高考物理动能定理的综合应用及其解题技巧及练习题(含答案)

合集下载

高中物理动能定理的综合应用及其解题技巧及练习题(含答案)及解析

高中物理动能定理的综合应用及其解题技巧及练习题(含答案)及解析

高中物理动能定理的综合应用及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s .(3) 0.5s 内传送带位移x 2=vt =3m 参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .2.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。

高中物理动能定理的综合应用题20套(带答案)及解析

高中物理动能定理的综合应用题20套(带答案)及解析

(1)滑块到达底端 B 时的速度大小 vB;
(2)滑块与传送带间的动摩擦因数 μ;
(3)此过程中,由于克服摩擦力做功而产生的热量 Q.
【答案】(1)
2gh (2) v02 2gh (3) m v0
2
2gh
2gl
2
【解析】
试题分析:(1)滑块在由
A

B
的过程中,由动能定理得:
mgh= 1 2
(1)求运动员在 AB 段下滑时受到阻力 Ff 的大小; (2)若运动员能够承受的最大压力为其所受重力的 6 倍,则 C 点所在圆弧的半径 R 至少应为 多大? 【答案】(1)144 N (2)12.5 m 【解析】
试题分析:(1)运动员在 AB 上做初速度为零的匀加速运动,设 AB 的长度为 x,斜面的倾 角为 α,则有 vB2=2ax
mvB2
0

解得:

B
2gh ;
(2)滑块在由 B 到 C 的过程中,由动能定理得:μmgL= 1 mv02− 1 mvB2,
2
2
解得, =v02 2gh ; 2gL
(3)产生的热量:Q=μmgL
L 相对, 相对
0 B 2
2 g
= ( 0
2gh)2 2 g
(或
(0 v02
2 gh )2 2gh
(3)传送带的速度大于或等于 v1,则滑块回到水平轨道时的速度大小仍为 v1
mgs
0
1 2
mv12
得 s=0.9m,即滑块在水平轨道上滑行的路程为 0.9m,则最后停在离 B 点 0.2m 处。
若传送带的速度 7 m/s <v<3m/s,则滑块将回到 B 点,滑上圆弧轨道后又滑到水平轨道,

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

(1)小车运动到 C 点时的速度大小;
(2)小车在 BD 段运动的时间;
(3)水平半圆轨道对小车的作用力大小;
(4)要使小车能通过水平半圆轨道,发动机开启的最短时间.
【答案】(1) 6m/s ;(2) 0.3s ;(3) 4 2N .;(4) 0.35s .
【解析】
【详解】
(1)由小车在 C 点受力得:
【答案】(1)8m/s (2)35J (3)5 次 【解析】 【详解】 (1)物块在 PO 过程中受到竖直向下的重力、垂直斜面向上的弹力、和沿斜面向上的摩擦 力,此过程应用动能定理得:
mgL sin mgL cos 1 mv2 2
解得物块第一次接触弹簧时物体的速度的大小为:
v 2gLsin cos 8 m/s
mvA2m
WT
mg
h sin
h
2.如图所示,粗糙水平地面与半径为 R=0.4m 的粗糙半圆轨道 BCD 相连接,且在同一竖直 平面内,O 是 BCD 的圆心,BOD 在同一竖直线上.质量为 m=1kg 的小物块在水平恒力 F=15N 的作用下,从 A 点由静止开始做匀加速直线运动,当小物块运动到 B 点时撤去 F, 小物块沿半圆轨道运动恰好能通过 D 点,已知 A、B 间的距离为 3m,小物块与地面间的动 摩擦因数为 0.5,重力加速度 g 取 10m/s2.求: (1)小物块运动到 B 点时对圆轨道 B 点的压力大小. (2)小物块离开 D 点后落到地面上的点与 D 点之间的距离
2mL QE
点睛:本题是电场相关知识与动量守恒定律的综合,虽然 A 球受电场力,但碰撞的内力远
大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么
A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是

动能定理的综合应用含答案

动能定理的综合应用含答案

动能定理的综合应用1.如右图所示,半径R=2m 的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h=1.25m ,现将一质量m=0.2kg 的小滑块从A 点由静止释放,滑块沿圆弧轨道运动至B 点并以v=5m/s 的速度水平飞出(g 取10m /s 2).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功;(2)小滑块经过B 点时对圆轨道的压力大小;(3)小滑块着地时的速度大小。

