候虽然每个步骤书上都已经给出了,但由于自己的粗心,还是出现了很多问题,比如画第一个原理图的时候把与信号源连接的电容和三级管之间的节点给忽略了,结果得出是输入/输出波形有很大的问题,后来还是同学帮忙指出了这个问题,才能使实验顺利进行下去;还有,连线的时候,线不能穿过元件,不然就对后面的波形图产生影响。

通过这个我理解了再一次有了粗心的教训。

此次实验不光让我学习如何使用PSpice软件,还让我学会了如何截图,让我又学到了一个知识。

555定时器原理及应用

555定时器原理及应用

555定时器原理及应用555定时器是一种经典的集成电路,由美国Signetics公司的Hans Camenzind于1971年设计并面市。

其名字由于该集成电路内部有3个5kΩ的电阻而得名。

555定时器具有简单易用、稳定可靠和广泛应用等特点,被广泛应用于各种电子设备和电路中。

当555定时器供电时,电源电路将电压稳定在控制电压Vcc和地电压之间。

其中Vcc是正电压,地电压是负电压。

比较器通过比较电压检测输入端的电压与触发器中的电压,从而控制触发器的状态转换。

RS触发器根据输入端的信号进行状态转换,并输出给输出级,输出级根据触发器的状态控制输出端的电压。

当输入端的电压高于触发压电平时,RS触发器的状态改变,输出使输出电位电平变成低电平。

当输入端的电压低于复位压电平时,RS触发器的状态改变,输出使输出电位电平变成高电平。

输出电位电平在低电平和高电平之间变化,通过调整电路元件的参数,可以达到不同的定时效果。

单稳态多用于产生固定时长的脉冲信号。

在单稳态模式下,当触发端(电平触发)或控制端(时钟触发)发生一个负脉冲时,输出端会输出一个设定的时间长度的正脉冲。

这个时间长度由RC电路的时间常数决定。

多谐振荡器是指在555定时器内部,通过改变电路中的电阻和电容,可以实现不同频率的振荡脉冲信号。

多谐振荡器常用于产生精确的时钟信号,或者用于频率测量、频率调整和频率锁定等应用。

除了单稳态和多谐振荡器,555定时器还可以用作频率可调的脉冲宽度调制(PWM)调节器、脉冲频率的产生器、速度测量器、触发电路等。

在各种电子设备和电路中,555定时器都有广泛的应用。

总之,555定时器通过控制RC电路的充电和放电过程来实现定时功能。

它的原理简单易懂,稳定可靠。

由于其广泛的应用领域和灵活性,555定时器在电子设备和电路中得到了广泛的应用。

555定时器仿真实验报告

555定时器仿真实验报告

555定时器仿真实验报告
实验目的:
1. 了解555定时器的工作原理;
2. 掌握555定时器的基本应用;
3. 掌握使用仿真软件进行实验的方法。

实验器材:
1. 电脑;
2. 仿真软件(如Proteus);
3. 555定时器集成电路。

实验步骤:
1. 打开仿真软件,并创建新的电路图;
2. 在电路图中添加一个555定时器;
3. 为555定时器的引脚添加合适的元件,如电阻、电容等;
4. 设置555定时器的工作模式,如单稳态模式或多谐振荡模式;
5. 设置元件的参数,如电阻和电容的数值;
6. 运行仿真,观察555定时器的输出信号。

实验结果:
根据实验中设置的参数和工作模式,555定时器应该能够正确输出相应的信号。

通过仿真软件可以实时观察到555定时器的输出波形,并可以调整参数进行实时仿真。

实验分析:
通过实验可以发现,555定时器具有较高的稳定性和精确性,能够根据设置的参数生成稳定的时间延迟或者频率信号。

在实际应用中,555定时器常用于计时、频率分频、脉冲调制等电路中。

实验总结:
通过本次实验,我们了解了555定时器的基本工作原理和应用,在仿真软件的帮助下,我们能够更加直观地观察和分析555定时器的输出波形,加深了对555定时器的理解。

在实际应用中,我们需要根据具体的需求选择合适的参数和工作模式,以达到预期的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

555定时器的内部电路方框图如图2所示,该集成电路由四部分组成:电阻分压器、电压比较器、基本RS触发器、输出缓冲器和放电三极管。

比较器的参考电压由三只5 kΩ的电阻器构成分压,它们分别使高电平比较器A1同相比较端和低电平比较器A2的反相输入端的参考电平为2Vcc/3和Vcc/3。

A1和A2的输出端控制RS触发器状态和放电管开关状态。

当输入信号输入并超过2Vcc/3时,触发器复位,555的输出端3脚输出低电平,同时放电,开关管导通;当输入信号自2脚输入并低于Vcc/3时,触发器置位,555的3脚输出高电平,同时充电,开关管截止。

MR是复位端,当其为0时,555输出低电平。

平时该端开路或接Vcc。

CO是控制电压端(5脚),平时输出2Vcc/3作为比较器A1的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个0.01μF的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。

