3.示范教案(3.2.2 一元二次不等式的解法的应用(一))
高中数学教案:3.3一元二次不等式的解法的应用(一)

1、展示课件
2、巡视学生完成情况,让学生更准确求解分式不等式。
3、总结方法。
1、独立完成课件例题。
2、抽象归纳出分式不等式的解法。
3、会正确的将分式不等式转化为整式不等式。
通过不等式的性质,加深对分式不等式解法的理解。
3分钟
思考,如果遇到的分式不等式是带“=”,应如何解?如:
3、总结并记录分式不等式的转化形式
训练学生数学知识之间的联系。形成数学思维。
5分钟
5.
目标
检测
随堂测试小卷
1、巡视学生作答情况。
2、公布答案。
3、评价学生作答结果。
1、小考卷上作答。
2、同桌互批。
3、独立订正答案。
检查学生对本课所学知识的掌握情况。
5分钟
6
布置下节课自主学习任务
1、阅读优化学案74-75页,理解并记忆探究一、探究二的方法,完成教材79页课后练习A组4(同桌检查并签字),思考练习B组题(要求有痕迹)。
高二数学教案
时间:****年***月****日
课题
一元二次不等式的解法的应用(一)
课时
第一课时
课型
新授
教学
重点
1、一元二次不等式的解法
2、能正确地求出分式不等式的解集
依据:高考大纲分析:会解一元二次不等式与相应函数、方程的联系。
教学
难点
将分式不等式准确的化为整式不等式
依据:带等号的分式不等式,要注意分母不能为零.由于各个不等式组的解集是本组各不等式解集的交集,计算较繁,且容易出错。
2、理解并记忆不等式中恒成立问题的等价形式。
高三数学一元二次不等式及其解法教案范例

高三数学一元二次不等式及其解法教案范例教学目标
1.了解一元二次不等式的基本定义。
2.学习求解一元二次不等式的方法和技巧。
3.能够自己独立解决一元二次不等式问题。
教学重点
1.一元二次不等式的定义和性质。
2.求解一元二次不等式的方法和技巧。
教学难点
1.复杂的一元二次不等式的求解问题。
2.解决实际问题时如何将问题转化为一元二次不等式的形式。
教学步骤
第一步:引入概念
讲师可以通过图示和实例引入一元二次不等式的定义和性质。
第二步:解法介绍
1.教育者介绍一元二次不等式的最基本解法。
2.教练员通过实例演示一元二次不等式的解决过程。
3.教练员介绍一元二次不等式的常规解法。
第三步:例题讲解
1.针对一元二次不等式的基本解法讲解几道例题。
2.针对一元二次不等式的常规解法讲解几道例题。
3.参与者自己解决例题。
第四步:综合练习
1.针对一元二次不等式的基本解法分组进行练习。
2.针对一元二次不等式的常规解法分组进行练习。
3.教育者鼓励每个参与者独自解决综合练习的问题。
总结
1.通过这一次教学,学生们已经掌握了基本的一元二次不等式求解方法和技巧。
2.同时,学生们也理解了如何将实际问题转换为一元二次不等式的形式。
3.这种一元二次不等式教学法适用于各个年龄段的学生,并且可扩展到更高难度的问题.。
(教学案)3.2.2一元二次不等式的应用(1)Word版含解析

分式不等式的解法一、教学内容分析简单的分式不等式解法是高中数学不等式学习的一个根本内容.对一个不等式通过同解变形转化为熟悉的不等式是解不等式的一个重要方法.这两类不等式将在以后的数学学习中不断出现,所以需牢固掌握.二、教学目标设计1、掌握简单的分式不等式的解法.2、体会化归、等价转换的数学思想方法.三、教学重点及难点重点 简单的分式不等式的解法.难点 不等式的同解变形.四、教学过程设计一、分式不等式的解法1、复习引入学生回忆一元二次不等式解法2、分式不等式的解法例1 解不等式:0231>-+x x 变式.解不等式:0231≥-+x x 例2 解不等式:1232x x +>-. 解:〔化分式不等式为一元一次不等式组〕⇔10320x x -<⎧⎨->⎩或10320x x ->⎧⎨-<⎩⇔123x x <⎧⎪⎨>⎪⎩或123x x >⎧⎪⎨<⎪⎩⇔213x <<或x 不存在. 所以,原不等式的解集为2,13⎛⎫∅ ⎪⎝⎭,即解集为2,13⎛⎫ ⎪⎝⎭. 注意到1032x x -<-⇔10320x x -<⎧⎨->⎩或10320x x ->⎧⎨-<⎩⇔()()3210x x --<,可以简化上述解法. 另解:〔利用两数的商与积同号〔00a ab b >⇔>,00a ab b <⇔<〕化为一元二次不等式〕⇔()()3210x x --<⇔213x <<,所以,原不等式的解集为2,13⎛⎫ ⎪⎝⎭. 