高考物理易错题专题三物理动能与动能定理(含解析)及解析

合集下载

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析
(1)玩具滑车到达 点时对 点的压力大小。
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N;(2)6m/s,6m;(3)见解析。
【解析】
【详解】
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
高考物理动能与动能定理试题经典及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

高考物理易错题专题三物理动能与动能定理(含解析)

高考物理易错题专题三物理动能与动能定理(含解析)

高考物理易错题专题三物理动能与动能定理(含解析)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

高考物理动能与动能定理解题技巧(超强)及练习题(含答案)及解析

高考物理动能与动能定理解题技巧(超强)及练习题(含答案)及解析

高考物理动能与动能定理解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

高考物理易错题专题三物理动能与动能定理(含解析)含解析

高考物理易错题专题三物理动能与动能定理(含解析)含解析

高考物理易错题专题三物理动能与动能定理(含解析)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小;(2)选手在传送带上从A运动到B的时间;(3)选手在传送带上克服摩擦力做的功.【答案】(1)5 m/s (2)3 s (3)360 J【解析】试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02,v1=5m/s(2)设选手放开抓手时的水平速度为v2,v2=v1cosθ①选手在传送带上减速过程中 a=-μg② v=v2+at1③④匀速运动的时间t2,s-x1=vt2⑤选手在传送带上的运动时间t=t1+t2⑥联立①②③④⑤⑥得:t=3s(3)由动能定理得W f=mv2-mv22,解得:W f=-360J故克服摩擦力做功为360J.考点:动能定理的应用2.在光滑绝缘的水平面上,存在平行于水平面向右的匀强电场,电场强度为E,水平面上放置两个静止、且均可看作质点的小球A和B,两小球质量均为m,A球带电荷量为,B球不带电,A、B连线与电场线平行,开始时两球相距L,在电场力作用下,A球与QB球发生对心弹性碰撞.设碰撞过程中,A、B两球间无电量转移.(1)第一次碰撞结束瞬间A 、B 两球的速度各为多大?(2)从开始到即将发生第二次碰撞这段过程中电场力做了多少功?(3)从开始到即将发生第二次碰撞这段过程中,若要求A 在运动过程中对桌面始终无压力且刚好不离开水平桌面(v=0时刻除外),可以在水平面内加一与电场正交的磁场.请写出磁场B 与时间t 的函数关系.【答案】(1)10A v '=1Bv ='5QEL(3) 2B =t <≤ 【解析】(1)A 球的加速度QE a m =,碰前A的速度1A v =B 的速度10B v = 设碰后A 、B 球速度分别为'1A v 、'1B v ,两球发生碰撞时,由动量守恒和能量守恒定律有:''111A A B m m m v v v =+,2'2'2111111222A AB m m m v v v =+所以B 碰撞后交换速度:'10A v =,'11B A v v ==(2)设A 球开始运动时为计时零点,即0t =,A 、B 球发生第一次、第二次的碰撞时刻分别为1t 、2t;由匀变速速度公式有:110A avt -==第一次碰后,经21t t -时间A 、B 两球发生第二次碰撞,设碰前瞬间A 、B 两球速度分别为2A v 和2B v ,由位移关系有:()()2'1212112B av t t t t -=-,得到:213t t == ()2211122A A a a v t t t v =-===;'21B B v v = 由功能关系可得:222211=522A B m m QEL W v v +=电(另解:两个过程A 球发生的位移分别为1x 、2x ,1L x =,由匀变速规律推论24L x =,根据电场力做功公式有:()125W QE QEL x x =+=) (3)对A 球由平衡条件得到:A QB mg v =,A at v =,QEa m=从A 开始运动到发生第一次碰撞:()220t mg g t Qat Et m B Q ⎛==<≤ ⎝ 从第一次碰撞到发生第二次碰撞:()2t t B =<≤ 点睛:本题是电场相关知识与动量守恒定律的综合,虽然A 球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.3.如图所示,一质量为M 、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧相连,弹簧的另一端固定在墙上.平板上有一质量为m 的小物块以速度v 0向右运动,且在本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为μ,弹簧弹性势能E p 与弹簧形变量x 的平方成正比,重力加速度为g.求:(1)当弹簧第一次伸长量达最大时,弹簧的弹性势能为E pm ,小物块速度大小为03v 求该过程中小物块相对平板运动的位移大小; (2)平板速度最大时弹簧的弹力大小;(3)已知上述过程中平板向右运动的最大速度为v.