高考物理动能与动能定理试题经典及解析
高考物理动能与动能定理解题技巧分析及练习题(含答案)

高考物理动能与动能定理解题技巧分析及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。
开始时让连着A 的细线与水平杆的夹角α。
现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求:(1)当细线与水平杆的夹角为β(90αβ<<︒)时,A 的速度为多大? (2)从开始运动到A 获得最大速度的过程中,绳拉力对A 做了多少功?【答案】(1)22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)T sin h W mg h α⎛⎫=- ⎪⎝⎭ 【解析】 【详解】(2)A 、B 的系统机械能守恒P K E E ∆=∆减加2211sin sin 22A B h h mg mv mv αβ⎛⎫-=+ ⎪⎝⎭cos A B v v α=解得22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)当A 速度最大时,B 的速度为零,由机械能守恒定律得P K E E ∆=∆减加21sin 2Am h mg h mv α⎛⎫-= ⎪⎝⎭对A 列动能定理方程2T 12Am W mv =联立解得T sin h W mg h α⎛⎫=- ⎪⎝⎭2.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。
高考物理动能定理理解经典题型分析

1、动能定理的理解【例题解析】物体在合外力作用下做直线运动的v -t 图象如图所示.下列表述正确的是( )A .在0~1 s 内,合外力做正功B .在0~2 s 内,合外力总是做负功C .在1~2 s 内,合外力不做功D .在0~3 s 内,合外力总是做正功 【答案】A【例题解析】(多选)如图所示,A 、B 质量相等,它们与地面间的动摩擦因数也相等,且F A = F B ,如果A 、B 由静止开始运动相同的距离,那么: ( ) A .F A 对A 做的功与F B 对B 做的功相同B .F A 对A 做功的平均功率大于F B 对B 做功的平均功率C .到终点时物体A 获得的动能大于物体B 获得的动能D .到终点时物体A 获得的动能小于物体B 获得的动能【答案】ABC 【解析】由题意可知,A 、B 水平方向上运动的距离相等,且F 1=F 2,根据W=FLcosα可知,F 1、F 2做的功相同,故A 正确;由牛顿第二定律可知,F 1cosα-μ(mg-F 1sinα)=ma A ;F 2cosα-μ(mg+F 2sinα)=ma B ;因为F 1=F 2,可知a A >a B ,在相同距离内t A <t B ,又两力做功相同,由WP t可知:P A >P B ,故B 正确;受力分析可知A 受到的摩擦力f 1=μ(mg-F 1sinα)小于B 受到的摩擦力f 2=μ(mg+F 2sinα),根据动能定理可知:对A :W 合A =F 1cosα-μ(mg-F 1sinα)]L 对B :W 合B =F 2cosα-μ(mg+F 2sinα)]L ;即W 合A >W 合B ,可知A 获得的动能大于B 获得的动能,故C 正确,D 错误;【例题解析】(单选)如图所示,固定斜面倾角为θ,整个斜面分为AB 、BC 两段,且1.5AB =BC 。
小物块P (可视为质点)与AB 、BC 两段斜面之间的动摩擦因数分别为μ1、μ2。
高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)一、高中物理精讲专题测试动能与动能定理1.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量0.04kg m =,电量4310C q -=⨯的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为0.32J 。
某一瞬间释放弹簧弹出小物块,小物块从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高点B ,并沿轨道BC 滑下,运动到光滑水平轨道CD ,从D 点进入到光滑竖直圆内侧轨道。
已知倾斜轨道与水平方向夹角为37α︒=,倾斜轨道长为2.0m L =,带电小物块与倾斜轨道间的动摩擦因数0.5μ=。
小物块在C 点没有能量损失,所有轨道都是绝缘的,运动过程中小物块的电量保持不变,可视为质点。