2.如图所示,质量为m =5kg 的摆球从图中A 位置由静止开始摆下,当小球摆至竖直位置到达B 点时绳子遇到B 点上方电热丝而被烧断。

已知摆线长为L =1.6m ,OA 与OB 的夹角为60o ,C 为悬点O 正下方地面上一点,OC 间的距离h =4.8m ,若不计空气阻力及一切能量损耗,g =10m/s 2,求: (1)小球摆到B 点时的速度大小;(2)小球落地点D 到C 点之间的距离; (3)小球的落地时的速度大小3、(14分)如图所示,一个人用一根长1m ,只能承受46N 拉力的绳子,拴着一个质量为1kg 的小球,在竖直平面内作圆周运动,已知圆心O 离地面h =6m 。

转动中小球运动到最低点时绳子突然断了,求(1)绳子断时小球运动的角速度多大?(2)绳断后,小球落地点与抛出点间的水平距离。

(取g =10m/s 2) 4.在光滑的水平面桌上有质量为m=0.2kg 的小球,它压缩着一个轻弹簧,弹簧一端固定,如图所示。

轻弹簧原来处于静止状态,具有弹性势能E P =10.6J ,现突然释放弹簧,小球脱离弹簧后滑向与水平面相切,半径为为R=0.625m 的竖直放置的光滑半圆形轨道。

取g=10m/s 2则:(1)试通过计算判断小球能否滑到B 点?(2)若小球能通过B 点,求此时它对轨道的压力为多大。

5.如图所示,半径R =0.40m 的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A 。

高考物理动能定理的综合应用题20套(带答案)含解析(1)

高考物理动能定理的综合应用题20套(带答案)含解析(1)

高考物理动能定理的综合应用题20套(带答案)含解析(1)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv=tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=3m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J5.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .6.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。

高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析

高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析

高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

已知它落到水面上时相对于O 点(D 点正下方)的水平距离10m OB =。

为了能让滑车抛到水面上的更远处,有人在轨道的下方紧贴D 点安装一水平传送带,传送带右端轮子的圆心与D 点的水平距离为8m ,轮子半径为0.4m (传送带的厚度不计),若传送带与玩具滑车之间的动摩擦因数为0.4,玩具滑车的质量为4kg ,不计空气阻力(把玩具滑车作质点处理),求 (1)玩具滑车到达D 点时对D 点的压力大小。

(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。

(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。

【答案】(1)80N ;(2)6m/s ,6m ;(3)见解析。

【解析】 【详解】(1)玩具滑车到达D 点时,由牛顿第二定律:2DD v F mg m R-=解得2210=404=80N 10D D v F mg m R =++⨯;(2)若无传送带时,由平抛知识可知:D x v t =解得1s t =如果传送带保持不动,则当小车滑到最右端时,由动能定理:221122D mv mv mgL μ-=- 解得v =6m/s因为6m/s 2m/s v gR =>=,则小车从右端轮子最高点做平抛运动,则落水点距离传送带右端的水平距离:'6m x vt ==(3)①若传送带的速度v ≤6m/s ,则小车在传送带上运动时一直减速,则到达右端的速度为6m/s ,落水点距离传送带右端的水平距离为6m ; ②若小车在传送带上一直加速,则到达右端时的速度满足'221122D mv mv mgL μ-= 解得'241m/s v =若传送带的速度241m/s v ≥,则小车在传送带上运动时一直加速,则到达右端的速度为241m/s ,落水点距离传送带右端的水平距离为241m x vt ==;③若传送带的速度10m/s≥v ≥6m/s ,则小车在传送带上运动时先减速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt=v m ;④若传送带的速度241m/s ≥v ≥10m/s ,则小车在传送带上运动时先加速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt =v m 。

高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析

高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析

高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。

水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。

用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。

已知物块与桌面间的动摩擦因数μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶(1)物块通过P 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则22y v gh =o sin 60y v v=整理可得,物块通过P 点的速度8m/s v =(2)从P 到M 点的过程中,机械能守恒2211=(1cos60)+22o M mv mgR mv + 在最高点时根据牛顿第二定律2MN mv F mg R+= 整理得4.8N N F =根据牛顿第三定律可知,物块对轨道的压力大小为4.8N(3)从D 到P 物块做平抛运动,因此o cos 604m/s D v v ==从C 到D 的过程中,根据能量守恒定律212p D E mgx mv μ=+C 、D 两点间的距离2m x =2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。

