2021-2022年高考数学二轮复习 专题6 解析几何 第4讲 圆锥曲线中的综合问题 文

合集下载

高考数学二轮复习 新高考方案专题增分方略 专题微课(四) 圆锥曲线中的最值、范围、证明问题

高考数学二轮复习  新高考方案专题增分方略 专题微课(四)  圆锥曲线中的最值、范围、证明问题

而t∈[1,2],
所以△MBA面积的取值范围是12278,2176.
[方法技巧] 目标函数法解圆锥曲线有关最值、范围问题的解题模型
[对点训练]
已知椭圆C:x22+y2=1,点P在圆O:x2+y2=1上.
(1)设点Q在直线x=-2上,且
―→ OP
―→ ·PQ
=1.试问:过点P且垂直于OQ的直线l1
y=kx-2,
由x42+y2=1
消去y,得(1+4k2)x2-16kx+12=0,
则x1+x2=1+164kk2,x1x2=1+124k2.
由直线l与E有两个不同的交点,得Δ>0, 则(-16k)2-4×12×(1+4k2)>0,
解得k2>34.① 由坐标原点O位于以MN为直径的圆外,
则―OM→·―O→N >0,即x1x2+y1y2>0,
专题微课(四)|圆锥曲线中的最值、范围、证明问题 题型策略一 目标函数法解决最值、范围问题 [典例] (2020·蚌埠质检)如图,设抛物线 C1:x2=4y 与抛 物线 C2:y2=2px(p>0)在第一象限的交点为 Mt,t42,点 A,B 分别在抛物线 C2,C1 上,AM,BM 分别与 C1,C2 相切. (1)当点 M 的纵坐标为 4 时,求抛物线 C2 的方程; (2)若 t∈[1,2],求△MBA 面积的取值范围.
t 2
,即点
B-2t ,1t26.
|MB|=
t+2t 2+t42-1t262=136t 64+t2,
点A
4t ,-t82
பைடு நூலகம்
到直线BM:y=
t 8
x+
t2 8
,即tx-8y+t2=0的距离为d=
t42+t2+t2+64t2=4 t92+t2 64,

2022年高考数学二轮复习《解析几何》讲座

2022年高考数学二轮复习《解析几何》讲座
解析几何的研究对象和方法决定了它与函数、方程的“不解之缘”,很多解析 几何问题实际上就是建立方程后研究方程的解或建立函数后研究函数的性质;解析 几何的本质就是将“数”与“形”有机地联系起来,曲线的几何特征必然在方程、 函数或不等式中有所反映,而函数、方程或不等式的数字特征也一定体现出曲线的 特性.
解析几何对学生良好的学习习惯的养成提出较高要求,对自觉地运用数学思想 方法进行分析、推理、运算的能力也提出较高要求.
考试范围与要求
一、直线与方程 1.在平面直角坐标系下,结合具体图形掌握确定直线位置的几何要素. 2. 理解直线的倾斜角概念,掌握过两点的直线斜率的计算公式. 3.能根据两条直线的斜率判断两条直线平行或垂直 . 4.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两
点式、一般式),了解斜截式与一次函数的关系. 5.能用解方程组的方法求两条相交直线的交点坐标. 6.掌握两点间的距离公式,点到直线的距离公式,会求两平行直线间
高考真题
高考真题
高考真题
高考真题
高考真题
高考真题
高考真题
高考真题
高考真题
高考真题
高考真题
解析几何难在哪?
解析几何试题综合性强、应用面广,有些题目对运算求解能力要求高、有些题 目对推理论证能力要求高,虽然解析几何中有一些基本问题,但有不少题目,所给 的条件无法直接使用,或者使用起来比较困难,需要考虑对条件进行适当的转化.
考试范围与要求
四、圆锥曲线(文科) 1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范
围、对称性、顶点、离心率). 2.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单
的几何性质(范围、对称轴、顶点、离心率、渐近线). 3.了解抛物线的定义、几何图形和标准方程,知道其简单的几何

(2021年整理)高考数学圆锥曲线专题复习.资料

(2021年整理)高考数学圆锥曲线专题复习.资料

高考数学圆锥曲线专题复习.资料编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学圆锥曲线专题复习.资料)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学圆锥曲线专题复习.资料的全部内容。

圆锥曲线一、知识结构1。

方程的曲线在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线.点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上⇔f(x0,y 0)=0;点P0(x0,y0)不在曲线C上⇔f(x0,y0)≠0两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则f1(x0,y0)=0点P0(x0,y0)是C1,C2的交点⇔f2(x0,y0) =0方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.2。

圆圆的定义:点集:{M ||OM |=r},其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程圆心在c(a ,b ),半径为r 的圆方程是(x —a )2+(y-b )2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程当D 2+E 2—4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为(-2D ,-2E ),半径是24F-E D 22+。

配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+当D 2+E 2-4F=0时,方程表示一个点(-2D ,—2E); 当D 2+E 2—4F <0时,方程不表示任何图形。