只有光滑竖直圆轨道处存在范围足够大的竖直向下的匀强电场,场强5210V/m E =⨯。
已知cos370.8︒=,sin370.6︒=,取210m/s g =,求:(1)小物块运动到A 点时的速度大小A v ; (2)小物块运动到C 点时的速度大小C v ;(3)要使小物块不离开圆轨道,圆轨道的半径应满足什么条件?【答案】(1)4m/s ;(233;(3)R ⩽0.022m 【解析】 【分析】 【详解】(1)释放弹簧过程中,弹簧推动物体做功,弹簧弹性势能转变为物体动能212P A E mv =解得220.324m/s 0.04P A E v m ===⨯ (2)A 到B 物体做平抛运动,到B 点有cos37A Bvv ︒= 所以45m/s 0.8B v == B 到C 根据动能定理有2211sin37cos3722C B mgL mg L mv mv μ︒-︒⋅=- 解得33m/s C v =(3)根据题意可知,小球受到的电场力和重力的合力方向向上,其大小为F=qE-mg =59.6N所以D 点为等效最高点,则小球到达D 点时对轨道的压力为零,此时的速度最小,即2Dv F m R=解得D FRv m=所以要小物块不离开圆轨道则应满足v C ≥v D 得:R ≤0.022m2.在光滑绝缘的水平面上,存在平行于水平面向右的匀强电场,电场强度为E ,水平面上放置两个静止、且均可看作质点的小球A 和B ,两小球质量均为m ,A 球带电荷量为Q +,B 球不带电,A 、B 连线与电场线平行,开始时两球相距L ,在电场力作用下,A 球与B 球发生对心弹性碰撞.设碰撞过程中,A 、B 两球间无电量转移.(1)第一次碰撞结束瞬间A 、B 两球的速度各为多大?(2)从开始到即将发生第二次碰撞这段过程中电场力做了多少功?(3)从开始到即将发生第二次碰撞这段过程中,若要求A 在运动过程中对桌面始终无压力且刚好不离开水平桌面(v=0时刻除外),可以在水平面内加一与电场正交的磁场.请写出磁场B 与时间t 的函数关系.【答案】(1)10A v '= 12BQEL v m='5QEL (3) 222B mL Q E t QE =⎛⎫- ⎪⎝⎭223mL mLt QE QE<≤ 【解析】(1)A 球的加速度QE a m =,碰前A的速度1A v =B 的速度10B v = 设碰后A 、B 球速度分别为'1A v 、'1B v ,两球发生碰撞时,由动量守恒和能量守恒定律有:''111A A B m m m v v v =+,2'2'2111111222A AB m m m v v v =+所以B 碰撞后交换速度:'10A v =,'11B A v v ==(2)设A 球开始运动时为计时零点,即0t =,A 、B 球发生第一次、第二次的碰撞时刻分别为1t 、2t;由匀变速速度公式有:110A avt -==第一次碰后,经21t t -时间A 、B 两球发生第二次碰撞,设碰前瞬间A 、B 两球速度分别为2A v 和2B v ,由位移关系有:()()2'1212112B av t t t t -=-,得到:213tt == ()2211122A A a a v t t t v =-===;'21B B v v = 由功能关系可得:222211=522A B m m QEL W v v +=电(另解:两个过程A 球发生的位移分别为1x 、2x ,1L x =,由匀变速规律推论24L x =,根据电场力做功公式有:()125W QE QEL x x =+=) (3)对A 球由平衡条件得到:A QB mg v =,A at v =,QEa m=从A 开始运动到发生第一次碰撞:()220t mg g t Qat Et m B Q ⎛==<≤ ⎝ 从第一次碰撞到发生第二次碰撞:()2t t B =<≤ 点睛:本题是电场相关知识与动量守恒定律的综合,虽然A 球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.3.如图所示,在倾角为θ=30°的固定斜面上固定一块与斜面垂直的光滑挡板,质量为m 的半圆柱体A 紧靠挡板放在斜面上,质量为2m 的圆柱体B 放在A 上并靠在挡板上静止。
高考物理动能与动能定理试题(有答案和解析)

的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,
高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

(1)小车运动到 C 点时的速度大小;
(2)小车在 BD 段运动的时间;
(3)水平半圆轨道对小车的作用力大小;
(4)要使小车能通过水平半圆轨道,发动机开启的最短时间.