开始时让连着A 的细线与水平杆的夹角α。

现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求:(1)当细线与水平杆的夹角为β(90αβ<<︒)时,A 的速度为多大? (2)从开始运动到A 获得最大速度的过程中,绳拉力对A 做了多少功?【答案】(1)22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)T sin h W mg h α⎛⎫=- ⎪⎝⎭ 【解析】 【详解】(2)A 、B 的系统机械能守恒P K E E ∆=∆减加2211sin sin 22A B h h mg mv mv αβ⎛⎫-=+ ⎪⎝⎭cos A B v v α=解得22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)当A 速度最大时,B 的速度为零,由机械能守恒定律得P K E E ∆=∆减加21sin 2Am h mg h mv α⎛⎫-= ⎪⎝⎭ 对A 列动能定理方程2T 12Am W mv =联立解得T sin h W mg h α⎛⎫=- ⎪⎝⎭3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。

高考物理动能定理的综合应用及其解题技巧及练习题(含答案)

高考物理动能定理的综合应用及其解题技巧及练习题(含答案)

高考物理动能定理的综合应用及其解题技巧及练习题(含答案)一、高中物理精讲专题测试动能定理的综合应用1.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=3,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理2.如图所示,光滑曲面与光滑水平导轨MN 相切,导轨右端N 处于水平传送带理想连接,传送带长度L =4m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v =4.0m/s 运动.滑块B 、C 之间用细绳相连,其间有一压缩的轻弹簧,B 、C 与细绳、弹簧一起静止在导轨MN 上.一可视为质点的滑块A 从h =0.2m 高处由静止滑下,已知滑块A 、B 、C 质量均为m =2.0kg ,滑块A 与B 碰撞后粘合在一起,碰撞时间极短.因碰撞使连接B 、C 的细绳受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离.滑块C 脱离弹簧后以速度v C =2.0m/s 滑上传送带,并从右端滑出落至地面上的P 点.已知滑块C 与传送带之间的动摩擦因数μ=0.2,重力加速度g 取10m/s 2.(1)求滑块C 从传送带右端滑出时的速度大小; (2)求滑块B 、C 与细绳相连时弹簧的弹性势能E P ;(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值v m 是多少? 【答案】(1) 4.0m/s (2) 2.0J (3) 8.1m/s 【解析】 【分析】 【详解】(1)滑块C 滑上传送带到速度达到传送带的速度v =4m/s 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,有mg ma μ=C v v at =+212C x v t at =+代入数据可得3m x = 3m x L =<滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v=4.0m/s(2)设A 、B 碰撞前A 的速度为v 0,A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,有2012A A m gh m v =01()A A B m v m m v =+ 12()()A B A B C C m m v m m v m v +=++A 、B 碰撞后,弹簧伸开的过程系统能量守恒222A 1A 2111()()222P B B C C E m m v m m v m v ++=++代入数据可解得2.0J P E =(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .设A 与B 碰撞后的速度为1v ',分离后A 与B 的速度为2v ',滑块C 的速度为'C v ,C 在传送带上做匀减速运动的末速度为v =4m/s ,加速度大小为2m/s 2,有22()Cv v a L '-=- 解得42m/s Cv '= 以向右为正方向,A 、B 碰撞过程1()A m A B m v m m v '=+弹簧伸开过程12()()A B C C A B m m v m v m m v '''+=++22212111+()()+222p A B A B C C E m m v m m v m v '''+=+代入数据解得74228.14m v =+≈m/s .3.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(210/g m s =)【答案】15N 【解析】 设撤去力前物块的位移为,撤去力时物块的速度为,物块受到的滑动摩擦力对撤去力后物块滑动过程应用动量定理得由运动学公式得对物块运动的全过程应用动能定理由以上各式得 代入数据解得思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.4.如图所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 的长度l BC =1.10 m ,CD 为光滑的14圆弧,半径R =0.60 m .