高考物理动能与动能定理解题技巧及练习题

合集下载

高考必刷题物理动能与动能定理题及解析

高考必刷题物理动能与动能定理题及解析

高考必刷题物理动能与动能定理题及解析一、高中物理精讲专题测试动能与动能定理1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥2.某小型设备工厂采用如图所示的传送带传送工件。

传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。

工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。

传送带长度为6m =L ,不计空气阻力。

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高度差为h1=0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C点到B点的高度差为h2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,然后从B点抛出,恰好以平行于传送带的速度从C点落到传送带上,传送带逆时针传动,速度大小为v=0.5 m/s,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g=10 m/s2,试求:

由功能关系可得:
(另解:两个过程A球发生的位移分别为 、 , ,由匀变速规律推论 ,根据电场力做功公式有: )
(3)对A球由平衡条件得到: , ,
从A开始运动到发生第一次碰撞:
从第一次碰撞到发生第二次碰撞:
点睛:本题是电场相关知识与动量守恒定律的综合,虽然A球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.
所以
B到C根据动能定理有

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析
(1)玩具滑车到达 点时对 点的压力大小。
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N;(2)6m/s,6m;(3)见解析。
【解析】
【详解】
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
高考物理动能与动能定理试题经典及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)

的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

(1)小车运动到 C 点时的速度大小;
(2)小车在 BD 段运动的时间;
(3)水平半圆轨道对小车的作用力大小;
(4)要使小车能通过水平半圆轨道,发动机开启的最短时间.
【答案】(1) 6m/s ;(2) 0.3s ;(3) 4 2N .;(4) 0.35s .
【解析】
【详解】
(1)由小车在 C 点受力得:
【答案】(1)8m/s (2)35J (3)5 次 【解析】 【详解】 (1)物块在 PO 过程中受到竖直向下的重力、垂直斜面向上的弹力、和沿斜面向上的摩擦 力,此过程应用动能定理得:
mgL sin mgL cos 1 mv2 2
解得物块第一次接触弹簧时物体的速度的大小为:
v 2gLsin cos 8 m/s
mvA2m
WT
mg
h sin
h
2.如图所示,粗糙水平地面与半径为 R=0.4m 的粗糙半圆轨道 BCD 相连接,且在同一竖直 平面内,O 是 BCD 的圆心,BOD 在同一竖直线上.质量为 m=1kg 的小物块在水平恒力 F=15N 的作用下,从 A 点由静止开始做匀加速直线运动,当小物块运动到 B 点时撤去 F, 小物块沿半圆轨道运动恰好能通过 D 点,已知 A、B 间的距离为 3m,小物块与地面间的动 摩擦因数为 0.5,重力加速度 g 取 10m/s2.求: (1)小物块运动到 B 点时对圆轨道 B 点的压力大小. (2)小物块离开 D 点后落到地面上的点与 D 点之间的距离
2mL QE
点睛:本题是电场相关知识与动量守恒定律的综合,虽然 A 球受电场力,但碰撞的内力远
大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么
A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
(2)等离子体由下方进入区域I后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q´,则q´E=q´v1B1,即:E=B1v1;正离子束经过区域I加速后,离开PQ的速度大小为v3,根据动能定理可知:qU= mv32- mv22,其中电压U=Ed=B1v1d
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
联立可得:v3= 。
(3)飞船方向调整前后,其速度合成矢量如图所示:
因此tan = ,离子喷出过程中,系统的动量守恒:M v=Nmv3,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N=
9.一质量为m=0.5kg的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s末功率达到最大值,之后保持该功率不变继续运动,运动的v-t图象如图所示,其中AB段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g=10m/s2.
(1)求在A处的正离子的速度大小v2;
(2)正离子经过区域I加速后,离开PQ的速度大小v3;
(3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN成 角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析

高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析

高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

已知它落到水面上时相对于O 点(D 点正下方)的水平距离10m OB =。

为了能让滑车抛到水面上的更远处,有人在轨道的下方紧贴D 点安装一水平传送带,传送带右端轮子的圆心与D 点的水平距离为8m ,轮子半径为0.4m (传送带的厚度不计),若传送带与玩具滑车之间的动摩擦因数为0.4,玩具滑车的质量为4kg ,不计空气阻力(把玩具滑车作质点处理),求 (1)玩具滑车到达D 点时对D 点的压力大小。