由例1我们可以得到分式不等式的求解通法:〔1〕不要轻易去分母,可以移项通分,使得不等号的右边为零.〔2〕利用两数的商与积同号,化为一元二次不等式求解.一般地,分式不等式分为两类:〔1〕()()0f xg x>〔0<〕⇔()()0f xg x>〔0<〕;〔2〕()()0f xg x≥〔0≤〕⇔()()()()00f xg xg x≥≤⎧⎪⎨≠⎪⎩.[说明]解不等式中的每一步往往要求“等价〞,即同解变形,否那么所得的解集或“增〞或“漏〞.由于不等式的解集常为无限集,所以很难像解无理方程那样,对解进行检验,因此同解变形就显得尤为重要.例3 解以下不等式四、作业布置选用练习2.3〔1〕〔2〕、习题2.3中的局部练习.五、课后反思解分式不等式关键在于同解变形.通过同解变形将其转化为熟悉的不等式来加以解决,这种通过等价变形变“未知〞为“〞的解决问题的方法是教学的重点也是难点,需在课堂教学中有所强调.整个教学内容需让学生共同参与,特别是在“同解变形〞这一点上,应在学生思考、讨论的根底上教师、学生共同进行归纳小结.。
高中数学新人教版A版精品教案《一元二次不等式及其解法》

3.2.1一元二次不等式及其解法(第一课时)一、教材分析本节课是人民教育出版社数学(必修5)第三章第二节第一部分内容,本节课内容的地位体现在它的基础性,作用体现在它的工具性。
一元二次不等式的解法是高中数学教学的重点和难点之一。
从内容上看,二次不等式、二次方程与二次函数密不可分,该内容涉及的知识点较多且应用广泛。
从思想层次上看,它涉及到数形结合、分类转化、方程函数等数学思想,这些内容和思想将在中学数学中产生广泛而深远的影响。
一元二次不等式的解法是以后研究函数的定义域、值域等问题的最要工具,它可渗透到中学数学的几乎所有领域中,对今后的学习起着十分重要的作用。
二、学情分析本节内容对学生来说不算陌生,由于一元二次不等式的解法与二次函数联系紧密,而二次函数又是学生在初中学习的薄弱环节,因此很多学生对此学习表现出困惑,对达成所规定的要求带来影响。
三、教学目标知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图像法解一元二次不等式的方法;培养数形结合的能力,培养抽象概括能力和逻辑思维能力。
过程与方法:通过函数图像探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法。
情感与价值观:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
四、重点与难点重点:一元二次不等式的解法难点:理解二次函数、一元二次方程与一元二次不等式解集的关系要点:运用数形结合的思想方法,帮助学生将所学知识有机联系五、教法与学法1.教学方法的选择:创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性学习活动。
2.教学方法的选择:为使学生积极参与课堂学习,我主要指导了以下的学习方法: ①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。
②.分组竞赛。
高三数学一元二次不等式及其解法教案范例

高三数学一元二次不等式及其解法教案范例教案范例:高三数学一元二次不等式及其解法教学目标:1. 理解一元二次不等式的定义和解法;2. 掌握一元二次不等式的图解法和代数解法;3. 能够运用解一元二次不等式的方法解决实际问题。
教学步骤:Step 1:引入知识(5分钟)通过提问学生对一元二次方程的回顾,引入一元二次不等式的概念。
简单介绍一元二次不等式与一元二次方程的异同点。
Step 2:图解法(15分钟)1. 讲解一元二次不等式的图解法:先将不等式转化为对应的一元二次方程,然后求出方程的解集并在坐标系中表示出来,最后根据问题中的不等号关系确定解集。
2. 示例演练:出示若干个一元二次不等式,引导学生尝试用图解法求解。
Step 3:代数解法(15分钟)1. 讲解一元二次不等式的代数解法:通过移项和因式分解的方法将一元二次不等式化为二次因式的乘积形式,然后根据因式的性质确定不等式的解集。
2. 示例演练:出示若干个一元二次不等式,引导学生尝试用代数解法求解。
Step 4:综合训练(15分钟)1. 提供一些综合性的一元二次不等式问题,要求学生综合运用图解法和代数解法解答。
2. 引导学生分析问题的实际背景,并对解集进行合理性判断。