2021-2022年高考数学二轮复习专题1.6圆锥曲线教学案

2021-2022年高考数学二轮复习专题1.6圆锥曲线教学案

2021年高考数学二轮复习专题1.6圆锥曲线教学案一.考场传真1. 【xx 课标1,理10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A .16B .14C .12D .10【答案】A2.【xx 课标II ,理9】若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为( )A .2B .C .D .【答案】A【解析】由几何关系可得,双曲线的渐近线为:,圆心到渐近线距离为:,不妨考查点到直线的距离:222023b a b d ca b +⨯===+,整理可得:,双曲线的离心率.故选A. 3.【xx 课标3,理10】已知椭圆C :,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线相切,则C的离心率为A.B.C.D.【答案】A4.【xx课标1,理】已知双曲线C:(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A 与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.【答案】【解析】如图所示,作,因为圆A与双曲线C的一条渐近线交于M、N两点,则为双曲线的渐近线上的点,且,,而,所以,点到直线的距离221APba=+,在中,,代入计算得,即,由得,所以.5.【xx课标II,理16】已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则 .【答案】66.【xx 课标3,理5】已知双曲线C : (a >0,b >0)的一条渐近线方程为,且与椭圆有公共焦点,则C 的方程为A .B .C .D .【答案】B【解析】双曲线C : (a >0,b >0)的渐近线方程为 ,椭圆中:2222212,3,9,c 3a b c a b ==∴=-== ,椭圆,即双曲线的焦点为 ,据此可得双曲线中的方程组:222523b a c a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,解得: ,则双曲线 的方程为 .故选B .7.【xx 课标3,理20】已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点,求直线l 与圆M 的方程.(2)由(1)可得()21212122,424y y m x x m y y m +=+=++=+ .故圆心 的坐标为 ,圆 的半径 .由于圆 过点 ,因此 ,故()()()()121244220x x y y --+++= ,即()()1212121242200x x x x y y y y ++++++= .由(1)可得 .所以 ,解得 或 .当 时,直线 的方程为 ,圆心 的坐标为 ,圆 的半径为 ,圆 的方程为 .当 时,直线 的方程为 ,圆心 的坐标为 ,圆 的半径为 ,圆 的方程为 .8.【xx 课标1,理20】已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【解析】(1)由于,两点关于y 轴对称,故由题设知C 经过,两点.又由知,C 不经过点P 1,所以点P 2在C 上.因此222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得.故C 的方程为. (2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知,且,可得A ,B 的坐标分别为(t ,),(t ,).则221242421t t k k ---++==-,得,不符合题设.从而可设l :().将代入得222(41)8440k x kmx m +++-=由题设可知.,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=,x 1x 2=.而.由题设,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m km k m k k --+⋅+-⋅=++.解得.当且仅当时,,欲使l :,即,所以l 过定点(2,)9.【xx 课标II ,理】设O 为坐标原点,动点M 在椭圆C :上,过M 作x 轴的垂线,垂足为N ,点P 满足.(1) 求点P 的轨迹方程;(2)设点Q 在直线上,且.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .二.高考研究【考纲解读】1.考纲要求(1)直线方程:①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.②能根据两条直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③能根据两条直线的斜率判定这两条直线平行或垂直.④掌握正确直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两条相交直线的交点坐标.⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程:①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方法处理几何问题的思想.(3)圆锥曲线:①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.③了解双曲线的定义、几何图形和标准方程.知道它的简单几何性质.④了解圆锥曲线的简单应用.⑤理解数形结合的思想(2)曲线与方程:了解方程的曲线与与曲线方程的对应关系.2.命题规律:1、题量稳定:解析几何与立体几何相似,在高考试卷中试题所占分值比例较大.一般地,解析几何在高考试卷中试题大约出现3个题目左右,其中选择题、填空题占两道,解答题占一道;其所占平均分值为22分左右,所占平均分值比例约为14%.2、整体平衡,重点突出:重点内容重点考,重点内容年年考.三大圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度.直线与圆的方程,圆锥曲线的定义、标准方程、几何性质等是支撑解析几何的基石,也是高考命题的基本元素.高考十分注重对这些基础知识的考查,有的是考查定义的理解和应用,有的是求圆锥曲线的标准方程,有的是直接考查圆锥曲线的离心率,有的是考查直线与圆和圆锥曲线的位置关系等.数学高考对解析几何内容的考查主要集中在如下几个类型:①求曲线方程(类型确定,甚至给出曲线方程);②直线、圆和圆锥曲线间的交点问题(含切线问题);③与圆锥曲线定义有关的问题(涉及焦半径、焦点弦、焦点三角形和准线,利用余弦定理等)④与曲线有关的最值问题(含三角形和四边形面积);⑤与曲线有关的几何证明(圆线相切、四点共圆、对称性或求对称曲线、平行、垂直等);⑥探求曲线方程中几何量及参数间的数量特征(很少);3、题型稳定,中规中矩,不偏不怪,内容及位置也很稳定.解析几何试题的难度都不算太大,选择题、填空题大多属中等题,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题.高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,解答题加大与相关知识的联系(如向量、函数与导数、方程、不等式等),难度不是太大,所有问题均很直接,都不具备探索性.特别是近几年的解答题,计算量减少,但思考量增大,对于用代数方法研究有关直线与椭圆、抛物线位置关系问题,体现在解法上,不仅仅只是利用根与系数关系研究,而是在方法的选择上更加灵活,如联立方程求交点或向量的运算等,思维层次的要求并没有降低. 若再按以前的“解几套路”解题显然难以成功. 3.学法导航1.求解两条直线的平行或垂直问题时要考虑斜率不存在的情况.对解题中可能出现的特殊情况,可用数形结合的方法分析研究.2. 解决与圆有关的问题一般有两种方法:几何法,通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程.代数法,即用待定系数法先设出圆的方程,再由条件求得各系数.3讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.4.准确把握圆锥曲线的定义和标准方程及其简单几何性质,注意当焦点在不同坐标轴上时,椭圆、双曲线、抛物线方程的不同表示形式.求圆锥曲线方程的基本方法就是待定系数法,可结合草图确定.5.明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.6.解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.7.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明确化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.一.基础知识整合基础知识:1. 直线的方程:点斜式:; 截距式:;两点式:; 截距式:;一般式:,其中A 、B 不同时为0.2.两条直线的位置关系:两条直线,有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交.两直线平行两直线的斜率相等或两直线斜率都不存在;两直线垂直两直线的斜率之积为或一直线斜率不存在,另一直线斜率为零;与已知直线0(0,0)Ax By C A B ++=≠≠平行的直线系方程为;若给定的方程是一般式,即l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0,则有下列结论:l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2⇔A 1A 2+B 1B 2=0.两平行直线间距离公式:10(0,0)Ax By C A B ++=≠≠与2120(0,0,)Ax By C A B C C ++=≠≠≠的距离3.圆的有关问题:圆的标准方程:(r >0),称为圆的标准方程,其圆心坐标为(a ,b ),半径为r ,特别地,当圆心在原点(0,0),半径为r 时,圆的方程为.圆的一般方程:022=++++F Ey Dx y x (>0)称为圆的一般方程,其圆心坐标为(,),半径为.当=0时,方程表示一个点(,);当<0时,方程不表示任何图形.圆的参数方程:圆的普通方程与参数方程之间有如下关系: (θ为参数)(θ为参数)直线与圆的位置关系:直线与圆的位置关系的判断:【方法一】几何法:根据圆心与直线的距离与半径的大小关系进行判断;设圆心到直线的距离为,圆的半径为,则(1)直线与圆相交直线与圆有两个公共点;(2)直线与圆相离直线与圆无公共点;(3)直线与圆相切直线与圆有且只有一个公共点;【方法二】代数法:把直线的方程圆的方程联立方程组,消去其中一个未知数得到关于另外一个数的未知数的一元二次方程,则(1)直线与圆相交直线与圆有两个公共点;(2)直线与圆相离直线与圆无公共点;(3)直线与圆相切直线与圆有且只有一个公共点;若直线与圆相交,设弦长为,弦心距为,半径为,则4.椭圆及其标准方程:椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于||这个条件不可忽视.若这个距离之和小于||,则这样的点不存在;若距离之和等于||,则动点的轨迹是线段.椭圆的标准方程:(>>0),(>>0).椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.如果已知椭圆过两个点(不是在坐标轴上的点),求其标准方程时,为了避免对焦点的讨论可以设其方程为221(0,0)Ax By A B +=>>或;椭圆的参数方程: 椭圆(>>0)的参数方程为(θ为参数).说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP 的倾斜角α不同:;⑵ 椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换.5.椭圆的简单几何性质椭圆的几何性质:设椭圆方程为(>>0).范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=和y=所围成的矩形里.对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.顶点:有四个(-a ,0)、(a ,0)(0,-b )、(0,b ). 线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆.椭圆的第二定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数(e <1=时,这个动点的轨迹是椭圆.准线:根据椭圆的对称性,(>>0)的准线有两条,它们的方程为.对于椭圆(>>0)的准线方程,只要把x 换成y 就可以了,即.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设(-c ,0),(c ,0)分别为椭圆(>>0)的左、右两焦点,M (x ,y )是椭圆上任一点,则两条焦半径长分别为,,椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.在椭圆中,如果一个三角形的两个顶点是焦点,另一个顶点在椭圆上,称该三角形为焦点三角形,则三角形的周长为定值等于,面积等于,其中是短半轴的长;过焦点垂直于对称轴的弦长即通径长为2b 2a6.双曲线及其标准方程:双曲线的定义:平面内与两个定点、的距离的差的绝对值等于常数2a (小于||)的动点的轨迹叫做双曲线.