最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

合集下载

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高度差为h1=0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C点到B点的高度差为h2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,然后从B点抛出,恰好以平行于传送带的速度从C点落到传送带上,传送带逆时针传动,速度大小为v=0.5 m/s,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g=10 m/s2,试求:

由功能关系可得:
(另解:两个过程A球发生的位移分别为 、 , ,由匀变速规律推论 ,根据电场力做功公式有: )
(3)对A球由平衡条件得到: , ,
从A开始运动到发生第一次碰撞:
从第一次碰撞到发生第二次碰撞:
点睛:本题是电场相关知识与动量守恒定律的综合,虽然A球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.
所以
B到C根据动能定理有

高中物理高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

高中物理高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

高中物理高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,质量为m=1kg的滑块,在水平力F作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3m/s,长为L=1.4m,今将水平力撤去,当滑块滑到传送带右端C时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s2.求(1)水平作用力F的大小;(2)滑块开始下滑的高度h;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】(1)(2)0.1 m或0.8 m (3)0.5 J【解析】【分析】【详解】解:(1)滑块受到水平推力F、重力mg和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移:s =v 0t 由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩ 相对滑动生成的热量⑪⑫2.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。

质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。

已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。

高考物理高考物理动能与动能定理答题技巧及练习题(含答案)

高考物理高考物理动能与动能定理答题技巧及练习题(含答案)

高考物理高考物理动能与动能定理答题技巧及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥2.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。

质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。

已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。

高考物理动能与动能定理及其解题技巧及练习题(含答案)含解析

高考物理动能与动能定理及其解题技巧及练习题(含答案)含解析

高考物理动能与动能定理及其解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。

一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。

已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。

(1)求滑块第一次运动到B 点时对轨道的压力。

(2)求滑块在粗糙斜面上向上滑行的最大距离。

(3)通过计算判断滑块从斜面上返回后能否滑出A 点。

【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】(1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有()212B mg h R mv +=那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且()2N 270N B mg h R mv F mg mg R R+=+=+=故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。

(2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得cos37sin37cos370mg h R R L mgL μ+-︒-︒-︒=()所以1.2m L =(3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得()212cos370.542B mv mg h R mgL mg mgR μ'=+-︒=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。

【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

(1)小车运动到 C 点时的速度大小;
(2)小车在 BD 段运动的时间;
(3)水平半圆轨道对小车的作用力大小;
(4)要使小车能通过水平半圆轨道,发动机开启的最短时间.
【答案】(1) 6m/s ;(2) 0.3s ;(3) 4 2N .;(4) 0.35s .
【解析】
【详解】
(1)由小车在 C 点受力得:
【答案】(1)8m/s (2)35J (3)5 次 【解析】 【详解】 (1)物块在 PO 过程中受到竖直向下的重力、垂直斜面向上的弹力、和沿斜面向上的摩擦 力,此过程应用动能定理得:
mgL sin mgL cos 1 mv2 2
解得物块第一次接触弹簧时物体的速度的大小为:
v 2gLsin cos 8 m/s
mvA2m
WT
mg
h sin
h
2.如图所示,粗糙水平地面与半径为 R=0.4m 的粗糙半圆轨道 BCD 相连接,且在同一竖直 平面内,O 是 BCD 的圆心,BOD 在同一竖直线上.质量为 m=1kg 的小物块在水平恒力 F=15N 的作用下,从 A 点由静止开始做匀加速直线运动,当小物块运动到 B 点时撤去 F, 小物块沿半圆轨道运动恰好能通过 D 点,已知 A、B 间的距离为 3m,小物块与地面间的动 摩擦因数为 0.5,重力加速度 g 取 10m/s2.求: (1)小物块运动到 B 点时对圆轨道 B 点的压力大小. (2)小物块离开 D 点后落到地面上的点与 D 点之间的距离
2mL QE
点睛:本题是电场相关知识与动量守恒定律的综合,虽然 A 球受电场力,但碰撞的内力远
大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么
A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
(2)等离子体由下方进入区域I后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q´,则q´E=q´v1B1,即:E=B1v1;正离子束经过区域I加速后,离开PQ的速度大小为v3,根据动能定理可知:qU= mv32- mv22,其中电压U=Ed=B1v1d
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
联立可得:v3= 。
(3)飞船方向调整前后,其速度合成矢量如图所示:
因此tan = ,离子喷出过程中,系统的动量守恒:M v=Nmv3,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N=
9.一质量为m=0.5kg的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s末功率达到最大值,之后保持该功率不变继续运动,运动的v-t图象如图所示,其中AB段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g=10m/s2.
(1)求在A处的正离子的速度大小v2;
(2)正离子经过区域I加速后,离开PQ的速度大小v3;
(3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN成 角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?