Step 5:拓展应用(10分钟)提供一些与实际问题相关的一元二次不等式,要求学生能够将问题转化为数学不等式,并用所学的方法解决。
Step 6:总结归纳(5分钟)总结一元二次不等式的解法,强调图解法和代数解法的适用条件及各自的特点。
Step 7:作业布置(5分钟)布置一定量的练习题,要求学生熟练掌握一元二次不等式的解法。
教学反思:通过图解法和代数解法的对比,可以帮助学生全面理解一元二次不等式的解法。
同时,引入一些实际问题,能够增强学生对一元二次不等式应用的理解和能力。
在教学过程中,要注意引导学生思考和分析问题,培养他们的解决问题的能力。
一元二次不等式及其解法(优秀教案1)

一元二次不等式及其解法(第一课时)一、 课标要求1、使学生深刻理解二次函数、一元二次方程与一元二次不等式地关系;2、使学生熟练掌握一元二次不等式地解法,掌握数形结合地思想;3、提高学生地运算能力和逻辑思维能力,培养学生分析、解决问题地能力. 教学重点:从实际问题中抽象出一元二次不等式模型,围绕一元二次不等式地解法展开,突出体现数形结合地思想.教学难点:理解二次函数、一元二次方程与一元二次不等式解集地关系. 三、教学方法:自主探究法 四、 教学过程(一)导入新课:教材P76页地问题(二)预学案导学1、解一元二次方程250x x -=,并作出25y x x =-地图象2、填表:二次函数2(0)y ax bx c a =++>与二次方程20(0)ax bx c a ++=>地关系 (完成“四、合作展示”中表格地第一、二行)3、一元一次不等式是如何定义地?其数学表达形式是什么?定义:只含有一个未知数,并且未知数地最高次数是1地不等式称为一元二次不等式.其数学表达形式为4、画出函数27y x =-地图象,并由图象观察,填空:当x=3.5时,y______0, 即2x-7_____ 0当x<3.5时,y______0, 即2x-7_____ 0当x>3.5时,y______0, 即2x-7_____ 0可知,2x-7> 0地解集为_______________2x-7< 0地解集为_______________思考:一元一次方程、一元一次不等式与一次函数之间有怎样地联系?小结:函数图象与X 轴交点地横坐标为方程地根,不等式地解集为函数图象落在X 轴上方(或下方)部分对应地横坐标.(三) 合作展示0(000)(0)ax b a +>≥<≤≠或或1、自主探究:(1) 类比一元一次不等式地定义,你能给出一元二次不等式地定义吗?其数学表达形式是什么?定义:只含有一个未知数,并且未知数地最高次数是2地不等式,称为一元二次不等式.其数学表达形式为(2) ①利用预学案第1题,观察图象填空:当x___________________,y=0,即25x x -_____0当x__________________,y>0,即25x x -_____0当x___________________,y<0,即25x x -_____0②不等式25x x ->0地解集是_________________不等式25x x -<0地解集是_________________2、合作探究:(1)类比三个“一次”地关系,探究一元二次不等式地解法,并完成下表:小结:一元二次不等式解集地端点就是对应函数地零点,对应方程地根.(2) 当0a <时,如何解不等式20(0)(0)ax bx c a ++><>或结论:利用不等式地性质,在不等式地两边同时乘以-1,使二次项系数变为正数.(3)如果不等式为20(0)(0)ax bx c a ++≥≤>或,其解集又是什么?(四)应用探究:例:解不等式22320x x -->变式:若不等式改为22320x x --<,则解集为_______________小结:利用二次函数解一元二次不等式地方法步骤?变式练习:1、解不等式24410x x -+>2、解不等式2230x x -+->五、 知识整理:本节课我们学习了哪些知识?运用了哪些数学思想方法?六、 训练评估1、解下列不等式222(1)40(2)4321x x x x -<+->+2、求函数y =课后作业:教材P80 A 组 第1、2、3、4题版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.DXDiT。
3.2一元二次不等式及其解法教案