在这个定义中,要注意条件2a <||,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=||,则动点的轨迹是两条射线;若2a >||,则无轨迹.若<时,动点的轨迹仅为双曲线的一个分支,又若>时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.双曲线的标准方程:和(a >0,b >0).这里,其中||=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x 轴上;如果项的系数是正数,则焦点在y 轴上.对于双曲线,不一定大于,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.如果已知双曲线过两个点(不是在坐标轴上的点),求其标准方程时,为了避免对焦点的讨论可以设其方程为或7.双曲线的简单几何性质双曲线的实轴长为,虚轴长为,离心率>1,离心率e 越大,双曲线的开口越大.双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:,其中k 是一个不为零的常数.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线方程分别是和.在双曲线中,如果一个三角形的两个顶点是焦点,另一个顶点在椭圆上,称该三角形为焦点三角形,则面积等于212tan 2b F PF ,其中是虚半轴的长;过焦点垂直于对称轴的弦长即通径长为 8.抛物线的标准方程和几何性质抛物线的定义:平面内到一定点(F )和一条定直线(l )的距离相等的点的轨迹叫抛物线.这个定点F 叫抛物线的焦点,这条定直线l 叫抛物线的准线.需强调的是,点F 不在直线l 上,否则轨迹是过点F 且与l 垂直的直线,而不是抛物线.抛物线的方程有四种类型:、、、.对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x 轴或y 轴的正方向;一次项前面是负号则曲线的开口方向向x 轴或y 轴的负方向.抛物线的几何性质,以标准方程y2=2px 为例(1)范围:x ≥0;(2)对称轴:对称轴为y=0,由方程和图像均可以看出;(3)顶点:O (0,0),注:抛物线亦叫无心圆锥曲线(因为无中心);(4)离心率:e=1,由于e 是常数,所以抛物线的形状变化是由方程中的p 决定的;(5)准线方程;(6)焦半径公式:抛物线上一点,F 为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p >0):22112:;2:22p p y px PF x y px PF x ==+=-=-+ 22112:;2:22p p x py PF y x py PF y ==+=-=-+ (7)焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式.设过抛物线y2=2px (p >O )的焦点F 的弦为AB ,A ,B ,AB 的倾斜角为,则有或,以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求.在抛物线中,以抛物线的焦点弦为直径的圆与该抛物的对应准线相切;9.直线与圆锥曲线的位置关系:①直线与圆锥曲线的相离关系,常通过求二次曲线上的点到已知直线的距离的最大值或最小值来解决. ②直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或与双曲线的渐近线平行,对于抛物线,表示直线与其相切或直线与其对称轴平行.③直线与圆锥曲线有两个相异的公共点,表示直线与圆锥曲线相割,此时直线被圆锥曲线截得的线段称为圆锥曲线的弦.直线被圆锥曲线所截得弦为,则长为||||A B A B AB x x y y =-=-,其中为直线的斜率必备方法:1.点差法(中点弦问题)利用“点差法”来解决中点弦问题,其基本思路是设点(即设出弦的端点坐标)——代入(即将端点代入曲线方程)——作差(即两式相减)——得出中点坐标与斜率的关系.2.联立消元法:韦达定理法:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方程,利用韦达定理和中点坐标公式建立等式求解3.设而不求法4.判别式法5.求根公式法椭圆与双曲线的经典结论一.椭圆1.2.标准方程:3.4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ 为直径的圆必与对应准线相离.7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).9.椭圆(a >b >o )的两个顶点为,,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是.10.若在椭圆上,则过的椭圆的切线方程是.11.若在椭圆外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是.12.AB 是椭圆的不平行于对称轴且过原点的弦,M 为AB 的中点,则.13.若在椭圆内,则被Po 所平分的中点弦的方程是.14.若在椭圆内,则过Po 的弦中点的轨迹方程是.15.若PQ 是椭圆(a >b >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b+=+==. 16.若椭圆(a >b >0)上中心张直角的弦L 所在直线方程为,则(1) ;(2) .17.给定椭圆:(a >b >0), :222222222()a b b x a y ab a b -+=+,则(i )对上任意给定的点,它的任一直角弦必须经过上一定点M (.(ii )对上任一点在上存在唯一的点,使得的任一直角弦都经过点.18.设为椭圆(或圆)C : (a >0,. b >0)上一点,P 1P 2为曲线C 的动弦,且弦P 0P 1, P 0P 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点的充要条件是.19.过椭圆 (a >0, b >0)上任一点任意作两条倾斜角互补的直线交椭圆于B ,C 两点,则直线BC 有定向且(常数).20.椭圆 (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点,则椭圆的焦点角形的面积为,2tan )2b Pc γ . 21.若P 为椭圆(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, , ,则.22.椭圆(a >b >0)的焦半径公式:,( , ).23.若椭圆(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e ≤时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.24.P 为椭圆(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当三点共线时,等号成立.25.椭圆(a >b >0)上存在两点关于直线:对称的充要条件是.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P 是椭圆(a >b >0)上一点,则点P 对椭圆两焦点张直角的充要条件是.29.设A ,B 为椭圆上两点,其直线AB 与椭圆相交于,则.30.在椭圆中,定长为2m (o <m ≤a )的弦中点轨迹方程为2222222221()cos sin x y a b m a bαα-+=+,其中,当时, . 31.设S 为椭圆(a >b >0)的通径,定长线段L 的两端点A ,B 在椭圆上移动,记|AB |=,是AB 中点,则当时,有,);当时,有,.32.椭圆与直线有公共点的充要条件是.33.椭圆与直线有公共点的充要条件是2222200()A a B b Ax By C +≥++.34.设椭圆(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记, ,,则有.35.经过椭圆(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则.36.已知椭圆(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且.(1)22221111||||OP OQ a b +=+;(2)|OP |2+|OQ |2的最大值为;(3)的最小值是.37.MN 是经过椭圆(a >b >0)过焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则.38.MN 是经过椭圆(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦,则2222111||||a MN OP a b +=+. 39.设椭圆(a >b >0),M (m ,o ) 或(o , m )为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q (A 1 ,A 2为对称轴上的两顶点)的交点N 在直线:(或)上.40.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .41.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q , A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF .42.设椭圆方程,则斜率为k (k ≠0)的平行弦的中点必在直线:的共轭直线上,而且.43.设A 、B 、C 、D 为椭圆上四点,AB 、CD 所在直线的倾斜角分别为,直线AB 与CD 相交于P ,且P 不在椭圆上,则22222222||||cos sin ||||cos sin PA PB b a PC PD b a ββαα⋅+=⋅+. 44.已知椭圆(a >b >0),点P 为其上一点F 1, F 2为椭圆的焦点,的外(内)角平分线为,作F 1、F 2分别垂直于R 、S ,当P 跑遍整个椭圆时,R 、S 形成的轨迹方程是(2222222{[()()]}()[()]b y a ce x c x y cx ce x c +-+⋅++=+).45.设△ABC 内接于椭圆,且AB 为的直径,为AB 的共轭直径所在的直线,分别交直线AC 、BC 于E 和F ,又D 为上一点,则CD 与椭圆相切的充要条件是D 为EF 的中点.46.过椭圆(a >b >0)的右焦点F 作直线交该椭圆右支于M ,N 两点,弦MN 的垂直平分线交x 轴于P ,则.47.设A (x 1 ,y 1)是椭圆(a >b >0)上任一点,过A 作一条斜率为的直线L ,又设d 是原点到直线 L 的距离, 分别是A 到椭圆两焦点的距离,则.48.已知椭圆( a >b >0)和( ),一直线顺次与它们相交于A 、B 、C 、D 四点,则│AB │=|CD │.49.已知椭圆( a >b >0),A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点, 则.50.设P点是椭圆(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记,则(1).(2) .51.设过椭圆的长轴上一点B(m,o)作直线与椭圆相交于P、Q两点,A为椭圆长轴的左顶点,连结AP和AQ分别交相应于过B点的直线MN:于M,N两点,则.52.L是经过椭圆(a>b>0)长轴顶点A且与长轴垂直的直线,E、F是椭圆两个焦点,e是离心率,点,若,则是锐角且或(当且仅当时取等号).53.L是椭圆(a>b>0)的准线,A、B是椭圆的长轴两顶点,点,e是离心率,,H是L与X轴的交点c是半焦距,则是锐角且或(当且仅当时取等号).54.L是椭圆(a>b>0)的准线,E、F是两个焦点,H是L与x轴的交点,点,,离心率为e,半焦距为c,则为锐角且或(当且仅当时取等号).55.已知椭圆(a>b>0),直线L通过其右焦点F2,且与椭圆相交于A、B两点,将A、B与椭圆左焦点F1连结起来,则2222112(2)||||a bb F A F Ba-≤⋅≤(当且仅当AB⊥x轴时右边不等式取等号,当且仅当A、F1、B三点共线时左边不等式取等号).56.设A、B是椭圆(a>b>0)的长轴两端点,P是椭圆上的一点,, ,,c、e分别是椭圆的半焦距离心率,则有(1).(2) .(3) .57.设A、B是椭圆(a>b>0)长轴上分别位于椭圆内(异于原点)、外部的两点,且、的横坐标,(1)若过A点引直线与这椭圆相交于P、Q两点,则;(2)若过B引直线与这椭圆相交于P、Q两点,则. 58.设A、B是椭圆(a>b>0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A点引直线与这椭圆相交于P、Q两点,(若B P交椭圆于两点,则P、Q不关于x轴对称),且,则点A、B的横坐标、满足;(2)若过B点引直线与这椭圆相交于P、Q两点,且,则点A、B的横坐标满足.59.设是椭圆的长轴的两个端点,是与垂直的弦,则直线与的交点P的轨迹是双曲线.60.过椭圆(a>b>0)的左焦点作互相垂直的两条弦AB、CD则2222282()||||ab a bAB CDa b a+≤+≤+.61.到椭圆(a>b>0)两焦点的距离之比等于(c为半焦距)的动点M的轨迹是姊妹圆.62.到椭圆(a>b>0)的长轴两端点的距离之比等于(c为半焦距)的动点M的轨迹是姊妹圆.63.到椭圆(a>b>0)的两准线和x轴的交点的距离之比为(c为半焦距)的动点的轨迹是姊妹圆(e为离心率).64.已知P是椭圆(a>b>0)上一个动点,是它长轴的两个端点,且,,则Q点的轨迹方程是.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.。