一个质量m =2.0 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC 间的动摩擦因数μ=0.20.轨道在B ,C 两点光滑连接.当物体到达D 点时,继续竖直向上运动,最高点距离D 点的高度h =0.20 m ,sin 53°=0.8,cos 53°=0.6.g 取10 m/s 2.求:(1)物体运动到C 点时速度大小v C (2)A 点距离水平面的高度H(3)物体最终停止的位置到C 点的距离s . 【答案】(1)4 m/s (2)1.02 m (3)0.4 m 【解析】 【详解】(1)物体由C 点到最高点,根据机械能守恒得:()212c mg R h mv += 代入数据解得:4/C v m s =(2)物体由A 点到C 点,根据动能定理得:2102BC c mgH mgl mv μ-=- 代入数据解得: 1.02H m =(3)从物体开始下滑到停下,根据能量守恒得:mgx mgH μ= 代入数据,解得: 5.1x m = 由于40.7BC x l m =+所以,物体最终停止的位置到C 点的距离为:0.4s m =.【点睛】本题综合考查功能关系、动能定理等;在处理该类问题时,要注意认真分析能量关系,正确选择物理规律求解.5.一质量为m =0.1kg 的滑块(可视为质点)从倾角为θ=37°、长为L =6m 的固定租糙斜面顶端由静止释放,滑块运动到斜面底端时的速度大小为v ,所用的时间为t .若让此滑块从斜面底端以速度v 滑上斜面,利滑块在斜面上上滑的时间为12t .已知重力加速度g 取10m/s 2,sin37°=0.6,cos37°=0.8.求: (1)滑块通过斜面端时的速度大小v ;(2)滑块从斜而底端以速度v 滑上斜面又滑到底端时的动能.【答案】(1);(2)1.2J 【解析】 【详解】解:(1)设滑块和斜面间的动摩擦因数为μ,滑块下滑时的加速度大小为1a ,滑块上滑时的加速度大小为2a ,由牛顿第二定律可得 滑块下滑时有1mgsin mgcos ma θμθ-= 滑块上滑时有2mgsin mgcos ma θμθ+= 由题意有122t v a t a == 联立解得μ=0.25则滑块在斜面上下滑时的加速度1a =4m/s 2,滑块上滑时的加速度大小2a =8m/s 2由运动学公式有212v a L =联立解得v =m/s(2)设滑块沿斜面上滑的最大位移为x ,则有222v a x =解得:x =3m则滑块从斜面底端上滑到下滑到斜面底端的过程中,由动能定理有:21cos 22k mg x E mv μθ-⋅=-解得:k E =1.2J6.如图,与水平面夹角θ=37°的斜面和半径R =1.0m 的光滑圆轨道相切于B 点,且固定于竖直平面内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理动能定理的综合应用及其解题技巧及练习题(含答案)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)求滑块与斜面间的动摩擦因数μ;(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -μmgcos37°2sin 37R︒=0-0 解得:μ=0.375⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①在C 点时,根据牛顿第二定律有:mg +N =2Cv m R② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°2sin 37R ︒=212C mv -2012mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④在竖直方向的位移为:y =212gt ⑤ 根据图中几何关系有:tan37°=2R yx-⑥ 由④⑤⑥式联立解得:t =0.2s考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.2.如图所示,AB 是竖直面内的四分之一圆弧形光滑轨道,下端B 点与水平直轨道相切.一个小物块自A 点由静止开始沿轨道下滑,已知轨道半径为R =0.2m ,小物块的质量为m =0.1kg ,小物块与水平面间的动摩擦因数μ=0.5,g 取10m/s 2.求:(1)小物块在B 点时受到的圆弧轨道的支持力大小; (2)小物块在水平面上滑动的最大距离. 【答案】(1)3N (2)0.4m 【解析】(1)由机械能守恒定律,得在B 点联立以上两式得F N =3mg =3×0.1×10N =3N. (2)设小物块在水平面上滑动的最大距离为l ,对小物块运动的整个过程由动能定理得mgR -μmgl =0, 代入数据得【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及动能定理进行解题.3.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(210/g m s =)【答案】15N 【解析】 设撤去力前物块的位移为,撤去力时物块的速度为,物块受到的滑动摩擦力对撤去力后物块滑动过程应用动量定理得由运动学公式得对物块运动的全过程应用动能定理由以上各式得 代入数据解得思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.4.如图所示,光滑圆弧的半径为80cm ,一质量为1.0kg 的物体由A 处从静止开始下滑到B 点,然后又沿水平面前进3m ,到达C 点停止。