高考物理高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高考物理高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高考物理高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析
下.
(3)设物体刚好到达 D 点时的速度为 vD 此时有
解得:
mg mvD2 R
vD gR
设物体恰好通过 D 点时释放点距 B 点的距离为 L0 ,有动能定理可知:
mg[L0
sin
R(1
cos )]
mg
cos
L0
1 2
mvD2
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,质量 m=3kg 的小物块以初速度秽 v0=4m/s 水平向右抛出,恰好从 A 点沿着 圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为 R= 3.75m,B 点是圆弧轨道的最低点,
圆弧轨道与水平轨道 BD 平滑连接,A 与圆心 D 的连线与竖直方向成 37 角,MN 是一段粗
代入数据解得: FNC 60N
根据牛顿第三定律,小物块通过 C 点时对轨道的压力大小是 60N
(3)小物块刚好能通过 C 点时,根据 mg m vC2 2 r
解得: vC2 gr 100.4m / s 2m / s
小物块从 B 点运动到 C 点的过程,根据动能定理有:
mgL
mg
2r
1 2
(1)物体释放后,第一次到达 B 处的速度大小,并求出物体做往返运动的整个过程中在 AB 轨道上通过的总路程 s; (2)最终当物体通过圆弧轨道最低点 E 时,对圆弧轨道的压力的大小; (3)为使物体能顺利到达圆弧轨道的最高点 D(E、O、D 为同一条竖直直径上的 3 个 点),释放点距 B 点的距离 L 应满足什么条件.
mg m vD2 R
可得:vD=2m/s 设小物块落地点距 B 点之间的距离为 x,下落时间为 t,根据平抛运动的规律有: x=vDt,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

距离 l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为 L,撞车后共同滑行的距
离 l 8 L .假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量 M 为故障车质量 25
m 的 4 倍.
(1)设卡车与故障车相撞前的速度为
v1
两车相撞后的速度变为
v2,求
v1 v2
(2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生.
【答案】(1) 4.5m,4.9m;(2) 4J
【解析】
【详解】
(1)设物块在 B 点的最大速度为 vB,由牛顿第二定律得:
Fm
mg
m
vB2 R
从 P 到 B,由动能定理得
mg ( H
R)
1 2
mvB2
0
解得
H=4.5m 物块从 B 点运动到斜面最高处的过程中,根据动能定理得:
-mg[R(1-cos37°)+Lsin37°]-μmgcos37°•L=
公式求得运动时间,由 B 点到最高点,由动能定理,克服重力做功等于摩擦力做功,由此
可求得 AB 间距离,产生的内能由相互作用力乘以相对位移求得
7.如图所示在竖直平面内,光滑曲面 AB 与长度 l=3m 的水平传送带 BC 平滑连接于 B 点, 传送带 BC 右端连接内壁光滑、半径 r=0.55m 的四分之一细圆管 CD,圆管内径略大于物块 尺寸,管口 D 端正下方直立一根劲度系数为 k=50N/m 的轻弹簧,弹簧一端固定,另一端恰 好与管口 D 端平齐.一个质量为 m=0.5kg 的物块(可视为质点)从曲面上 P 点静止释放, P 点距 BC 的高度为 h=0.8m.(已知弹簧的弹性势能 Ep 与弹簧的劲度系数 k 和形变量 x 的
【答案】(1)2 10 m/s。(2)5 J。
【解析】
【详解】
(1)对滑块从 A 到 B 的过程,由动能定理得:来自F1x1F3 x3
mgx
1 2
mvB2


20
2-10
1-0.25
110
4J=
1 2
1
vB2

得:
vB 2 10m/s ;
(2)当滑块恰好能到达最高点 C 时,
mg m vC2 ; R
的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
【答案】(1) v1 5 v2 4
【解析】
(2) L 3 L 2
(1)由碰撞过程动量守恒 Mv1=(M
m)v2