4 第二部分 专题五 第4讲 圆锥曲线中的定点、定值、存在性问题

4 第二部分 专题五 第4讲 圆锥曲线中的定点、定值、存在性问题

上一页
返回导航
下一页
第二部分 专题五 解析几何
15
解:(1)由题意知,直线 AB 的方程为 y=x+p2.
由y=x+p2,得 x2=2py
y2-3py+p42=0.
设 A(x3,y3),B(x4,y4),则 y3+y4=3p. 所以|AB|=y3+y4+p=4p=16,所以 p=4. 所以抛物线 C 的方程为 x2=8y.
上一页
返回导航
下一页
第二部分 专题五 解析几何
12
因为|D→A+D→B|=|D→A-D→B|,所以D→A⊥D→B,即D→A·D→B=0, 即(x1+2,y1)·(x2+2,y2)=x1x2+2(x1+x2)+4+y1y2=0, 所以43m+2-4k122+2×3-+84mkk2+4+3m32+-41k22k2=0, 所以 7m2-16mk+4k2=0, 解得 m1=2k,m2=27k,且均满足 3+4k2-m2>0, 当 m1=2k 时,l 的方程为 y=kx+2k=k(x+2),直线恒过点(-2,0),与已知矛盾; 当 m2=27k 时,l 的方程为 y=kx+27k=kx+27,直线恒过点-27,0. 综上,直线 l 过定点,定点坐标为-27,0.
上一页
返回导航
下一页
第二部分 专题五 解析几何
8
思维方法 解得 k=-m+2 1.【关键 2:设出直线 l 的方程,并与椭圆方程联立消去 y 得到关于 x 的一元二次方程,利用根与系数的关系及条件找到直线 l 中两个参数的关系】 当且仅当 m>-1 时,Δ >0,于是 l:y=-m+2 1x+m,即 y+1=-m+2 1(x-2),所以 l 过定点(2,-1). 【关键 3:将 k=-m+2 1代入直线 l 的方程,变形得到直线所过定点(2,-1)】