3.2一元二次不等式及其解法教案第一篇:3.2一元二次不等式及其解法教案3.2一元二次不等式及其解法(3课时)(一)教学目标1.知识与技能:从实际问题中建立一元二次不等式,解一元二次不等式;应用一元二次不等式解决日常生活中的实际问题;能用一个程序框图把求解一般一元二次不等式的过程表示出来;2.过程与方法:通过学生感兴趣的上网问题引入一元二次不等式的有关概念,通过让学生比较两种不同的收费方式,抽象出不等关系;利用计算机将数学知识用程序表示出来;3.情态与价值:培养学生通过日常生活中的例子,找到数学知识规率,从而在实际生活问题中数形结合的应用以及计算机在数学中的应用。
(二)教学重、难点重点:从实际问题中抽象出一元二次不等式模型,围绕一元二次不等式的解法展开,突出体现数形结合的思想;难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。
(四)教学设想[创设情景] 通过让学生阅读第84页的上网问题,得出一个关于x 的一元二次不等式,即x2-5x<0[探索研究] 首先考察不等式x-5x<0与二次函数y=x2-5x以及一元二次方程x-5x=0的关系。
容易知道,方程x-5x=0有两个实根:x1=0,x2=5由二次函数的零点与相应的一元二次方程根的关系,知x1=0,x2=5是二次函数222y=x2-5x的两个零点。
通过学生画出的二次函数y=x2-5x的图象,观察而知,当x<0,x>5时,函数图象位于x轴上方,此时y>0,即x-5x>0;2当0<x<5时,函数图象位于x轴下方,此时y<0,即x-5x<0。
22所以,一元二次不等式x-5x<0的解集是x0<x<5{}从而解决了以上的上网问题。
[总结归纳] 上述方法可以推广到求一般的一元二次不等式ax+bx+c>0或2ax2+bx+c<0(a>0)的解集:可分∆>0,∆=0,∆<0三种情况来讨论。
3.2.2含参数的一元二次不等式的解法(例题精讲)

含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ;例1 解不等式:()0122>+++x a ax 分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项 系数进行分类讨论。
解:∵()044222>+=-+=∆a a a 解得方程 ()0122=+++x a ax 两根,24221a a a x +---=a a a x 24222++--= ∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式 分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。
解 ()()032)65(2>--=+-x x a x x a ∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆;例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。
解:∵162-=∆a ∴当()4,4-∈a 即0<∆时,解集为R ;当4±=a 即Δ=0时,()00652≠>+-a a ax ax解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且; 当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >, ∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122 解 因,012>+m ()()2223414)4(mm -=+--=∆,所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.2 一元二次不等式的解法的应用(一)从容说课本节课由师生共同分析日常生活中的实际问题来引出一元二次不等式及其解法中的一些基本概念、求解一元二次不等式的步骤、求解一元二次不等式的程序框图.确定一元二次不等式的概念和解法,通过具体例题的分析和求解,在这些例题中设置思考项,让学生探究,层层铺设,在学生深刻理解一元二次不等式的概念、一元二次不等式的解法以及一元二次不等式解法与一元二次函数的关系和一元二次不等式解法的步骤、一元二次不等式解法与二次函数的关系两者之间的区别与联系的基础上,再辅以新的例题巩固.一元二次不等式的解法的应用(一)这节课通过对一元二次不等式的概念、一元二次不等式的解法以及一元二次不等式解法与一元二次函数的关系和一元二次不等式解法的步骤、一元二次不等式解法与二次函数的关系两者之间的区别与联系的正确理解.