v1 v2
5 4

(2)设卡车刹车前速度为 v0,轮胎与雪地之间的动摩擦因数为 μ
两车相撞前卡车动能变化
1 2
Mv02
1 2
Mv12
MgL

碰撞后两车共同向前滑动,动能变化
1 2
(M
且需要满足 m ≥mg,解得 R≤0.72m, 综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或 0≤R≤0.12m。 【点睛】 解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要 注意灵活选择研究的过程。
2.如图,在竖直平面内,半径 R=0.5m 的光滑圆弧轨道 ABC 与粗糙的足够长斜面 CD 相切 于 C 点,CD 与水平面的夹角 θ=37°,B 是轨道最低点,其最大承受力 Fm=21N,过 A 点的切 线沿竖直方向。现有一质量 m=0.1kg 的小物块,从 A 点正上方的 P 点由静止落下。已知物 块与斜面之间的动摩擦因数 μ=0.5.取 sin37°=0.6.co37°=0.8,g=10m/s2,不计空气阻力。 (1)为保证轨道不会被破坏,求 P、A 间的最大高度差 H 及物块能沿斜面上滑的最大距离 L; (2)若 P、A 间的高度差 h=3.6m,求系统最终因摩擦所产生的总热量 Q。
【答案】(1)6m/s(2)1.5s (3) 0.4 (4) F 2.48N
【解析】
【详解】
(1)根据机械能守恒得:
mgsAB
sin 37
1 2
mvB2
解得:
vB 2gsAB sin 37 21030.6m/s 6m/s ;
(2)物块在斜面上的加速度为:
a1 g sin 6m/s2
在斜面上有:
代入数据解得:
sAB
1 2
a1t 2
物块在 BC 段的运动时间为: BC 段的位移为:
t1 1s
t2 t t1 1.5s
sBC
1 2
(vB
0)t2
4.5m
(3)在水平面上,有: 解得:
0﹣vB a2t2
根据牛顿第二定律有:
a2
vB t2
4m/s2 .
代入数据解得:
﹣mg ma2
0.4 .
物块从 C 点运动到速度最大的过程,根据平衡条件得 mg =kx′
得 x′=0.1m
由动能定理得
mg(r+x′)-
1 2
kx
'2
=
1 2
mvm2
-
1 2
mvC2
解得,最大速度 vm=4m/s (3)物块再次回到 C 点的速度仍为 2m/s,它在传送带上先向左匀减速运动到速度为零, 再向右匀加速运动至 C 点,速度大小仍为 2m/s,因此,电动机多消耗的电能即为物块与传 送带之间的摩擦生热.
关系是:Ep= 1 kx2,水平传送带与物间的动摩擦因数 μ=0.4,重力加速度 g 取 10m/s2.) 2
求:
(1)若传送带静止不动物块在水平传送带 BC 上前进的距离;
(2)若传送带向右匀速运动的速度 v0=2m/s,物块刚进入细圆管 CD 时对管道的弹力,物 块在压缩弹簧过程中的最大速度(压缩弹簧过程未超过弹性限度);
(1)mgsinθ=ma, h/sinθ= ,可得 t="1.6" s. (2)由能的转化和守恒得: mgh=μmgl/2,l="12.8" m.
(3)在此过程中,物体与传送带间的相对位移:x 相=l/2+v 带·t,又 l/2=

而摩擦热 Q=μmg·x 相,
以上三式可联立得 Q="160" J.
(4)物体随传送带向右匀加速,当速度为 v 带="6" m/s 时向右的位移为 x,
则 μmgx=
,x="3.6" m<l/2,
即物体在到达 A 点前速度与传送带相等,最后以 v 带="6" m/s 的速度冲上斜面,

=mgh′,得 h′="1.8" m.
滑块沿斜面下滑时由重力沿斜面向下的分力提供加速度,先求出加速度大小,再由运动学
(1)小物块滑到 B 点时的速度大小.
(2)若小物块从 A 点开始运动到 C 点停下,一共经历时间 t=2.5s,求 BC 的距离.
(3)上问中,小物块与水平面的动摩擦因数 μ 多大?
(4)若在小物块上始终施加一个水平向左的恒力 F,小物块从 A 点由静止出发,沿 ABC 路
径运动到 C 点左侧 3.1m 处的 D 点停下.求 F 的大小.(sin37°=0.6,cos37°=0.8 )
m)v22
0
(M
m)gl

由②式 v02 v12 2 gL
由③式 v22 2 gL
又因 l
8 25
L
可得 v02
3 gL
如果卡车滑到故障车前就停止,由
1 2
Mv02
0
MgL
'

故L' 3 L 2
这意味着卡车司机在距故障车至少 3 L 处紧急刹车,事故就能够免于发生. 2
6.如图所示,倾角为 30°的光滑斜面的下端有一水平传送带,传送带正以 6 m/s 的速度运 动,运动方向如图所示.一个质量为 2 kg 的物体(物体可以视为质点),从 h=3.2 m 高处 由静止沿斜面下滑,物体经过 A 点时,不管是从斜面到传送带还是从传送带到斜面,都不 计其动能损失.物体与传送带间的动摩擦因数为 0.5,物体向左最多能滑到传送带左右两端 AB 的中点处,重力加速度 g=10 m/s2,求:
能定理得: −μmgl+W 弹=0− mv02 由功能关系:W 弹=-△Ep=-Ep 解得 Ep=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得
−2μmgl=Ek− mv02 解得 Ek=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为 v2,由动能定理得
最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,在水平轨道右侧固定半径为 R 的竖直圆槽形光滑轨道,水平轨道的 PQ 段长
度为
,上面铺设特殊材料,小物块与其动摩擦因数为
,轨道其它部分摩擦
不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量
度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求
解力.
4.如图甲所示,长为 4 m 的水平轨道 AB 与半径为 R=0.6 m 的竖直半圆弧轨道 BC 在 B 处 相连接。有一质量为 1 kg 的滑块(大小不计),从 A 处由静止开始受水平向右的力 F 作用,F 随位移变化的关系如图乙所示。滑块与水平轨道 AB 间的动摩擦因数为 μ=0.25,与半圆弧 轨道 BC 间的动摩擦因数未知,g 取 10 m/s2。求: (1)滑块到达 B 处时的速度大小; (2)若到达 B 点时撤去 F,滑块沿半圆弧轨道内侧上滑,并恰好能到达最高点 C,滑块在 半圆弧轨道上克服摩擦力所做的功。
相关文档
最新文档