2023届高考数学二轮复习专题六解析几何第4讲圆锥曲线中的综合问题(43张)课件

2023届高考数学二轮复习专题六解析几何第4讲圆锥曲线中的综合问题(43张)课件


-




,

,
+
=


=

= ,
= -,
2
2
即 P(2k,-b).因为点 P 在圆 M 上,所以 4k +(4-b) =1,①


且-1≤2k≤1,-5≤-b≤-3,即-≤k≤,3≤b≤5,满足(※).
设点 P 到直线 AB 的距离为 d,则 d=
即 y-


=-(x-

-


)上,与 y=x 联立,得 xM=
-
=xC,yM=
-
即点 M 恰为 AB 的中点,故点 M 在直线 AB 上.


=yC,
-
,yM=
+


=
,
-
圆锥曲线的综合问题是高考考查的重点内容,常见的热点题型有:范围、最值
所以-(x1y2+x2y1)+3y1y2=
-
,
,
=-2,所以直线 HN 过定点(0,-2).综上,直线 HN 过定点.

,
+

3.[圆锥曲线中的存在性、证明问题](2022·新高考Ⅱ卷,T21)已知双曲线 C: -=
1(a>0,b>0)的右焦点为 F(2,0),渐近线方程为 y=± x.
p=2.
1.[圆锥曲线中的最值、范围问题](2021·全国乙卷,T21) 已知抛物线C:x2=2py(p>0)的焦点为F,
且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.
(2)若点P在M上,PA,PB是C的两条切线,A,B是切点,求△PAB面积的最大值.