物体经过B 点时无机械能损失,g 取10m/s 2,求:(1)物体到达B 点时的速度以及在B 点时对轨道的压力; (2)物体在BC 段上的动摩擦因数; (3)整个过程中因摩擦而产生的热量。

【答案】(1)4m/s ,30N ;(2)415;(3)8J 。

【解析】 【分析】 【详解】(1)根据机械能守恒有212mgh mv =代入数据解得4m/s v =在B 点处,对小球受力分析,根据牛顿第二定律可得2N mv F mg R-= 代入数据解得30N N F =由牛顿第三定律可得,小球对轨道的压力为30N NN F F '== 方向竖直向下(2)物体在BC 段上,根据动能定理有2102mgx mv μ-=-代入数据解得415μ=(3)小球在整个运动过程中只有摩擦力做负功,重力做正功,由能量守恒可得8J Q mgh ==5.如图,I 、II 为极限运动中的两部分赛道,其中I 的AB 部分为竖直平面内半径为R 的14光滑圆弧赛道,最低点B 的切线水平; II 上CD 为倾角为30°的斜面,最低点C 处于B 点的正下方,B 、C 两点距离也等于R.质量为m 的极限运动员(可视为质点)从AB 上P 点处由静止开始滑下,恰好垂直CD 落到斜面上.求:(1) 极限运动员落到CD 上的位置与C 的距离; (2)极限运动员通过B 点时对圆弧轨道的压力; (3)P 点与B 点的高度差.【答案】(1)45R (2)75mg ,竖直向下(3)15R【解析】 【详解】(1)设极限运动员在B 点的速度为v 0,落在CD 上的位置与C 的距离为x ,速度大小为v ,在空中运动的时间为t ,则xcos300=v 0t R-xsin300=12gt 2 0tan 30v gt = 解得x=0.8R(2)由(1)可得:025v gR =通过B 点时轨道对极限运动员的支持力大小为F N20N v F mg m R-=极限运动员对轨道的压力大小为F N ′,则F N ′=F N , 解得'75N F mg =,方向竖直向下; (3) P 点与B 点的高度差为h,则mgh=12mv 02 解得h=R/56.如图所示,半径为R 的圆管BCD 竖直放置,一可视为质点的质量为m 的小球以某一初速度从A 点水平抛出,恰好从B 点沿切线方向进入圆管,到达圆管最高点D 后水平射出.已知小球在D 点对管下壁压力大小为12mg ,且A 、D 两点在同一水平线上,BC 弧对应的圆心角θ=60°,不计空气阻力.求:(1)小球在A 点初速度的大小; (2)小球在D 点角速度的大小;(3)小球在圆管内运动过程中克服阻力做的功. 【答案】gR 2gR(3)14mgR【解析】 【分析】(1)根据几何关系求出平抛运动下降的高度,从而求出竖直方向上的分速度,根据运动的合成和分解求出初速度的大小.(2)根据向心力公式求出小球在D 点的速度,从而求解小球在D 点角速度. (3)对A 到D 全程运用动能定理,求出小球在圆管中运动时克服阻力做的功. 【详解】(1)小球从A 到B ,竖直方向: v y 2=2gR(1+cos 60°) 解得v y 3gR 在B 点:v 0=60y v tan gR(2)在D 点,由向心力公式得mg-12mg =2Dmv R解得v D 2gRω=D v R 2gR(3)从A 到D 全过程由动能定理:-W 克=12mv D 2-12mv 02 解得W 克=14mgR. 【点睛】本题综合考查了平抛运动和圆周运动的基础知识,难度不大,关键搞清平抛运动在水平方向和竖直方向上的运动规律,以及圆周运动向心力的来源.7.如图所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 的长度l BC =1.10 m ,CD 为光滑的14圆弧,半径R =0.60 m .一个质量m =2.0 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC 间的动摩擦因数μ=0.20.轨道在B ,C 两点光滑连接.