若换用同种材料,质量为2m的小物块重复上述过程,则平板向右运动的最大速度为多大?【答案】(1)2049pm E v g mg μμ-;(2)mg μ;(3)2v 【解析】 【分析】(1)对系统由能量守恒求解小物块相对平板运动的位移;(2)平板速度最大时,处于平衡状态,弹力等于摩擦力;(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时弹力等于摩擦力,结合能量转化关系解答. 【详解】(1)弹簧伸长最长时平板速度为零,设相对位移大小为s ,对系统由能量守恒12mv 02=12m(03v)2+E pm +μmgs 解得s =2049pm E v g mgμμ- (2)平板速度最大时,处于平衡状态,f =μmg 即F =f =μmg.(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时 μmg =kx对木板由动能定理得μmgx =E p 1+12Mv 2 同理,当m′=12m ,平板达最大速度v′时,2mg μ=kx′12μmgx′=E p 2+12Mv′2 由题可知E p ∝x 2,即E p 2=14E p 1 解得v′=12v.4.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运动,运动方向如图所示.一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,重力加速度g=10m/s 2,求:(1)物体第一次到达A 点时速度为多大?(2)要使物体不从传送带上滑落,传送带AB 间的距离至少多大? (3)物体随传送带向右运动,最后沿斜面上滑的最大高度为多少? 【答案】(1)8m/s (2)6.4m (3)1.8m 【解析】 【分析】(1)本题中物体由光滑斜面下滑的过程,只有重力做功,根据机械能守恒求解物体到斜面末端的速度大小;(2)当物体滑到传送带最左端速度为零时,AB 间的距离L 最小,根据动能定理列式求解;(3)物体在到达A 点前速度与传送带相等,最后以6m/s 的速度冲上斜面时沿斜面上滑达到的高度最大,根据动能定理求解即可. 【详解】(1)物体由光滑斜面下滑的过程中,只有重力做功,机械能守恒,则得:212mgh mv = 解得:2210 3.28m/s v gh =⨯⨯=(2)当物体滑动到传送带最左端速度为零时,AB 间的距离L 最小,由动能能力得:2102mgL mv μ-=-解得:228m 6.4m 220.510v L g μ===⨯⨯ (3)因为滑上传送带的速度是8m/s 大于传送带的速度6m/s ,物体在到达A 点前速度与传送带相等,最后以6m/s v =带的速度冲上斜面,根据动能定理得:2102mgh mv '-=-带得:226m 1.8m 2210v h g '===⨯带【点睛】该题要认真分析物体的受力情况和运动情况,选择恰当的过程,运用机械能守恒和动能定理解题.5.如图所示,ABC 为竖直面内一固定轨道,AB 段是半径为R 的14光滑圆弧,水平段与圆弧轨道相切于B ,水平段BC 长度为L ,C 端固定一竖直挡板.一质量为m 的小物块自A 端从静止开始沿圆轨道下滑,与挡板共发生了两次碰撞后停止在水平段B 、C 之间的某处,物块每次与挡板碰撞不损失机械能(即碰撞前、后速率相同).不计空气阻力,物块与水平段BC 间的动摩擦因数为μ,重力加速度为g .试求物块 (1)第一次与挡板碰撞时的速率; (2)在水平轨道上滑行的总路程;(3)最后一次滑到圆轨道底端B 处对圆轨道的压力.【答案】(1) 12()v g R L μ-RS μ=(3) 物块最后一次滑到底端B 处对圆轨道的压力可能为43L mg R μ骣琪-琪桫或83Lmg R μ骣琪-琪桫 【解析】 【详解】(1)对物块第一次从A 到C 过程,根据动能定理:2112mgR mgL mv -=μ ① 解得第一次碰撞挡板的速率12()v g R L μ-(2)设物块质量为m ,在水平轨道上滑行的总路程为S ,对物块从开始下滑到停止在水平轨道上的全过程,根据动能定理:mgR -μmg ·S =0③解得RS μ=④(3)设物块最后一次经过圆弧轨道底端B 时的速率为v 2,对圆轨道的压力为FN ,则:22N v F mg m R-= ⑤第一种可能情况:物块与挡板第二次碰撞后,向右运动还未到B 点时即停下,则:22122mgR mg L mv -⋅=μ⑥由⑤⑥解得43N L F mg R ⎛⎫=- ⎪⎝⎭μ ⑦第二种可能情况:物块与挡板第二次碰撞后,向右可再一次滑上光滑圆弧轨道,则:22142mgR mg L mv -⋅=μ ⑧由⑤⑧解得83N L F mg R μ⎛⎫=- ⎪⎝⎭ ⑨物块最后一次滑到底端B 处对圆轨道的压力可能为43L mg R μ骣琪-琪桫或83Lmg R μ骣琪-琪桫6.在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为d .现给A 一初速度,使A 与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d .已知两木块与桌面之间的动摩擦因数均为μ. B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度的大小.【解析】 【详解】设在发生碰撞前的瞬间,木块A 的速度大小为v 0;在碰撞后的瞬间,A 和B 的速度分别为v 1和v 2.