2021-2022年高考数学二轮复习第一部分专题六解析几何1.6.3圆锥曲线的综合问题限时规范训练理

2021-2022年高考数学二轮复习第一部分专题六解析几何1.6.3圆锥曲线的综合问题限时规范训练理

2021年高考数学二轮复习第一部分专题六解析几何1.6.3圆锥曲线的综合问题限时规范训练理解答题(本题共5小题,每小题12分,共60分)1.(xx·高考全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1,证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0). 由NP →=2NM →得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)由题意知F (-1,0).设Q =(-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ).由OP →·PQ →=1得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ →·PF →=0,即OQ →⊥PF →.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .2.(xx·黑龙江哈尔滨模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1(-3,0),F 2(3,0),点P 在椭圆C 上,满足|PF 1|=7|PF 2|,tan∠F 1PF 2=4 3.(1)求椭圆C 的方程.(2)已知点A (1,0),试探究是否存在直线l :y =kx +m 与椭圆C 交于D ,E 两点,且使得|AD |=|AE |?若存在,求出k 的取值范围;若不存在,请说明理由.解:(1)由|PF 1|=7|PF 2|,PF 1+PF 2=2a 得PF 1=7a 4,PF 2=a 4,由cos 2∠F 1PF 2=11+tan 2∠F 1PF 2=11+432=149,又由余弦定理得cos∠F 1PF 2=17=⎝ ⎛⎭⎪⎫7a 42+⎝ ⎛⎭⎪⎫a 42-2322×7a 4×a 4,所以a =2,故所求C 的方程为x 24+y 2=1.(2)假设存在直线l 满足题设,设D (x 1,y 1),E (x 2,y 2),将y =kx +m 代入x 24+y 2=1并整理得(1+4k 2)x 2+8kmx +4m 2-4=0,由Δ=64k 2m 2-4(1+4k 2)(4m 2-4)=-16(m 2-4k 2-1)>0,得4k 2+1>m 2①,又x 1+x 2=-8km 1+4k 2设D ,E 中点为M (x 0,y 0),M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2,k AM ·k =-1,得m =-1+4k 23k ②,将②代入①得4k 2+1>⎝ ⎛⎭⎪⎫1+4k 23k 2,化简得20k 4+k 2-1>0⇒(4k 2+1)(5k 2-1)>0,解得k >55或k <-55,所以存在直线l ,使得|AD |=|AE |,此时k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-55∪⎝ ⎛⎭⎪⎫55,+∞.3.(xx·广州五校联考)已知双曲线M :y 2a 2-x 2b2=1(a >0,b >0)的上焦点为F ,上顶点为A ,B为虚轴的端点,离心率e =233,且S △ABF =1-32.抛物线N 的顶点在坐标原点,焦点为F .(1)求双曲线M 和抛物线N 的方程.(2)设动直线l 与抛物线N 相切于点P ,与抛物线的准线相交于点Q ,则以PQ 为直径的圆是否恒过y 轴上的一个定点?如果经过,试求出该点的坐标,如要不经过,试说明理由.解:(1)在双曲线M 中,c =a 2+b 2,由e =233,得a 2+b 2a =233,解得a =3b ,故c =2b .所以S △ABF =12(c -a )×b =12(2b -3b )×b =1-32,解得b =1. 所以a =3,c =2.所以双曲线M 的方程为y 23-x 2=1,其上焦点为F (0,2),所以抛物线N 的方程为x 2=8y .(2)由(1)知y =18x 2,故y ′=14x ,抛物线的准线方程为y =-2.设P (x 0,y 0),则x 0≠0,且直线l 的方程为y -y 0=14x 0(x -x 0),即y =14x 0x -18x 20.由⎩⎪⎨⎪⎧y =14x 0x -18x 20,y =-2,得⎩⎪⎨⎪⎧x =x 20-162x 0,y =-2,所以Q ⎝ ⎛⎭⎪⎫x 20-162x 0,-2.假设存在点R (0,y 1),使得以PQ 为直径的圆恒过该点,也就是RP →·RQ →=0对任意的x 0,y 0恒成立.又RP →=(x 0,y 0-y 1),RQ →=⎝ ⎛⎭⎪⎫x 20-162x 0,-2-y 1,由RP →·RQ →=0,得x 0×x 20-162x 0+(y 0-y 1)(-2-y 1)=0,整理得x 20-162-2y 0-y 0y 1+2y 1+y 21=0,即(y 21+2y 1-8)+(2-y 1)y 0=0.(☆)由于(☆)式对满足y 0=18x 20(x 0≠0)的任意x 0,y 0恒成立,所以⎩⎪⎨⎪⎧2-y 1=0,y 21+2y 1-8=0,解得y 1=2.故存在y 轴上的定点R (0,2),使得以PQ 为直径的圆恒过该点.4.已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,F 2的坐标满足圆Q 方程(x -2)2+(y -1)2=1,且圆心Q 满足|QF 1|+|QF 2|=2a .(1)求椭圆C 1的方程.(2)过点P (0,1)的直线l 1交椭圆C 1于A ,B 两点,过P 与l 1垂直的直线l 2交圆Q 于C ,D 两点,M 为线段CD 中点,求△MAB 面积的取值范围.解:(1)方程(x -2)2+(y -1)2=1为圆,此圆与x 轴相切,切点为F 2(2,0),所以c =2,即a 2-b 2=2,且F 2(2,0),F 1(-2,0),|QF 1|=|F 1F 2|2+|QF 2|2=222+12=3,又|QF 1|+|QF 2|=3+1=2a .所以a =2,b 2=a 2-c 2=2,所以椭圆C 1的方程为x 24+y 22=1.(2)当l 1平行x 轴时,l 2与圆Q 无公共点,从而△MAB 不存在; 所以设l 1:x =t (y -1),则l 2:tx +y -1=0.由⎩⎪⎨⎪⎧x 24+y 22=1,x =t y -1消去x 得(t 2+2)y 2-2t 2y +t 2-4=0,则|AB |=1+t 2|y 1-y 2|=21+t22t 2+8t 2+2.又圆心Q (2,1)到l 2的距离d 1=|2t |1+t2<1得t 2<1.又MP ⊥AB ,QM ⊥CD ,所以M 到AB 的距离即Q 到AB 的距离,设为d 2,即d 2=|2-t +t |1+t 2=21+t 2. 所以△MAB 面积S =12|AB |·d 2=2t 2+4t 2+2,令u =t 2+4∈[2,5),则S =f (u )=2u u 2-2=2u -2u∈⎝ ⎛⎦⎥⎤253,2. 所以△MAB 面积的取值范围为⎝⎛⎦⎥⎤253,2. 5.(xx·山东潍坊模拟)如图,点O 为坐标原点,点F 为抛物线C 1:x 2=2py (p >0)的焦点,且抛物线C 1上点P 处的切线与圆C 2:x 2+y 2=1相切于点Q .(1)当直线PQ 的方程为x -y -2=0时,求抛物线C 1的方程;(2)当正数p 变化时,记S 1,S 2分别为△FPQ ,△FOQ 的面积,求S 1S 2的最小值.解:(1)设点P ⎝ ⎛⎭⎪⎫x 0,x 202p ,由x 2=2py (p >0)得,y =x 22p ,求导得y ′=x p .因为直线PQ 的斜率为1,所以x 0p =1且x 0-x 202p-2=0,解得p =22,所以抛物线C 1的方程为x 2=42y .(2)因为点P 处的切线方程为:y -x 202p =x 0p(x -x 0),即2x 0x -2py -x 20=0, 根据切线又与圆相切,得|-x 20|4x 20+4p2=1,化简得x 40=4x 20+4p 2,由4p 2=x 40-4x 20>0,得|x 0|>2.由方程组⎩⎪⎨⎪⎧2x 0x -2py -x 20=0,x 2+y 2=1,解得Q ⎝ ⎛⎭⎪⎫2x 0,4-x 202p ,所以|PQ |=1+k 2|x P -x Q | =1+x 20p 2⎪⎪⎪⎪⎪⎪x 0-2x 0= p 2+x 20p ⎪⎪⎪⎪⎪⎪x 20-2x 0 =14x 40-x 20+x 20p ×⎪⎪⎪⎪⎪⎪x 20-2x 0=|x 0|2p(x 20-2). 点F ⎝ ⎛⎭⎪⎫0,p 2到切线PQ 的距离是d =|-p 2-x 20|4x 20+4p 2= 12x 20+p 2=12x 20+14x 40-x 20=x 204,所以S 1=12|PQ |·d =|x 30|16p(x 20-2),S 2=12|OF ||x Q |=p2|x 0|, 所以S 1S 2=x 40x 20-28p 2=x 40x 20-22x 40-4x 20=x 20x 20-22x 20-4=x 20-42+4x 20-4+3≥22+3, 当且仅当x 20-42=4x 20-4时取“=”号, 即x 20=4+22,此时,p =2+22, 所以S 1S 2的最小值为3+2 2.。

高三数二轮专题复习通用课件圆锥曲线

高三数二轮专题复习通用课件圆锥曲线
专题五 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
∵A(x1,y1),B(x2,y2)在轨迹C上, ∴有yy1222= =44xx12, ,① ② 由①-②得,y21-y22=4(x1-x2). 当x1=x2时,弦AB的中点不是N,不合题意, ∴yx11- -yx22=y1+4 y2=1,即直线AB的斜率k=1, 注意到点N在曲线C的张口内(或:经检验,直线m与轨迹 C相交), ∴存在满足题设的直线m,且直线m的方程为:y-2=x -4,即x-y-2=0.
专题五 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
(2013·辽宁文,15)已知F为双曲线C:
x2 9