(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。

(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。

【答案】(1)80N ;(2)6m/s ,6m ;(3)见解析。

【解析】 【详解】(1)玩具滑车到达D 点时,由牛顿第二定律:2DD v F mg m R-=解得2210=404=80N 10D D v F mg m R =++⨯;(2)若无传送带时,由平抛知识可知:D x v t =解得1s t =如果传送带保持不动,则当小车滑到最右端时,由动能定理:221122D mv mv mgL μ-=- 解得v =6m/s因为6m/s 2m/s v gR =>=,则小车从右端轮子最高点做平抛运动,则落水点距离传送带右端的水平距离:'6m x vt ==(3)①若传送带的速度v ≤6m/s ,则小车在传送带上运动时一直减速,则到达右端的速度为6m/s ,落水点距离传送带右端的水平距离为6m ; ②若小车在传送带上一直加速,则到达右端时的速度满足'221122D mv mv mgL μ-= 解得'241m/s v =若传送带的速度241m/s v ≥,则小车在传送带上运动时一直加速,则到达右端的速度为241m/s ,落水点距离传送带右端的水平距离为241m x vt ==;③若传送带的速度10m/s≥v ≥6m/s ,则小车在传送带上运动时先减速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt=v m ;④若传送带的速度241m/s ≥v ≥10m/s ,则小车在传送带上运动时先加速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt =v m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理动能与动能定理解题技巧及练习题一、高中物理精讲专题测试动能与动能定理1.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。

取重力加速度g =10m/s 2。

求: (1)小球在C 处受到的向心力大小; (2)在压缩弹簧过程中小球的最大动能E km ; (3)小球最终停止的位置。

【答案】(1)35N ;(2)6J ;(3)距离B 0.2m 或距离C 端0.3m 【解析】 【详解】(1)小球进入管口C 端时它与圆管上管壁有大小为 2.5F mg =的相互作用力 故小球受到的向心力为2.53.5 3.511035N F mg mg mg =+==⨯⨯=向(2)在C 点,由2=c v F r向代入数据得21 3.5J 2c mv = 在压缩弹簧过程中,速度最大时,合力为零,设此时滑块离D 端的距离为0x 则有0kx mg =解得00.1m mgx k== 设最大速度位置为零势能面,由机械能守恒定律有201()2c km p mg r x mv E E ++=+得201()3 3.50.56J 2km c p E mg r x mv E =++-=+-=(3)滑块从A 点运动到C 点过程,由动能定理得2132c mg r mgs mv μ⋅-=解得BC 间距离0.5m s =小球与弹簧作用后返回C 处动能不变,小滑块的动能最终消耗在与BC 水平面相互作用的过程中,设物块在BC 上的运动路程为s ',由动能定理有212c mgs mv μ-=-'解得0.7m s '=故最终小滑动距离B 为0.70.5m 0.2m -=处停下. 【点睛】经典力学问题一般先分析物理过程,然后对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

2.如图所示,斜面高为h ,水平面上D 、C 两点距离为L 。

可以看成质点的物块从斜面顶点A 处由静止释放,沿斜面AB 和水平面BC 运动,斜面和水平面衔接处用一长度可以忽略不计的光滑弯曲轨道连接,图中没有画出,不计经过衔接处B 点的速度大小变化,最终物块停在 水平面上C 点。

已知物块与斜面和水平面间的滑动摩擦系数均为μ。

请证明:斜面倾角θ稍微增加后,(不改变斜面粗糙程度)从同一位置A 点由静止释放物块,如图中虚线所示,物块仍然停在同一位置C 点。

【答案】见解析所示 【解析】 【详解】设斜面长为L ',倾角为θ,物块在水平面上滑动的距离为S .对物块,由动能定理得:cos 0mgh mg L mgS μθμ-⋅'-=即:cos 0sin hmgh mg mgS μθμθ-⋅-=0tan hmgh mgmgS μμθ--= 由几何关系可知:tan hL S θ=- 则有:()0mgh mg L S mgS μμ---=0mgh mgL μ-=解得:hL μ=故斜面倾角θ稍微增加后,(不改变斜面粗糙程度)从同一位置A 点由静止释放物块,如图中虚线所示,物块仍然停在同一位置C 点。