【答案】(1) 6m/s ;(2) 0.3s ;(3) 4 2N .;(4) 0.35s .
【解析】
【详解】
(1)由小车在 C 点受力得:
【答案】(1)8m/s (2)35J (3)5 次 【解析】 【详解】 (1)物块在 PO 过程中受到竖直向下的重力、垂直斜面向上的弹力、和沿斜面向上的摩擦 力,此过程应用动能定理得:
mgL sin mgL cos 1 mv2 2
解得物块第一次接触弹簧时物体的速度的大小为:
v 2gLsin cos 8 m/s
mvA2m
WT
mg
h sin
h
2.如图所示,粗糙水平地面与半径为 R=0.4m 的粗糙半圆轨道 BCD 相连接,且在同一竖直 平面内,O 是 BCD 的圆心,BOD 在同一竖直线上.质量为 m=1kg 的小物块在水平恒力 F=15N 的作用下,从 A 点由静止开始做匀加速直线运动,当小物块运动到 B 点时撤去 F, 小物块沿半圆轨道运动恰好能通过 D 点,已知 A、B 间的距离为 3m,小物块与地面间的动 摩擦因数为 0.5,重力加速度 g 取 10m/s2.求: (1)小物块运动到 B 点时对圆轨道 B 点的压力大小. (2)小物块离开 D 点后落到地面上的点与 D 点之间的距离
2mL QE
点睛:本题是电场相关知识与动量守恒定律的综合,虽然 A 球受电场力,但碰撞的内力远
大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么
A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
联立可得:v3= 。
(3)飞船方向调整前后,其速度合成矢量如图所示:
因此tan = ,离子喷出过程中,系统的动量守恒:M v=Nmv3,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N=
9.一质量为m=0.5kg的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s末功率达到最大值,之后保持该功率不变继续运动,运动的v-t图象如图所示,其中AB段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g=10m/s2.
(1)求在A处的正离子的速度大小v2;
(2)正离子经过区域I加速后,离开PQ的速度大小v3;
(3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN成 角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?
高二物理动能定理试题答案及解析

高二物理动能定理试题答案及解析1.质量为m的物体从静止以的加速度竖直上升h,关于该过程下列说法中正确的是()A.物体的机械能增加B.物体的机械能减小C.重力对物体做功D.物体的动能增加【答案】D【解析】物体从静止以的加速度竖直上升h,重力做了,故重力势能增加为,故A、C选项错误;牛顿第二定律,解得,故F做的功为,故物体的机械能增加了,B选项错误;由动能定理知,解得物体的动能增加,故D选项正确。
【考点】牛顿第二定律动能定理重力做功与重力势能的关系机械能的电场加速后从中心进入一个平行板2.带电量为Q,质量为m的原子核由静止开始经电压为U1电容器,进入时速度和电容器中的场强方向垂直。
已知:电容器的极板长为L,极板间距为d,,重力不计,求:两极板的电压为U2(1)经过加速电场后的速度;(2)离开电容器电场时的偏转量。
【答案】(1);(2)【解析】试题分析: (1)粒子在加速电场加速后,由动能定理得速度为(2)进入偏转电场,粒子在平行于板面的方向上做匀速运动在垂直于板面的方向做匀加速直线运动,加速度因此离开电容器电场时的偏转。
【考点】动能定理,带电粒子在匀强电场中的运动3.如图所示,在点电荷Q的电场中,已知a、b两点在同一等势面上,c、d两点在同一等势面上,无穷远处电势为零。