y2 16
=1的左焦
点,P,Q为C上的点,若PQ的长等于虚轴长的2倍,点A(5,0)
在线段PQ上,则△PQF的周长为________.
[答案] 44
专题五 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
[解析] 如图,由椭圆及圆的方程可知两圆圆心分别为椭 圆的两个焦点,由椭圆定义知|PA|+|PB|=2a=6,连接PA, PB,分别与两圆相交于M、N两点,此时|PM|+|PN|最小,最 小值为|PA|+|PB|-2R=4;连接PA,PB并延长,分别与两圆 相交于M′、N′两点,此时|PM′|+|PN′|最大,最大值为 |PA|+|PB|+2R=8,即最小值和最大值分别为4,8.
核心整合
专题五 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
知识方法整合
椭圆、双曲线、抛物线的定义及几何性质
椭圆 双曲线
抛物线
定义
|PF1| + ||PF1| - 定点 F 和定直线 l,
|PF2| = |PF2|| = 点 F 不在直线 l 上,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高考数学二轮复习专题6 解析几何第4讲圆锥曲线中的综合问题文圆与圆锥曲线的综合问题训练提示:充分挖掘题目条件,寻找圆心与圆锥曲线焦点的位置关系,圆的半径与给定线段长度之间的关系,充分利用“圆的直径所对圆周角为直角”等性质解决问题.1.已知圆心为F1的圆的方程为(x+2)2+y2=32,F2(2,0),C是圆F1上的动点,F2C的垂直平分线交F1C于M.(1)求动点M的轨迹方程;(2)设N(0,2),过点P(-1,-2)作直线l,交M的轨迹于不同于N的A,B两点,直线NA,NB 的斜率分别为k1,k2,证明:k1+k2为定值.(1)解:由线段的垂直平分线的性质得|MF2|=|MC|.又|F1C|=4,所以|MF1|+|MC|=4,所以|MF2|+|MF1|=4>4.所以M点的轨迹是以F1,F2为焦点,以4为长轴长的椭圆.由c=2,a=2得b=2.故动点M的轨迹方程为+=1.(2)证明:当直线l的斜率存在时,设其方程为y+2=k(x+1),由得(1+2k2)x2+4k(k-2)x+2k2-8k=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.从而k1+k2=+==2k-(k-4)×=4.当直线l的斜率不存在时,得A(-1,),B(-1,-),得k1+k2=4.综上,恒有k1+k2=4.2.设椭圆M:+=1(a>)的右焦点为F1,直线l:x=与x轴交于点A,若=2(其中O为坐标原点).(1)求椭圆M的方程;(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求·的最大值.解:(1)由题设知,A(,0),F1(,0),由=2.得=2(-),解得a2=6.所以椭圆M的方程为+=1.(2)设圆N:x2+(y-2)2=1的圆心为N,则·=(-)·(-)=(--)·(-)=-=-1.从而求·的最大值转化为求的最大值.因为P是椭圆M上的任意一点,设P(x0,y0),所以+=1,即=6-3,因为点N(0,2),所以=+(y0-2)2=-2(y0+1)2+12.因为y0∈[-,],所以当y0=-1时,取得最大值12.所以·的最大值为11.圆锥曲线中的定点、定值问题训练提示:由直线方程确定定点,若得到直线方程的点斜式:y-y0=k(x-x0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:y=kx+m,则直线必过定点(0,m).证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值.3.如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点.(1)解:依题意,|OB|=8,∠BOy=30°.设B(x,y),则x=|OB|sin 30°=4,y=|OB|cos 30°=12.因为点B(4,12)在x2=2py上,所以(4)2=2p×12,解得p=2.故抛物线E的方程为x2=4y.(2)证明:由(1)知y=x2,y′=x.设P(x0,y0),则x0≠0,且l的方程为y-y0=x0(x-x0),即y=x0x-.由得所以Q(,-1).设M(0,y1),令·=0对满足y0=(x0≠0)的x0,y0恒成立.由于=(x0,y0-y1),=(,-1-y1),由·=0,得-y0-y0y1+y1+=0,即(+y1-2)+(1-y1)y0=0.(*)由于(*)式对满足y0=(x0≠0)的y0恒成立,所以解得y1=1.故以PQ为直径的圆恒过y轴上的定点M(0,1).4.已知直线l:y=x+,圆O:x2+y2=5,椭圆E:+=1(a>b>0)的离心率e=,直线l被圆O截得的弦长与椭圆的短轴长相等.(1)求椭圆E的方程;(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证两切线斜率之积为定值.解:(1)设椭圆半焦距为c,圆心O到l的距离d==,则l被圆O截得的弦长为2,所以b=.由题意得又b=,所以a2=3,b2=2.所以椭圆E的方程为+=1.(2)证明:设点P(x0,y0),过点P的椭圆E的切线l0的方程为y-y0=k(x-x0),整理得y=kx+y0-kx0,联立直线l0与椭圆E的方程得消去y得2[kx+(y0-kx0)]2+3x2-6=0,整理得(3+2k2)x2+4k(y0-kx0)x+2(kx0-y0)2-6=0,因为l0与椭圆E相切,所以Δ=[4k(y0-kx0)]2-4(3+2k2)[2(kx0-y0)2-6]=0,整理得(2-)k2+2x0y0k-(-3)=0,设满足题意的椭圆E的两条切线的斜率分别为k1,k2,则k1k2=-.因为点P在圆O上,所以+=5,所以k1k2=-=-1.所以两条切线斜率之积为常数-1.圆锥曲线中的存在性问题训练提示:存在性问题,先假设存在,进行一系列推理,若推理正确则存在,若得出矛盾则不存在.5.已知椭圆C:+=1(a>b>0)的右焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为,O为坐标原点.(1)求椭圆C的方程;(2)设椭圆的上顶点为N,是否存在直线l交椭圆于P,Q两点,使点F为△PQN的垂心?若存在,求出直线l的方程;若不存在,请说明理由.解:(1)设F(c,0),则=,知a=c.过点F且与x轴垂直的直线方程为x=c,代入椭圆方程,有+=1,解得y=±b.于是b=,解得b=1.又a2-c2=b2,从而a=,c=1.所以椭圆C的方程为+y2=1.(2)假设存在直线l交椭圆于P,Q两点,且F为△PQN的垂心.设P(x1,y1),Q(x2,y2),因为N(0,1),F(1,0),所以k NF=-1.由NF⊥PQ,知k PQ=1.设直线l的方程为y=x+m,由得3x2+4mx+2m2-2=0.由Δ>0,得m2<3,且x1+x2=-,x1x2=.由题意,有·=0.因为=(x1,y1-1),=(x2-1,y2),所以x1(x2-1)+y2(y1-1)=0,即x1(x2-1)+(x2+m)(x1+m-1)=0,所以2x1x2+(x1+x2)(m-1)+m2-m=0,于是2×-m(m-1)+m2-m=0,解得m=-或m=1.经检验,当m=1时,△PQN不存在,故舍去m=1.当m=-时符合,直线l的方程为y=x-.6.(xx河北沧州4月质检)已知点M在椭圆G:+=1(a>b>0)上,H(-2,0)是M在x轴上的射影.F1是椭圆G的左焦点,且=(O为坐标原点),·=.