用可以直接或间接转化为一元二次不等式、二次函数的知识来解决的问题,作为对一元二次不等式的概念、解法以及解法与二次函数的关系两者之间的区别与联系的知识能力的延伸和补充.本节课通过复习引入课题,通过例题的讲解和学生的练习,不断地发现、深入、探究,步步为营.层层铺垫既有利于一元二次不等式的概念、解法和解法与二次函数的关系以及一元二次不等式解法与一元二次函数的关系两者之间的区别与联系知识的巩固和延伸,更有利于学生的自主学习,充分体现了新课标的理念.整个教学过程,更深入揭示一元二次不等式解法与二次函数的关系本质,继续一元二次不等式解法的步骤和过程,及时加以巩固,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.教学重点 1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.3.分式不等式与简单的高次不等式如何根据实数运算的符号法则,把它们转化为与其等价的两个或多个不等式(组)(由表示成的各因式的符号所有可能的组合决定),于是原不等式的解集就是各个不等式组的解集的并集.同时注意分式不等式的同解变形有如下几种: (1))()(x g x f >0⇔f(x)·g(x)>0; (2) )()(x g x f <0⇔f(x)·g(x)<0; (3) )()(x g x f ≥0⇔f(x)·g(x)≥0且g(x)≠0; (4))()(x g x f ≤0⇔f(x)·g(x)≤0且g(x)≠0. 解简单的高次不等式一般有两种思路,即转化法和数轴标根法.其中转化法就是运用实数乘法的运算性质,把高次不等式转化为低次的不等式组.数轴标根法的基本思路是:整理(分解)——标根——画线——选解.教学难点 1.深入理解二次函数、一元二次方程与一元二次不等式的关系.2.分式不等式与简单的高次不等式在转化为一次或二次不等式组时,每一步变形,都应是不等式的等价变形.在等价变形时,要注意什么时候取交集,什么时候取并集.带等号的分式不等式,要注意分母不能为零.由于各个不等式组的解集是本组各不等式解集的交集,计算较繁,且容易出错,同学们一定要细心.另外,在取交集、并集时,可以借助数轴的直观效果,这样可避免出错.教具准备 多媒体及课件三维目标一、知识与技能1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;3.会用列表法,进一步用数轴标根法求解分式及高次不等式;4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性教学;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观1.进一步提高学生的运算能力和思维能力;2.培养学生分析问题和解决问题的能力;3.强化学生应用转化的数学思想和分类讨论的数学思想.教学过程导入新课师 上节课我们已经知道,一元二次不等式的解与相应的一元二次方程的解和二次函数的图象的关系.如果一个一元二次方程a x 2+b x+c =0有两个根x 1<x 2,则x 1、x 2就把实数(x 轴)分成了三部分,要解a x 2+b x+c >0,就要找这三部分中使a x 2+b x+c 大于0的部分;同样,解a x 2+b x+c <0,就是要找这三部分中使a x 2+b x+c 小于0的部分.解一元二次不等式的程序是什么?生 (1)将二次项系数化为“+”:y=a x 2+b x+c >0(或<0)(a >0).(2)计算判别式Δ,分析不等式的解的情况:①Δ>0时,求根x 1<x 2,若y >0,则x <x 1或x >x 2;若y <0,则x 1<x <x 2;②Δ=0时,求根x 1=x 2=x 0,若y >0,则x≠x 0的一切实数;若y <0,则x ∈∅;若y=0,则x=x 0;③Δ<0时,方程无解,若y >0,则x ∈R;若y≤0,则x ∈∅.(3)写出解集.师 利用这种思想,我们来研究一元二次不等式的应用.【例1】 某种牌号的汽车在水泥路面上的刹车距离(刹车距离是指汽车刹车后由于惯性往前滑行的距离)s m 和汽车车速x km/h 有如下关系:21801201x x s +=. 在一次交通事故中,测得这种车的刹车距离大于39.5 m ,那么这辆汽车刹车前的车速至少为多少?