3.如图甲所示,长为4 m 的水平轨道AB 与半径为R =0.6 m 的竖直半圆弧轨道BC 在B 处相连接。

有一质量为1 kg 的滑块(大小不计),从A 处由静止开始受水平向右的力F 作用,F 随位移变化的关系如图乙所示。

滑块与水平轨道AB 间的动摩擦因数为μ=0.25,与半圆弧轨道BC 间的动摩擦因数未知,g 取10 m/s 2。

求: (1)滑块到达B 处时的速度大小;(2)若到达B 点时撤去F ,滑块沿半圆弧轨道内侧上滑,并恰好能到达最高点C ,滑块在半圆弧轨道上克服摩擦力所做的功。

【答案】(1)10 m/s 。

(2)5 J 。

【解析】 【详解】(1)对滑块从A 到B 的过程,由动能定理得:2113312B F x F x mgx mv μ--=, 即21202-101-0.251104J=12B v ⨯⨯⨯⨯⨯⨯⨯,得:210m/s B v =;(2)当滑块恰好能到达最高点C 时,2Cv mg m R=;对滑块从B 到C 的过程中,由动能定理得:2211222C B W mg R mv mv -⨯=-, 带入数值得:=-5J W ,即克服摩擦力做的功为5J ;4.如图所示,水平轨道的左端与固定的光滑竖直圆轨道相切于点,右端与一倾角为的光滑斜面轨道在点平滑连接(即物体经过点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为的滑块从圆弧轨道的顶端点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至点,已知光滑圆轨道的半径,水平轨道长为,其动摩擦因数,光滑斜面轨道上长为,取,求(1)滑块第一次经过圆轨道上点时对轨道的压力大小; (2)整个过程中弹簧具有最大的弹性势能; (3)滑块在水平轨道上运动的总时间及滑块几次经过点. 【答案】(1)(2)(3) 3次【解析】本题考查机械能与曲线运动相结合的问题,需运用动能定理、牛顿运动定律、运动学公式、功能关系等知识。

(1)滑块从点到点,由动能定理可得:解得:滑块在点:解得:由牛顿第三定律可得:物块经点时对轨道的压力(2)滑块第一次到达点时,弹簧具有最大的弹性势能.滑块从点到点,由动能定理可得:解得:(3)将滑块在段的运动全程看作匀减速直线运动加速度则滑块在水平轨道上运动的总时间滑块最终停止上在水平轨道间,设滑块在段运动的总路程为,从滑块第一次经过点到最终停下来的全过程, 由动能定理可得:解得:结合段的长度可知,滑块经过点3次。

5.下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍.(1)设卡车与故障车相撞前的速度为v 1两车相撞后的速度变为v 2,求12v v(2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生. 【答案】(1)1254v v = (2)32L L '= 【解析】(1)由碰撞过程动量守恒12)Mv M m v +=( 则1254v v =① (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式22012v v gL μ-= 由③式222v gL μ=又因825l L =可得203v gL μ= 如果卡车滑到故障车前就停止,由2010'2Mv MgL μ-= ④ 故3'2L L =这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生.6.如图所示,半径R = 0.1m 的竖直半圆形光滑轨道BC 与水平面AB 相切,AB 距离x = 1m .质量m = 0.1kg 的小滑块1放在半圆形轨道末端的B 点,另一质量也为m = 0.1kg 的小滑块2,从A 点以0210v =m/s 的初速度在水平面上滑行,两滑块相碰,碰撞时间极短,碰后两滑块粘在一起滑上半圆形轨道.已知滑块2与水平面之间的动摩擦因数μ= 0.2.取重力加速度210m/s g =.两滑块均可视为质点.求(1)碰后瞬间两滑块共同的速度大小v ; (2)两滑块在碰撞过程中损失的机械能E ∆; (3)在C 点轨道对两滑块的作用力F .【答案】(1)v =3m/s (2)ΔE = 0.9J (3)F =8N ,方向竖直向下 【解析】 【详解】(1)物块2由A 到B 应用动能定理:22101122mgx mv mv μ-=- 解得v 1=6m/s两滑块碰撞前后动量守恒,根据动量守恒有:12mv mv = 解得:3/v m s = 方向:水平向右 (2)两滑块在碰撞过程中损失的机械能22111222E mv mv ∆=-⨯ 解得:0.9J E ∆=(3)两滑块从B 到C 机械能守恒,根据机械能守恒定律有:221122222c mv mv mgR ⨯=⨯+ 两滑块在C 点时:2N 22Cv mg F m R+=解得:N 8N F =据牛顿第三定律可得:在C 点轨道对两滑块的作用力F =8N ,方向竖直向下7.如图所示,水平传送带长为L =4m ,以02m /s v =的速度逆时针转动。