(1)求椭圆G的方程;(2)在x轴上是否存在定点P0,过P0任意作直线l交椭圆G于A,B两点,使得直线HM始终平分∠AHB?若存在,则求出P0;若不存在,请说明理由.解:(1)依题可设M(-2,y0),由=得F1为HO的中点,于是F1(-1,0),又由·=得(0,-y0)·(1,-y0)=,解得=,于是有+=1,整理得5a4-29a2+20=(5a2-4)(a2-5)=0,解得a2=5或a2=(舍去).所以椭圆G的方程是+=1.(2)设P0(m,0),A(x1,y1),B(x2,y2),若直线l的斜率不等于零时,可设直线l为x=ty+m,联立+=1,消去x得(4t2+5)y2+8mty+4m2-20=0,有y1+y2=,y1y2=,注意到HM平分∠AHB⇒k AH=,k BH=满足k AH+k BH=0,即+=0⇒y1(x2+2)+y2(x1+2)=0⇒y1(ty2+m+2)+y2(ty1+m+2)=2ty1y2+(m+2)(y1+y2)=0⇒2t·+(m+2)·=0⇒t(2m+5)=0,故m=-,定点P0(-,0).若直线l的斜率为零,定点P0(-,0)也满足条件,故定点P0(-,0)为所求.类型一:圆锥曲线中的最值(范围)问题1.在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足∥,·=·,M 点的轨迹为曲线C.(1)求C的方程;(2)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.解:(1)设M(x,y),由已知得B(x,-3),又A(0,-1),所以=(-x,-1-y),=(0,-3-y),=(x,-2).再由题意可知(+)·=0,即(-x,-4-2y)·(x,-2)=0.所以曲线C的方程为y=x2-2.(2)设P(x0,y0)为曲线C:y=x2-2上一点.因为y′=x,所以l的斜率为x0.因此直线l的方程为y-y0=x0(x-x0),即x0x-2y+2y0-=0.所以O点到l的距离d=.又y0=-2,所以d==(+)≥2.当x0=0时取等号,所以O点到l距离的最小值为2.2.(xx云南模拟)如图,已知椭圆E:+=1(a>b>0)的离心率为,且过点(2,),四边形ABCD的顶点在椭圆E上,且对角线AC,BD过原点O, k AC·k BD=-.求·的取值范围.解:⇒所以椭圆E的方程为+=1.当直线AB的斜率存在时,设l AB:y=kx+m,A(x1,y1),B(x2,y2),由⇒(1+2k2)x2+4kmx+2m2-8=0,所以x1+x2=,x1x2=,y1y2=(kx1+m)(kx2+m)=k2()+km()+m2=.由k OA·k OB=-得·=-.所以=-·⇒m2=4k2+2,·=x1x2+y1y2=+==2-,所以-2≤·<2,当k=0时,·=-2,当k不存在即AB⊥x轴时,·=2,所以·的取值范围是[-2,2].3.(xx郑州第一次质量预测)已知动点P到定点F(1,0)和到直线x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n 与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合).(1)求曲线E的方程;(2)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值及对应的直线l的方程;若没有,请说明理由.解:(1)设点P(x,y),由题意可得=,整理可得+y2=1,曲线E的方程是+y2=1.(2)有最大值,设C(x1,y1),D(x2,y2),由已知可得|AB|=.当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得=1,即m2+1=n2.联立消去y得(m2+)x2+2mnx+n2-1=0.Δ=4m2n2-4(m2+)(n2-1)=2m2>0,x1+x2=,x1x2=,S四边形ACBD=|AB||x2-x1|===≤.当且仅当2|m|=,即m=±时等号成立,此时四边形ABCD面积的最大值为,n=±,经检验可知,直线y=x-和直线y=-x+符合题意.4.如图,过x轴上动点A(a,0)引抛物线y=x2+1的两条切线AP,AQ.切线斜率分别为k1和k2,切点分别为P,Q.(1)求证:k1·k2为定值,并且直线PQ过定点;(2)记△APQ的面积为S△APQ,当最小时,求·的值.(1)证明:设过A点的直线为y=k(x-a),与抛物线联立得整理得x2-kx+ka+1=0,Δ=k2-4ak-4=0,所以k1+k2=4a,k1·k2=-4为定值.抛物线方程y=x2+1,求导得y′=2x,设切点P,Q的坐标分别为(x p,y p),(x q,y q),则k1=2x p,k2=2x q,所以x p+x q=+=2a,x p x q=·=-1.直线PQ的方程:y-y p=(x-x p),由y p=+1,y q=+1,得到y=(x p+x q)x-x p x q+1,整理可得y=2ax+2,所以直线PQ过定点(0,2).(2)解:设A到PQ的距离为d.S△APQ=|PQ|×,所以===,设t=≥1,所以==(t+)≥,当且仅当t=时取等号,此时a=±.因为·=(x p-a,y p)·(x q-a,y q)=x p x q-a(x p+x q)+a2+y p y q,y p y q=(2x p a+2)(2x q a+2)=4a2x p x q+4+4a(x p+x q)=4a2+4,所以·=3a2+3=.类型二:证明问题5.如图,已知点A(1,)是离心率为的椭圆C:+=1(a>b>0)上的一点,斜率为的直线BD交椭圆C于B,D两点,且A,B,D三点互不重合.(1)求椭圆C的方程;(2)求证:直线AB,AD的斜率之和为定值.(1)解:由题意,可得e==,将(1,)代入椭圆方程,得+=1,又a2=b2+c2,解得a=2,b=,c=.所以椭圆C的方程为+=1.(2)证明:设直线BD的方程为y=x+m,又A,B,D三点不重合,所以m≠0,设D(x1,y1),B(x2,y2),由得4x2+2mx+m2-4=0.所以Δ=-8m2+64>0⇒-2<m<2.x1+x2=-m,①x1x2=,②设直线AB,AD的斜率分别为k AB,k AD,则k AD+k AB=+=+=2+m·(*)将①、②式代入(*),整理得2+m·=2-2=0,所以k AD+k AB=0,即直线AB,AD的斜率之和为定值0.6.已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;(2)设m=4,曲线C与y轴的交点为A,B(点A位于B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G,求证:A,G,N三点共线.解:(1)曲线C是焦点在x轴上的椭圆,当且仅当解得<m<5,所以m的取值范围是(,5).(2)当m=4时,曲线C的方程为x2+2y2=8,点A,B的坐标分别为(0,2),(0,-2).由得(1+2k2)x2+16kx+24=0.因为直线y=kx+4与曲线C交于不同的两点,所以Δ=(16k)2-4(1+2k2)×24>0,即k2>.设点M,N的坐标分别为(x1,y1),(x2,y2),则y1=kx1+4,y2=kx2+4,x1+x2=,x1x2=.直线BM的方程为y+2=x,点G的坐标为(,1).因为直线AN和直线AG的斜率分别为k AN=,k AG=-,所以k AN-k AG=+=+=k+=k+=0.即k AN=k AG.故A,G,N三点共线.。

相关文档
最新文档