甲、乙两个带粒子经过a点时动能相同,甲粒子的运动轨迹为acb,乙粒子的运动轨迹为adb.由此可以判定:A.甲粒子经过c点与乙粒子经过d点时的动能相等B.甲、乙两粒子带同种电荷C.甲粒子经过b点时的动能小于乙粒子经过b点时的动能D.甲粒子经过c点时的电势能小于乙粒子经过d点时的电势能【答案】 D【解析】试题分析: ac两点和ad两点之间的电势差相等,因为两电荷的电量大小未知,则无法比较电场力做功,根据动能定理,无法比较粒子在c点和d点的动能大小.故A错误;根据轨迹的弯曲知,乙电荷受到的斥力,甲电荷受到的是引力.所以两粒子的电性相反.故B错误;a到b,不管沿哪一路径,电场力做功为零,动能不变.故C错误;因为甲粒子受到的引力作用,电场力做正功,电势能减少,乙粒子受到的是斥力作用,电场力做负功,电势能增加,所以甲粒子经过c点时的电势能小于乙粒子经过d点时的电势能.故D正确;【考点】等势面;动能定理的应用;电势能4.如图所示,粗糙程度均匀的绝缘斜面下方O点处有一正点电荷,带负电的小物体以初速度从M点沿斜面上滑,到达N点时速度为零,然后下滑回到M点,此时速度为.若小物体电荷量保持不变,OM=ON,则 ( )A.小物体上升的最大高度为B.从N到M的过程中,小物体的电势能逐渐减小C.从M到N的过程中,电场力对小物体先做负功后做正功D.从N到M的过程中,小物体受到的摩擦力和电场力均是先减小后增大.【答案】A【解析】对小物体,从M到N再到M,由动能定理可知:,从M到N,由动能定理可知:,联立解得:,故选项A正确;从N到M,电场力对小球先做正功再做负功,电势能先减小再增大,故选项BC错误;从N到M,电场力先增大再减小,故选项D错误.【考点】本题考查动能定理的应用、摩擦力及电场力做功的特点,涉及能量变化的题目一般都要优先考虑动能定理的应用,并要求学生能明确几种特殊力做功的特点,如摩擦力、电场力、洛仑兹力等.5.如图所示,光滑绝缘杆竖直放置,它与以正点电荷Q为圆心的某一圆周交于B、C两点,质量为m,带电量为的有孔小球从杆上A点无初速下滑,已知q<<Q,AB=h,小球滑到B点时速度大小为,则小球从A运动到B的过程中,电场力做的功为:______________;A、C 两点间电势差为 ____________.【答案】;【解析】试题分析: 设小球由A到B电场力所做的功为WAB ,由动能定理得mgh+WAB=解得:WAB=由于B、C在以Q为圆心的圆周上,所以φB =φC,所以UAC=UAB==【考点】动能定理的应用,,电势能。
高中物理动能与动能定理练习题及答案含解析

高中物理动能与动能定理练习题及答案含解析一、高中物理精讲专题测试动能与动能定理1.某游乐场拟推出一个新型滑草娱乐项目,简化模型如图所示。
游客乘坐的滑草车(两者的总质量为60kg ),从倾角为53θ=︒的光滑直轨道AC 上的B 点由静止开始下滑,到达C 点后进入半径为5m R =,圆心角为53θ=︒的圆弧形光滑轨道CD ,过D 点后滑入倾角为α(α可以在075α︒剟范围内调节)、动摩擦因数为3μ=的足够长的草地轨道DE 。
已知D 点处有一小段光滑圆弧与其相连,不计滑草车在D 处的能量损失,B 点到C 点的距离为0=10m L ,10m/s g =。
求:(1)滑草车经过轨道D 点时对轨道D 点的压力大小;(2)滑草车第一次沿草地轨道DE 向上滑行的时间与α的关系式;(3)α取不同值时,写出滑草车在斜面上克服摩擦所做的功与tan α的关系式。
【答案】(1)3000N ;(2)3sin cos 32t αα=⎛⎫+ ⎪⎝⎭;(3)见解析 【解析】 【分析】 【详解】(1)根据几何关系可知CD 间的高度差()CD 1cos532m H R =-︒=从B 到D 点,由动能定理得()20CD D 1sin 5302mg L H mv ︒+=-解得D 102m/s v =对D 点,设滑草车受到的支持力D F ,由牛顿第二定律2D D v F mg m R-= 解得D 3000N F =由牛顿第三定律得,滑草车对轨道的压力为3000N 。