当物体到达D 点时,继续竖直向上运动,最高点距离D 点的高度h =0.20 m ,sin 53°=0.8,cos 53°=0.6.g 取10 m/s 2.求:(1)物体运动到C 点时速度大小v C (2)A 点距离水平面的高度H(3)物体最终停止的位置到C 点的距离s . 【答案】(1)4 m/s (2)1.02 m (3)0.4 m 【解析】 【详解】(1)物体由C 点到最高点,根据机械能守恒得:()212c mg R h mv += 代入数据解得:4/C v m s =(2)物体由A 点到C 点,根据动能定理得:2102BC c mgH mgl mv μ-=- 代入数据解得: 1.02H m =(3)从物体开始下滑到停下,根据能量守恒得:mgx mgH μ= 代入数据,解得: 5.1x m = 由于40.7BC x l m =+所以,物体最终停止的位置到C 点的距离为:0.4s m =. 【点睛】本题综合考查功能关系、动能定理等;在处理该类问题时,要注意认真分析能量关系,正确选择物理规律求解.8.如图甲所示,静止在水平地面上一个质量为m =4kg 的物体,其在随位移均匀减小的水平推力作用下运动,推力F 随位移x 变化的图象如图乙所示.已知物体与地面之间的动摩擦因数为μ=0.5,g =10m/s 2.求:(1)运动过程中物体的最大加速度大小为多少; (2)距出发点多远时物体的速度达到最大; (3)物体最终停在何处?【答案】(1)20m/s 2(2)3.2m (3)10m 【解析】 【详解】(1)物体加速运动,由牛顿第二定律得:F -μmg =ma当推力F =100N 时,物体所受的合力最大,加速度最大,代入数据得:2max 20m/s Fa g mμ=-=, (2)由图象得出,推力F 随位移x 变化的数值关系为:F =100 – 25x ,速度最大时,物体加速度为零,则F=μmg=20N ,即x = 3.2m(3)F 与位移x 的关系图线围成的面积表示F 所做的功,即01200J 2F W Fx ==对全过程运用动能定理,W F −μmgx m =0代入数据得:x m =10m9.如图所示,在E =103 V/m 的竖直匀强电场中,有一光滑半圆形绝缘轨道QPN 与一水平绝缘轨道MN 在N 点平滑相接,半圆形轨道平面与电场线平行,其半径R =40 cm ,N 为半圆形轨道最低点,P 为QN 圆弧的中点,一带负电q =10-4 C 的小滑块质量m =10 g ,与水平轨道间的动摩擦因数μ=0.15,位于N 点右侧1.5 m 的M 处,g 取10 m/s 2,求:(1)小滑块从M 点到Q 点电场力做的功(2)要使小滑块恰能运动到半圆形轨道的最高点Q ,则小滑块应以多大的初速度v 0向左运动?(3)这样运动的小滑块通过P 点时对轨道的压力是多大? 【答案】(1) - 0.08J(2) 7 m/s (3)0.6 N 【解析】 【分析】 【详解】(1)W=-qE·2R W= - 0.08J (2)设小滑块到达Q 点时速度为v ,由牛顿第二定律得mg +qE =m 2v R小滑块从开始运动至到达Q 点过程中,由动能定理得 -mg·2R -qE·2R -μ(mg +qE)x =12mv 2-12mv 联立方程组,解得:v 0=7m/s.(3)设小滑块到达P 点时速度为v ′,则从开始运动至到达P 点过程中,由动能定理得 -(mg +qE)R -μ(qE +mg)x =12mv′2-12mv 又在P 点时,由牛顿第二定律得F N =m 2v R'代入数据,解得:F N =0.6N由牛顿第三定律得,小滑块通过P 点时对轨道的压力F N ′=F N =0.6N. 【点睛】(1)根据电场力做功的公式求出电场力所做的功;(2)根据小滑块在Q 点受的力求出在Q 点的速度,根据动能定理求出滑块的初速度; (3)根据动能定理求出滑块到达P 点的速度,由牛顿第二定律求出滑块对轨道的压力,由牛顿第三定律得,小滑块通过P 点时对轨道的压力.10.如图所示,某工厂车间有甲、乙两辆相同的运料小车处于闲置状态,甲车与乙车、乙车与竖直墙面间的距离均为L ,由于腾用场地,需把两辆小车向墙角处移动。

相关文档
最新文档