T为放电管,当T导通时,将给接于脚7的电容器提供低阻放电电路。

2单稳态触发器仿真分析
单稳态触发器广泛用于脉冲整形、延时及定时电路中。

单稳态触发器有一个稳态和一个暂稳态,在无外来触发脉冲作用时,电路保持稳态不变,而当有外来触发脉冲作用下,电路由稳态翻转到暂稳态,并输出一个脉宽和幅值恒定的矩形脉冲,输出的脉冲宽度TW等于暂稳态的持续时间,而暂稳态的持续时间取决于R2,C2,则:
运行OrCAD/CaptureCIS,利用Schematics绘制的由555定时器构成的单稳态触发器电路见图3,输入信号Vi为脉冲电压源(VPULSE),设置其参数如下:
值得注意的是,输入信号VPULSE的重复周期必须大于输出的脉冲宽度TW,输入信号VPULSE的脉宽应小于TW,才能保证每一个正倒置脉冲起作用。

利用OrCAD/PSpice 10.5的瞬态分析功能进行仿真,瞬态分析(Time Domain Transient)是指在给定输入激励信号的作用下,计算电路输出端的瞬态响应,其实质就是计算时域响应。

设置瞬态分析参数从零时刻开始记录数据,到4 ms结束,最大步长为0.1 ms。

进行瞬态分析后,得到图4所示的输出电压波形图,其中类似于锯齿波的是电容C2两端的电压,而方波则是555的输出端Vout的电压波形。

由图4可见,电容C2存在自动充放电过程。

当触发脉冲到达时,电源Vcc通过R2给电容C2充电,从0 V充电到约3.33 V之前,555定时器的输出始终保持高电平,而一旦电容充电到3.33 V,555的输出立即转换为低电平,随后电容C2开始从3.33 V迅速放电到0 V,此后又开始新的充放电过程。


555的输出端Vout可以获得周期性的矩形脉冲,而脉冲的宽度约为1.09 ms,与理论计算值1.1R2C2相近。

并且输出脉冲的宽度与输入信号VPULSE的脉宽和幅度无关。

3施密特触发器仿真分析
用555定时器构成的施密特触发器将阀值端和触发端接在一起作为输入端。

运行OrCAD/CaptureCIS,利用Schematics绘制的555定时器构成的施密特触发器电路如图5所示。

输入信号Vi为三角波电压源(VPWL),设置其参数为:
利用PSpice的瞬态分析功能进行仿真,设置瞬态分析参数从零时刻开始记录数据,到3 ms结束,最大步长为1μs,得到555的输出端Uout的电压波形与输入电压波形如图6所示。

由图6可见,该电路能将输入三角波转换成方波输出,当输入三角波电压升高,输出电平发生转换时所对应的门限电压约为8 V,而当输入三角波电压降低,输出电平发生转换时所对应的门限电压约为4 V,即上门限电压与下门限电压不同,输入与输出间具有迟滞特性。

将输入信号换成正弦信
号后,得到输入/输出电压的波形如图7所示,依然表现出迟滞特性,且上门限电压与下门限电压仍分别为8 V和4 V,而这正是施密特触发器电路的工作特性。

仿真结果与理论计算结果的上门限电压(2/3 Vcc)和下门限电压(1/3 Vcc)相符。

4多谐振荡器仿真分析
多谐振荡器是一种自激振荡器,接通电源后不需要外加触发信号便能自动产生矩形脉冲。

运行OrCAD/Capture CIS,利用Schematics绘制的由555定时器构成的多谐振荡器电路如图8所示。

电路由一个555B芯片、两个电阻和两个电容组成,通过电阻给电容C1充电、放电的过程来产生振荡,从而输出矩形脉冲。

启动PSpice瞬态分析功能,观察电容C1的端电压和555的输出端Vout的电压,得到图9所示的波形。

由图9中发现555定时器构成的多谐振荡器的输出电压Vout始终保持高电平,并没有产生预期的振荡。

4.1 OrCAD/PSpice中555多谐振荡器不能起振的原因
分析可知,PSpice中555多谐振荡器不能起振的原因在于起振源。

实际振荡电路之所以能自行起振是由于起振源的存在。

实际振荡电路的起振源主要由两方面因素构成:一是由振荡电路晶体管内部的噪声和电路噪声(电阻热噪声等)引起;二是由电路接通电源瞬间的冲击电流引起。

而直接利用PSpice对图6电路进行模拟仿真时,PSpice会将电路中的555定时器、电阻、电容、电源等元件和电路的接通过程都理想化,即电路中不能产生任何噪声和干扰。

因此,没有起振源,自然就不能产生振荡。

4.2有效起振方法
经查阅相关文献[10],并经多次实验验证,发现有多种方法可以使电路起振,现介绍其中两种最简单的方法供大家参考:
(1)给电容加初始值(IC值),本例中只将C1和C2的IC设为0。

电容上的初始电压,只是激发了振荡电路的振荡,没有改变电路起振后的输出波形,也没有影响对振荡电路起振特性的研究。

(2)在瞬态分析仿真设置(Simulstion Settings)中激活初始瞬态偏置点计算(Skip the Initial Transient Biaspoint Calculation)选项,直接使用各元件的起始条件来作瞬态分析。

两种方法都能顺利使555多谐振荡器发生起振,且持续地输出脉冲波形。

4.3仿真结果与理论计算值比较
4.3.1计算指标理论值
根据图8多谐振荡器电路计算指标理论值:
充电时间常数:
4.3.2 仿真值
在OrCAD/PSpice中,采用前面提出的模拟振荡电路的起振方法得到555振荡电路输出端的矩形脉冲电压波形,如图10所示。

相关文档
最新文档