在碰撞过程中,由能量守恒定律和动量守恒定律,得2220121112222mv mv mv =+⋅ 0122mv mv mv =+ ,式中,以碰撞前木块A 的速度方向为正,联立解得:13v v =-,2023v v = 设碰撞后A 和B 运动的距离分别为d 1和d 2,由动能定理得21112mgd mv μ=, 2221222m gd mv μ=⋅() .按题意有:21d d d =+ . 联立解得:0185v gd =μ7.将一根长为L 的光滑细钢丝ABCDE 制成如图所示的形状,并固定在竖直平面内.其中AD 段竖直,DE 段为34圆弧,圆心为O ,E 为圆弧最高点,C 与E 、D 与O 分别等高,BC =14AC .将质量为m 的小珠套在钢丝上由静止释放,不计空气阻力,重力加速度为g . (1)小珠由C 点释放,求到达E 点的速度大小v 1;(2)小珠由B 点释放,从E 点滑出后恰好撞到D 点,求圆弧的半径R ;(3)欲使小珠到达E 点与钢丝间的弹力超过4mg,求释放小珠的位置范围.【答案】⑴v 1=0; ⑵243LR π=+; ⑶C 点上方低于34(43)L π+处滑下或高于54(43)L π+处 【解析】 【详解】(1)由机械能守恒可知,小珠由C 点释放,到达E 点时,因CE 等高,故到达E 点的速度为零;(2)由题意:13(2)44BC L R R π⎡⎤=-⋅+⎢⎥⎣⎦;小珠由B 点释放,到达E 点满足:212E mgBC mv =从E 点滑出后恰好撞到D 点,则E R v t = ;2Rt g =联立解得:243L R π=+; (3)a.若小珠到达E 点与小珠上壁对钢丝的弹力等于14mg ,则2114E v mg mg m R-= ;从释放点到E 点,由机械能守恒定律:21112E mgh mv = ; 联立解得:3384(43)L h R π==+ b.若小珠到达E 点与小珠下壁对钢丝的弹力等于14mg ,则2214E v mg mg m R+= ;从释放点到E 点,由机械能守恒定律:22212E mgh mv = ; 联立解得:5584(43)Lh R π==+ ; 故当小珠子从C 点上方低于34(43)L π+ 处滑下或高于54(43)L π+ 处滑下时,小珠到达E 点与钢丝间的弹力超过14mg .8.如图所示,一轻质弹簧左端固定在轻杆的A 点,右端与一质量1m kg =套在轻杆的小物块相连但不栓接,轻杆AC 部分粗糙糙,与小物块间动摩擦因数02μ=.,CD 部分为一段光滑的竖直半圆轨道.小物块在外力作用下压缩弹簧至B 点由静止释放,小物块恰好运动到半圆轨道最高点D ,5BC m =,小物块刚经过C 点速度4v m s =/,g 取210/m s ,不计空气阻力,求:(1)半圆轨道的半径R ;(2)小物块刚经过C 点时对轨道的压力;(3)小物块在外力作用下压缩弹簧在B 点时,弹簧的弹性势能p E . 【答案】⑴0.4m ⑵50N 方向垂直向下(3)18J 【解析】 【分析】 【详解】(1)物块由C 点运动到D 点,根据机械能守恒定律2122mgR mv =R=0.4m⑵小物块刚过C 点时F N -mg = m 2v R所以250N v F mg m N R=+=根据牛顿第三定律知小物块刚经过C 点时对轨道的压力:50N F F N ==方向垂直向下(3)小物块由B 点运动到C 点过程中,根据动能定理212BC W mgL mv μ-=弹 带入数据解得:=18W J 弹 所以18p E J =.9.如图所示,质量为m 1=1kg 的小物块P ,置于桌面上距桌面右边缘C 点L 1=90cm 的A 点并与弹簧的右端接触(不拴接),轻弹簧左端固定,且处于原长状态.质量为M =3.5kg 、长L =1.5m 的小车静置于光滑水平面上,其上表面与水平桌面相平,且紧靠桌子右端.小车左端放有一质量为m 2=0.5kg 的小滑块Q .现用水平向左的推力将P 缓慢压缩L 2=5cm 推至B 点(弹簧仍在弹性限度内)时,撤去推力,此后P 沿桌面滑到桌子边缘C 时速度为2m/s ,并与小车左端的滑块Q 相碰,最后Q 停在小车的右端,物块P 停在小车上距左端0.35m 处P 与桌面间动摩擦因数μ1=0.4,P 、Q 与小车表面间的动摩擦因数μ2=0.1,重力加速度g =10m/s 2 (1)小车最后的速度v ; (2)推力所做的功;(3)在滑块Q 与车相对静止时,Q 到桌边的距离.【答案】(1)0.4m/s ;(2)6J ;(3)1.92m . 【解析】 【详解】(1)设物块P 与滑块Q 碰后最终与小车保持相对静止,其共同速度为v 由动量守恒得:1c 12()m v m m M v =++代入数据可得:v =0.4m/s(2)90cm =0.9m ,设弹簧的最大弹性势能为E pm 根据动能定理得:211121c 1(2)2W m g L L m v μ-+=得:W =6J(3)设物块P 与滑块Q 碰后速度分别为v 1和v 2,P 与Q 在小车上滑行距离分别为S 1和S 2P 与Q 碰撞前后动量守恒,则有:11122c m v m v m v =+由动能定理得:222211222112212111()222m gs m gs m v m v m m M v μμ+=+-++联立得v 1=1m/s ,v 2=2m/s 方程的另一组解:当 v 2′=23m/s 时,v 1′=53m/s ,v 1′>v 2′不合题意舍去. 设滑块Q 与小车相对静止时到桌边的距离为s ,Q 在小车上运动的加速度为a 由牛顿第二定律得:222m g m a μ-=代入数据解得:a =﹣1m/s 2 由匀变速运动规律得:2222v v s a-=解得:s =1.92m10.如图所示的实验装置,可用来探究物体在斜面上运动的加速度以及弹簧储存的弹性势能。