一个质量为lkg 的物块从传送带左侧水平向右滑上传送带,一段时间后它滑离传送带。

已知二者之间的动摩擦因数0.2μ=,g =10m/s 2。

(1)要使物块能从传送带右侧滑离,则物块的初速度至少多大?(2)若物块的初速度为3m /s v '=,则物块在传送带上运动时因摩擦产生的热量为多少? 【答案】(1)4m/s v >;(2)12.5J 【解析】 【详解】(1)设物块初速度为v ,物块能从传送带右侧滑离,对其分析得:212k mgL E mv μ-=-0k E >解得:4m/s v >(2)物块在传送带上的运动是先向右减速运动,后向左加速运动。

物块向右减速运动时,有:1v t a '=21102mgx mv μ'-=-物块与传送带的相对滑动产生的热量:()1011Q mg v t x μ=+向左加速运动时,有:2v t a =22012mgx mv μ=物块与传送带的相对滑动产生的热量:()2022Q mg v t x μ=-1212.5J Q Q Q '=+=8.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r = 从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得42μ-=9.质量为M 的小车固定在地面上,质量为m 的小物体(可视为质点)以v 0的水平速度从小车一端滑上小车,小物体从小车另一端滑离小车时速度减为02v ,已知物块与小车之间的动摩擦因数为μ.求:(1)此过程中小物块和小车之间因摩擦产生的热Q 以及小车的长度L .(2)若把同一小车放在光滑的水平地面上,让这个物体仍以水平速度v 0从小车一端滑上小车.a. 欲使小物体能滑离小车,小车的质量M 和小物体质量m 应满足什么关系?b. 当M =4m 时,小物块和小车的最终速度分别是多少?【答案】(1)2038Q mv =,2038v L g μ=(2)a. M >3m ;b. 025v ,0320v 【解析】 【详解】(1) 小车固定在地面时,物体与小车间的滑动摩擦力为f mg μ=,物块滑离的过程由动能定理220011()222v fL m mv -=- ① 解得:2038v L gμ=物块相对小车滑行的位移为L ,摩擦力做负功使得系统生热,Q fL = 可得:2038Q mv =(2)a.把小车放在光滑水平地面上时,小物体与小车间的滑动摩擦力仍为f . 设小物体相对小车滑行距离为L '时,跟小车相对静止(未能滑离小车)共同速度为v , 由动量守恒定律:mv 0=(M +m )v ②设这过程小车向前滑行距离为s . 对小车运用动能定理有:212fs Mv =③ 对小物体运用动能定理有:22011()22f L s mv mv '-+=- ④联立②③④可得220011()()22mv fL mv M m M m'=-++ ⑤物块相对滑离需满足L L '>且2038fL mv = 联立可得:3M m >,即小物体能滑离小车的质量条件为3M m >b.当M =4m 时满足3M m >,则物块最终从小车右端滑离,设物块和车的速度分别为1v 、2v .由动量守恒:012mv mv Mv =+由能量守恒定律:222012111()222fL mv mv Mv =-+ 联立各式解得:1025v v =,20320v v =10.如图甲所示,水平面上A 点处有一质量m =0.5kg 的小物块,从静止开始在水平向右恒力F 1作用下运动,通过B 点时立即撤去力F 1,物块恰好落到斜面P 点。

相关文档
最新文档