(精确到0.01 km/h )生 由题设条件应列式为5.3918012012>x x +,移项、整理、化简得不等式x 2+9x-7 110>0.推进新课师 因此这个问题实际就是解不等式x 2+9x-7 110>0的问题.因为Δ>0,方程 x 2+9x-7 110=0有两个实数根,即x 1≈-88.94,x 2≈79.94.然后,画出二次函数y=x 2+9x-7 110,由图象得不等式的解集为{x|x <-88.94或x >79.94}.在这个实际问题中x >0,所以这辆汽车刹车前的车速至少为79.94 km/h.师 【例2】 一个车辆制造厂引进一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (辆)与创造的价值y (元)之间有如下的关系:y=-2x 2+220x.若这家工厂希望在一个星期内利用这条流水线创收6 000元以上,那么他在一星期内大约应该生产多少辆摩托车?生 设在一星期内大约应该生产x 辆摩托车.根据题意,能得到-2x 2+220x >6 000.移项、整理得x 2-110x+3 000<0.[教师精讲]因为Δ=100>0,所以方程x 2-110x+3 000=0有两个实数根x 1=50,x 2=60,然后,画出二次函数y=x 2-110x+3 000,由图象得不等式的解集为{x|50<x <60}.因为只能取整数值,所以,当这条摩托车整车装配流水线在一周内生产的摩托车数量在51到59辆之间时,这家工厂能够获得6 000元以上的收益.[知识拓展]【例3】 解不等式(x-1)(x+4)<0.思路一:利用前节的方法求解.思路二:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号, ∴原不等式的解集是下面两个不等式组⎩⎨⎧+-04,01<>x x 与⎩⎨⎧+-0401><x x 的解集的并集,即⎭⎬⎫⎩⎨⎧⎩⎨⎧+-0401<>x x x {∅=⎭⎬⎫⎩⎨⎧+-0401><x x x U ∪{x|-4<x <1}={x|-4<x <1}.书写时可按下列格式: 解:∵(x-1)(x+4)<0⇔⎩⎨⎧+-0401<>x x 或⎩⎨⎧+-0401><x x ⇔x ∈∅或-4<x <1⇔-4<x <1, ∴原不等式的解集是{x|-4<x <1}.思路三:由于不等式的解与相应方程的根有关系,因此可求其根并由相应的函数值的符号表示出来即可求出不等式的解集.解:①求根:令(x-1)(x+4)=0,解得x (从小到大排列)分别为-4,1,这两根将x 轴分为三部分:(-∞,-4),(-4,1),(1,+∞).②分析这三部分中原不等式左边各因式的符号:(-∞,-4) (-4,1) (1,+∞) x+4- + + x-1- - + (x-1)(x+4) + - +③由上表可知,原不等式的解集是{x|-4<x <1}.点评:此法叫区间法,解题步骤是:①将不等式化为(x-x1)(x-x 2)…(x-x n)>0(<0)的形式(各项x的符号化“+”),令(x-x )(x-x2)…(x-x n)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,1两个分界点把数轴分成三部分……②按各根把实数分成的几部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);③计算各区间内各因式的符号,下面是乘积的符号;④看下面积的符号写出不等式的解集(你会发现符号的规律吗).练习1:解不等式:(1)x 2-5x-6>0;(2)(x-1)(x+2)(x-3)>0;(3)x(x-3)(2-x)(x+1)>0.答案:(1){x|x<2或x>3};(2){x|-2<x<1或x>3};(3){x|-1<x<0或2<x<3}.教师书写示范:如第(2)题:解不等式(x-1)(x+2)(x-3)>0.解:①检查各因式中x的符号均正;②求得相应方程的根为-2,1,3;③列表如下:(-∞,-2)(-2,1)(1,3)(3,+∞)x+2 - + + +x-1 - - + +x-3 - - - + 各因式积- + - +④由上表可知,原不等式的解集为{x|-2<x<1或x>3}.思路四:上面的区间法实际上是把看相应函数图象上使y<0或y>0的x的部分数值化列成表了,我们试想若能画出图象(此时我们只注意y值的正负不注意其他方面),那么它相对于x轴的位置应是什么呢?可把表上各部分函数值的正负情况用下图表示,由图即可写出不等式的解集.