高考物理动能定理的综合应用易错剖析含解析

高考物理动能定理的综合应用易错剖析含解析

高考物理动能定理的综合应用易错剖析含解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,光滑圆弧的半径为80cm ,一质量为1.0kg 的物体由A 处从静止开始下滑到B 点,然后又沿水平面前进3m ,到达C 点停止。

物体经过B 点时无机械能损失,g 取10m/s 2,求:(1)物体到达B 点时的速度以及在B 点时对轨道的压力; (2)物体在BC 段上的动摩擦因数; (3)整个过程中因摩擦而产生的热量。

【答案】(1)4m/s ,30N ;(2)415;(3)8J 。

【解析】 【分析】 【详解】(1)根据机械能守恒有212mgh mv =代入数据解得4m/s v =在B 点处,对小球受力分析,根据牛顿第二定律可得2N mv F mg R-= 代入数据解得30N N F =由牛顿第三定律可得,小球对轨道的压力为30N NN F F '== 方向竖直向下(2)物体在BC 段上,根据动能定理有2102mgx mv μ-=-代入数据解得415μ=(3)小球在整个运动过程中只有摩擦力做负功,重力做正功,由能量守恒可得8J Q mgh ==2.如图所示,倾斜轨道AB 的倾角为37°,CD 、EF 轨道水平,AB 与CD 通过光滑圆弧管道BC 连接,CD 右端与竖直光滑圆周轨道相连.小球可以从D 进入该轨道,沿轨道内侧运动,从E 滑出该轨道进入EF 水平轨道.小球由静止从A 点释放,已知AB 长为5R ,CD 长为R ,重力加速度为g ,小球与斜轨AB 及水平轨道CD 、EF 的动摩擦因数均为0.5,sin37°=0.6,cos37°=0.8,圆弧管道BC 入口B 与出口C 的高度差为l.8R .求:(在运算中,根号中的数值无需算出)(1)小球滑到斜面底端C 时速度的大小. (2)小球刚到C 时对轨道的作用力.(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R /应该满足什么条件? 【答案】(1285gR(2)6.6mg ,竖直向下(3)0.92R R '≤ 【解析】试题分析:(1)设小球到达C 点时速度为v ,a 球从A 运动至C 过程,由动能定理有0021(5sin 37 1.8)cos3752c mg R R mg R mv μ+-⋅=(2分) 可得 5.6c v gR 1分)(2)小球沿BC 轨道做圆周运动,设在C 点时轨道对球的作用力为N ,由牛顿第二定律2c v N mg m r-=, (2分) 其中r 满足 r+r·sin530=1.8R (1分) 联立上式可得:N=6.6mg (1分)由牛顿第三定律可得,球对轨道的作用力为6.6mg ,方向竖直向下. (1分) (3)要使小球不脱离轨道,有两种情况:情况一:小球能滑过圆周轨道最高点,进入EF 轨道.则小球b 在最高点P 应满足2P v m mg R '≥(1分) 小球从C 直到P 点过程,由动能定理,有2211222P c mgR mg R mv mv μ--'⋅=-(1分) 可得230.9225R R R ='≤(1分) 情况二:小球上滑至四分之一圆轨道的Q 点时,速度减为零,然后滑回D .则由动能定理有2102c mgR mg R mv μ--⋅='-(1分)2.3R R '≥(1分)若 2.5R R '=,由上面分析可知,小球必定滑回D ,设其能向左滑过DC 轨道,并沿CB 运动到达B 点,在B 点的速度为v B ,,则由能量守恒定律有22111.8222c B mv mv mg R mgR μ=+⋅+(1分) 由⑤⑨式,可得0B v =(1分)故知,小球不能滑回倾斜轨道AB ,小球将在两圆轨道之间做往返运动,小球将停在CD 轨道上的某处.