(2)滑草车在草地轨道DE 向上运动时,受到的合外力为sin cos F mg mg αμα=+合由牛顿第二定律得,向上运动的加速度大小为sin cos F a g g mαμα==+合因此滑草车第一次在草地轨道DE 向上运动的时间为Dsin cos v t g g αμα=+代入数据解得t =⎝⎭(3)选取小车运动方向为正方向。
①当0α=时,滑草车沿轨道DE 水平向右运动,对全程使用动能定理可得[]01sin (1cos )+=00f mg L R W θθ+--代入数据解得16000J f W =-故当0α=时,滑草车在斜面上克服摩擦力做的功为6000J W =克1②当030α<≤︒时,则sin cos g g αμα≤滑草车在草地轨道DE 向上运动后最终会静止在DE 轨道上,向上运动的距离为2D22(sin cos )v x g g αμα=+摩擦力做功为22cos f W mg x μα=-⋅联立解得2f W =故当030α<≤︒时,滑草车在斜面上克服摩擦力做的功为2W =克③当3075α︒<≤︒时sin cos g g αμα>滑草车在草地轨道DE 向上运动后仍会下滑,若干次来回运动后最终停在D 处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N;(2)6m/s,6m;(3)见解析。
【解析】
【详解】
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
高考物理动能与动能定理试题经典及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。
(1)从A到C段运用动能定理
所以
B到C根据动能定理有
解得
(3)根据题意可知,小球受到的电场力和重力的合力方向向上,其大小为
F=qE-mg=59.6N
所以D点为等效最高点,则小球到达D点时对轨道的压力为零,此时的速度最小,即
解得
所以要小物块不离开圆轨道则应满足vC≥vD得:
R≤0.022m
5.如图(a)所示,倾角θ=30°的光滑固定斜杆底端固定一电量为Q=2×10﹣4C的正点电荷,将一带正电小球(可视为点电荷)从斜杆的底端(但与Q未接触)静止释放,小球沿斜杆向上滑动过程中能量随位移的变化图象如图(b)所示,其中线1为重力势能随位移变化图象,线2为动能随位移变化图象.(g=10m/s2,静电力恒量K=9×109N•m2/C2)则
n=25次
考点:动能定理、平抛运动
【名师点睛】解决本题的关键一是要会根据平抛运动的规律求出落到D时平抛运动的初速度;再一个容易出现错误的是在BC段运动的路程与经过B点次数的关系,需要认真确定。根据功能关系求出在BC段运动的路程。
7.如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R.一个质量为m的物体(可以看作质点)从直轨道上与圆弧的圆心O等高的P点由静止释放,结果它能在两轨道间做往返运动.已知物体与轨道AB间的动摩擦因数为μ,重力加速度为g.试求:
(1)玩具滑车到达D点时,由牛顿第二定律:
解得
;
(2)若无传送带时,由平抛知识可知:
解得
如果传送带保持不动,则当小车滑到最右端时,由动能定理:
解得
v=6m/s
因为 ,则小车从右端轮子最高点做平抛运动,则落水点距离传送带右端的水平距离:
(3)①若传送带的速度v≤6m/s,则小车在传送带上运动时一直减速,则到达右端的速度为6m/s,落水点距离传送带右端的水平距离为6m;
②若小车在传送带上一直加速,则到达右端时的速度满足
解得
若传送带的速度 ,则小车在传送带上运动时一直加速,则到达右端的速度为 ,落水点距离传送带右端的水平距离为 ;
③若传送带的速度10m/s≥v≥6m/s,则小车在传送带上运动时先减速到v,然后以速度v匀速,则到达右端的速度为v,落水点距离传送带右端的水平距离为vt=vm;