由此看出,如果不像上面那样列表,就用这种方法也可以求这个不等式的解.你能总结一下用这种方法解不等式的规律吗?①将不等式化为(x-x1)(x-x2)…(x-x n)>0(<0)的形式,并将各因式x的系数化“+”;②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.这种方法叫数轴标根法.练习2:用数轴标根法解上述练习1中不等式(1)~(3).教师书写示范:如第(2)题:解不等式x(x-3)(2-x)(x+1)>0.解:①将原不等式化为x(x-3)(x-2)(x+1)<0;②求得相应方程的根为-1,0,2,3;③在数轴上表示各根并穿线(自右上方开始),如右图:④原不等式的解集为{x|-1<x<0或2<x<3}.[合作探究]师【例4】解不等式:(x-2)2(x-3)3(x+1)<0.解:①检查各因式中x 的符号均正;②求得相应方程的根为-1,2,3(注意:2是二重根,3是三重根);③在数轴上表示各根并穿线,每个根穿一次(自右上方开始),如下图:④原不等式的解集为{x|-1<x <2或2<x <3}.说明:∵3是三重根,∴在C 处穿三次,2是二重根.∴在 B 处穿两次,结果相当于没穿.由此看出,当左侧f(x)有相同因式(x-x 1)n ,n 为奇数时,曲线在x 1点处穿过数轴;n 为偶数时,曲线在x 1点处不穿过数轴,不妨归纳为“奇穿偶 不穿”.【练习3】 解不等式:(x-3)(x+1)(x 2+4x+4)≤0.解:①将原不等式化为(x-3)(x+1)(x+2)2≤0;②求得相应方程的根为-2(二重),-1,3;③在数轴上表示各根并穿线,如右图:④原不等式的解集是{x|-1≤x≤3或x=-2}.点评:注意不等式若带“=”,点画为实心,解集边界处应有等号;另外,线虽不穿-2点,但x=-2满足“=”的条件,不能漏掉.[教师精讲]师 由分式方程的定义不难联想到:分母中含有未知数的不等式叫做分式不等式.例如073<+-x x ,0322322≤--+-x x x x 等都是分式不等式. 师 分式不等式的解法.由不等式的性质易知:不等式两边同乘以正数,不等号方向不变;不等式两边同乘以负数,不等号方向要变;分母中有未知数x ,不等式两边同乘以一个含x 的式子,它的正负不知,不等号方向无法确定,无从解起,若讨论分母的正负,再解也可以,但太复杂.因此,解分式不等式,切忌去分母.解法是:移项、通分,右边化为0,左边化为f(x)[]g(x)的形式.【例5】 解不等式:073<+-x x . 解法一:化为两个不等式组来解. ∵073<+-x x ⇔⎩⎨⎧+-0703<>x x 0或⇔⎩⎨⎧+-0703><x x x ∈∅或-7<x <3-7<x <3,∴原不等式的解集是{x|-7<x <3}.解法二:化为二次不等式来解. ∵073<+-x x ⇔⎩⎨⎧≠++-070)7)(3(x x x <⇔-7<x <3,∴原不等式的解集是{x|-7<x <3}. 点评:若本题带“=”,即(x-3)(x+7)≤0,则不等式解集中应注意x≠-7的条件,解集应是{x|-7<x≤3}.【例6】 解不等式:0322322≤--+-x x x x . 解法一:化为不等式组来解(较繁).解法二:∵0322322≤--+-x x x x ⇔⇔⎪⎩⎪⎨⎧≠--≤--+-0320)32)(23(222x x x x x x ⎩⎨⎧≠+-≤+---,0)1)(3(,0)1)(3)(2)(1(x x x x x x ∴原不等式的解集为{x|-1<x≤1或2≤x <3}. 练习:解不等式253>+-x x . 答案:{x|-13<x <-5}.[方法引导]讲练结合法通过讲解强化训练题目,加深对分式不等式及简单高次不等式解法的理解,提高分析问题和解决问题的能力.针对不同类型的不等式,使学生能灵活有效地进行等价变形.上述过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用,新课程的理念.该过程中的思考、观察、探究起到层层铺设的作用,激起学生学习的兴趣,勇于探索的精神.课堂小结1.关于一元二次不等式的实际应用题,要注意其实际意义.2.求解一般的高次不等式的解法.特殊的高次不等式即右边化为0,左边可分解为一次或二次式的因式的形式不等式,一般用区间法解,注意:①左边各因式中x 的系数化为“+”,若有因式为二次的(不能再分解了)二次项系数也化为“+”,再按我们总结的规律做;②注意边界点(数轴上表示时是“。