设小球在CD 轨道上运动的总路程为S ,则由能量守恒定律,有212c mv mgS μ=(1分) 由⑤⑩两式,可得 S=5.6R (1分)所以知,b 球将停在D 点左侧,距D 点0.6R 处. (1分)考点:本题考查圆周运动、动能定理的应用,意在考查学生的综合能力.3.如图所示,半径为R 的圆管BCD 竖直放置,一可视为质点的质量为m 的小球以某一初速度从A 点水平抛出,恰好从B 点沿切线方向进入圆管,到达圆管最高点D 后水平射出.已知小球在D 点对管下壁压力大小为12mg ,且A 、D 两点在同一水平线上,BC 弧对应的圆心角θ=60°,不计空气阻力.求:(1)小球在A 点初速度的大小; (2)小球在D 点角速度的大小;(3)小球在圆管内运动过程中克服阻力做的功. 【答案】gR 2gR(3)14mgR【解析】 【分析】(1)根据几何关系求出平抛运动下降的高度,从而求出竖直方向上的分速度,根据运动的合成和分解求出初速度的大小.(2)根据向心力公式求出小球在D 点的速度,从而求解小球在D 点角速度. (3)对A 到D 全程运用动能定理,求出小球在圆管中运动时克服阻力做的功. 【详解】(1)小球从A 到B ,竖直方向: v y 2=2gR(1+cos 60°)解得v y =3gR 在B 点:v 0=60y v tan =gR .(2)在D 点,由向心力公式得mg-12mg =2Dmv R解得v D =2gRω=D v R =2gR. (3)从A 到D 全过程由动能定理:-W 克=12mv D 2-12mv 02 解得W 克=14mgR. 【点睛】本题综合考查了平抛运动和圆周运动的基础知识,难度不大,关键搞清平抛运动在水平方向和竖直方向上的运动规律,以及圆周运动向心力的来源.4.如图所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电微粒静止在空间范围足够大的电场强度为E1的匀强电场中.取g =10 m/s 2. (1)求匀强电场的电场强度 E1的大小和方向;(2)在t =0时刻,匀强电场强度大小突然变为E2=4.0×103N/C ,且方向不变.求在t =0.20 s 时间内电场力做的功;(3)在t =0.20 s 时刻突然撤掉第(2)问中的电场,求带电微粒回到出发点时的动能.【答案】(1)2.0×103N/C ,方向向上 (2)8.0×10-4J (3)8.0×10-4J 【解析】 【详解】(1)设电场强度为E ,则:Eq mg =,代入数据解得:4362.01010/ 2.010/1010mg E N C N C q --⨯⨯===⨯⨯,方向向上 (2)在0t =时刻,电场强度突然变化为:32 4.010/E N C =⨯,设微粒的加速度为a ,在0.20t s =时间内上升高度为h ,电场力做功为W ,则:21qE mg ma -=解得:2110/a m s =根据:2112h a t =,解得:0.20=h m电场力做功:428.010J W qE h -==⨯(3)设在0.20t s =时刻突然撤掉电场时粒子的速度大小为v ,回到出发点时的动能为k E ,则:v at =,212k E mgh mv =+解得:48.010J k E -=⨯5.如图所示,质量为 1.0kg m =的小物体从A 点以 5.0m/s A v =的初速度沿粗糙的水平面匀减速运动距离 =1.0 m s 到达B 点,然后进入半径R =0.4m 竖直放置的光滑半圆形轨道,小物体恰好通过轨道最高点C 后水平飞出轨道,重力加速度g 取l0m/s 2。

高考物理动能定理的综合应用易错剖析含解析

高考物理动能定理的综合应用易错剖析含解析

高考物理动能定理的综合应用易错剖析含解析一、高中物理精讲专题测试动能定理的综合应用1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为()37sin370.6,cos370.8β︒︒︒===,一个可看成质点的小环套在细杆OA 上从图中离轨道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。

【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】(1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为2sin cos 4.4m/s mg mg a mβμβ-==设物体与A 点之间的距离为0L ,由几何关系可得0 2.2m sin37hL ︒== 设物体从静止运动到A 所用的时间为t ,由2012L at =,得 1s t =(2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得cos3700mgh mgs μ︒=--代入数据解得s =8.25m(3)假设物体能依次到达B 点、D 点,由动能定理有201(sin37)cos37()2B mg h L mg L L mv μ︒︒+=-- 解得20B v <说明小环到不了B 点,最终停在A 点处2.小明同学根据上海迪士尼乐园游戏项目“创极速光轮”设计了如图所示的轨道。

一条带有竖直圆轨道的长轨道固定在水平面上,底端分别与两侧的直轨道相切,其中轨道AQ 段粗糙、长为L 0=6.0m ,QNP 部分视为光滑,圆轨道半径R =0.2m ,P 点右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.5m 。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)

的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 )mgR 2
(n=0、1、
2)
【解析】
【分析】
【详解】
(1)设小圆环与 OB 之间的摩擦力为 f,OB=L;从释放到回到 O 点,由能量关系可知,当
弹簧的压缩量为 d 时,弹簧具有的弹性势能
EP 2 fL
小圆环从释放能到达 C 点到,由能量关系可知
可得:
EP fL mgR 0
EP 2mgR
选手在传送带上减速过程中 a=-μg② v=v2+at1③

匀速运动的时间 t2,s-x1=vt2⑤ 选手在传送带上的运动时间 t=t1+t2⑥ 联立①②③④⑤⑥得:t=3s
(3)由动能定理得 Wf= mv2- mv22,解得:Wf=-360J
故克服摩擦力做功为 360J. 考点:动能定理的应用
2.如图所示,小滑块(视为质点)的质量 m= 1kg;固定在地面上的斜面 AB 的倾角
【解析】
【详解】
(1)设物块初速度为 v,物块能从传送带右侧滑离,对其分析得:
mgL
Ek
1 2
mv2
解得:
Ek 0
v 4m / s
(2)物块在传送带上的运动是先向右减速运动,后向左加速运动。物块向右减速运动时, 有:
t1
v a
mgx1
0
1 2
mv2
物块与传送带的相对滑动产生的热量:
Q1 mg v0t1 x1
FN
mg
m
vc2 R
解得:
vC 6m/s
(2)从 C 点到 B 点,由动能定理得:
2mgR
1 2
mvB2
1 2
mvC2
解得:
vB 4m/s 小车在 BD 段运动的加速度大小为:
a f 10m/s2 m
由运动学公式:
解得:
s
vBt
1 2
at
2
t 0.3s (3)从 B 点到 D 点,由运动学公式:
(1)设 A、B 在转动过程中,轻杆对 A、B 做的功分别为 WT 和WT ,
根据题意有:WT WT 0
设 A、B 到达圆环最高点的动能分别为 EKA、EKB 对 A 根据动能定理:qER﹣mAgR+WT1=EKA
对 B 根据动能定理:WT1 mB gR E
联立解得:EKA+EKB=﹣0.04J 由此可知:A 在圆环最高点时,系统动能为负值,故 A 不能到达圆环最高点 (2)设 B 转过 α 角时,A、B 的速度大小分别为 vA、vB, 因 A、B 做圆周运动的半径和角速度均相同,故:vA=vB
向左加速运动时,有:
t2
v0 a
mgx2
1 2
mv02
物块与传送带的相对滑动产生的热量:
Q2 mg v0t2 x2
Q Q1 Q2 12.5J
7.如图所示,在方向竖直向上、大小为 E=1×106V/m 的匀强电场中,固定一个穿有 A、B 两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为 O、半径为 R=0.2m.A、B 用一根绝缘轻杆相连,A 带的电荷量为 q=+7×10﹣7C,B 不带电,质量分别为
当滑块恰好能静止在斜面上,则有
mg sin 3mg cos
解得
3
3 4所以,当2源自3,即1 32
3 4
时,滑块在斜面
AB
和水平地面间多次反复运动,
最终停止于 B 点。
综上所述,
的取值范围是
1 32
3 4

3
13 16

3.如图甲所示为某一玩具汽车的轨道,其部分轨道可抽象为图乙的模型. AB 和 BD 为两 段水平直轨道,竖直圆轨道与水平直轨道相切于 B 点, D 点为水平直轨道与水平半圆轨道 的切点.在某次游戏过程中,通过摇控装置使静止在 A 点的小车以额定功率启动,当小车 运动到 B 点时关闭发动机并不再开启,测得小车运动到最高点 C 时对轨道的压力大小
(1)弹簧弹力对物块做的功; (2)物块离开 C 点后,再落回到水平面上时距 B 点的距离; (3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的 取值范围为多少?
【答案】(1)
(2)4R(3)

【解析】
【详解】
(1)由动能定理得 W=
在 B 点由牛顿第二定律得:9mg-mg=m 解得 W=4mgR (2)设物块经 C 点落回到水平面上时距 B 点的距离为 S,用时为 t,由平抛规律知 S=vct
(2)因弹簧弹性势能与压缩量的平方成正比,则弹簧的压缩量为 2d 时弹性势能为
小圆环到达最高点 D 时:
EP´=4EP=8mgR
EP'
1 2
mvD2
mg 2R
fL
解得
在最高点 D 时由牛顿第二定律:
vD 10gR
N mg m vD2 R
解得
N=9mg,方向竖直向下
由牛顿第三定律可知在 D 点时轨道受到的作用为 9mg,方向竖直向上;
①滑块恰好能从 A 下滑到 B ,设动摩擦因数为 1 ,由动能定律得:
mg sin
s 1mg cos
s
0
1 2
mv02
解得
1
13 16
②滑块在斜面 AB 和水平地面间多次反复运动,最终停止于 B 点,当滑块恰好能返回 A
点,由动能定理得
2mg cos
2s
0
1 2
mv02
解得
2
1 32
此后,滑块沿斜面下滑,在光滑水平地面和斜面之间多次反复运动,最终停止于 B 点。
(1)选手放开抓手时的速度大小; (2)选手在传送带上从 A 运动到 B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】
试题分析:(1)设选手放开抓手时的速度为 v1,则-mg(L-Lcosθ)= mv12- mv02,
v1=5m/s (2)设选手放开抓手时的水平速度为 v2,v2=v1cosθ①
=37°、长 s=1m,点 A 和斜面最低点 B 之间铺了一层均质特殊材料,其与滑块间的动摩擦
因数 μ 可在 0≤μ≤1.5 之间调节。点 B 与水平光滑地面平滑相连,地面上有一根自然状态下 的轻弹簧一端固定在 O 点另一端恰好在 B 点。认为滑块通过点 B 前、后速度大小不变;最 大静摩擦力等于滑动摩擦力。取 g=10m/s2 ,sin37°=0.6,cos37°=0.8,不计空气阻力。 (1)若设置 μ=0,将滑块从 A 点由静止释放,求滑块从点 A 运动到点 B 所用的时间。 (2)若滑块在 A 点以 v0=lm/s 的初速度沿斜面下滑,最终停止于 B 点,求 μ 的取值范围。

联立知:EP≥ mgR. 综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为
EP≤mgR 或 EP≥ mgR.
5.如图所示,将一根弹簧和一个小圆环穿在水平细杆上,弹簧左端固定,右端与质量为 m 的小圆环相接触,BC 和 CD 是由细杆弯成的 1/4 圆弧,BC 分别与杆 AB 和弧 CD 相切,两圆 弧的半径均为 R.O 点为弹簧自由端的位置.整个轨道竖直放置,除 OB 段粗糙外,其余部 分均光滑.当弹簧的压缩量为 d 时释放,小圆环弹出后恰好能到达 C 点,返回水平杆时刚 好与弹簧接触,停在 O 点,(已知弹簧弹性势能与压缩量的平方成正比,小球通过 B 处和 C 处没有能量损失),问:
(3)为了使物块能停在 OB 的中点,则要求滑块到达的最高点为 D 点,然后返回,则
EP'' fL 2mgR 3mgR
为了使物块能停在 OB 的中点,同时还应该满足:
EP''
(2n 1)
f
L 2
(n
1 )mgR 2
则只能取 n=0、1、2;
6.如图所示,水平传送带长为 L=4m,以 v0 2m / s 的速度逆时针转动。一个质量为 lkg
(1)小车运动到 C 点时的速度大小;
(2)小车在 BD 段运动的时间;
(3)水平半圆轨道对小车的作用力大小;
(4)要使小车能通过水平半圆轨道,发动机开启的最短时间.
【答案】(1) 6m/s ;(2) 0.3s ;(3) 4 2N .;(4) 0.35s .
【解析】
【详解】
(1)由小车在 C 点受力得:
高考物理易错题专题三物理动能与动能定理(含解析)及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,在娱乐节目中,一质量为 m=60 kg 的选手以 v0=7 m/s 的水平速度抓住竖直 绳下端的抓手开始摆动,当绳摆到与竖直方向夹角 θ=37°时,选手放开抓手,松手后的上 升过程中选手水平速度保持不变,运动到水平传送带左端 A 时速度刚好水平,并在传送带 上滑行,传送带以 v=2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为 L=6 m,传 送带两端点 A、B 间的距离 s=7 m,选手与传送带间的动摩擦因数为 μ=0.2,若把选手看 成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:
mA=0.01kg、mB=0.08kg.将两小球从圆环上的图示位置(A 与圆心 O 等高,B 在圆心 O 的 正下方)由静止释放,两小球开始沿逆时针方向转动.重力加速度大小为 g=10m/s2 .
(1)通过计算判断,小球 A 能否到达圆环的最高点 C? (2)求小球 A 的最大速度值. (3)求小球 A 从图示位置逆时针转动的过程中,其电势能变化的最大值.
4.光滑水平面 AB 与一光滑半圆形轨道在 B 点相连,轨道位于竖直面内,其半径为 R,一 个质量为 m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力 作用下获得一速度,当它经 B 点进入半圆形轨道瞬间,对轨道的压力为其重力的 9 倍,之 后向上运动经 C 点再落回到水平面,重力加速度为 g.求:
相关文档
最新文档