④若传送带的速度 ≥v≥10m/s,则小车在传送带上运动时先加速到v,然后以速度v匀速,则到达右端的速度为v,落水点距离传送带右端的水平距离为vt=vm。
4.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量 ,电量 的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为 。某一瞬间释放弹簧弹出小物块,小物块从水平台右端 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高点 ,并沿轨道 滑下,运动到光滑水平轨道 ,从 点进入到光滑竖直圆内侧轨道。已知倾斜轨道与水平方向夹角为 ,倾斜轨道长为 ,带电小物块与倾斜轨道间的动摩擦因数 。小物块在 点没有能量损失,所有轨道都是绝缘的,运动过程中小物块的电量保持不变,可视为质点。只有光滑竖直圆轨道处存在范围足够大的竖直向下的匀强电场,场强 。已知 , ,取 ,求:
6.如图所示,一长度LAB=4.98m,倾角θ=30°的光滑斜面AB和一固定粗糙水平台BC平滑连接,水平台长度LBC=0.4m,离地面高度H=1.4m,在C处有一挡板,小物块与挡板碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。在斜面顶端A处静止释放质量为m="2kg"的小物块(可视为质点),忽略空气阻力,小物块与BC间的动摩擦因素μ=0.1,g取10m/s2。问:
(1)物块第一次通过C点时的速度大小vC.
(2)物块第一次通过D点时受到轨道的支持力大小FD.
(3)物块最终所处的位置.
【答案】(1) (2)7.4N(3)0.35m
【解析】
【分析】
由题中“斜面ABC下端与光滑的圆弧轨道CDE相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答.
(1)物体释放后,第一次到达B处的速度大小,并求出物体做往返运动的整个过程中在AB轨道上通过的总路程s;
(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力的大小;
(3)为使物体能顺利到达圆弧轨道的最高点D(E、O、D为同一条竖直直径上的3个点),释放点距B点的距离L应满足什么条件.
【答案】(1) ; (2) ;(3)
【解析】
【分析】
【详解】
(1)设物体释放后,第一次到达B处的速度为 ,根据动能定理可知:
解得:
物体每完成一次往返运动,在AB斜面上能上升的高度都减少一些,最终当它达B点时,速度变为零,对物体从P到B全过程用动能定理,有
得物体在AB轨道上通过的总路程为
(2)最终物体以B为最高点在圆弧轨道底部做往返运动,设物体从B运动到E时速度为 v,由动能定理知:
【详解】
(1)BC长度 ,由动能定理可得
代入数据的
物块在BC部分所受的摩擦力大小为
所受合力为
故
(2)设物块第一次通过D点的速度为 ,由动能定理得
有牛顿第二定律得
联立解得
(3)物块每次通过BC所损失的机械能为
物块在B点的动能为
解得
物块经过BC次数
设物块最终停在距离C点x处,可得
代入数据可得
3.如图所示是一种特殊的游戏装置, 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为 ,末端 处的切线方向水平,一辆玩具滑车从轨道的 点处下滑,滑到 点时速度大小为 ,从 点飞出后落到水面上的 点。已知它落到水面上时相对于 点( 点正下方)的水平距离 。为了能让滑车抛到水面上的更远处,有人在轨道的下方紧贴 点安装一水平传送带,传送带右端轮子的圆心与 点的水平距离为 ,轮子半径为 (传送带的厚度不计),若传送带与玩具滑车之间的动摩擦因数为0.4,玩具滑车的质量为 ,不计空气阻力(把玩具滑车作质点处理),求
(1)描述小球向上运动过程中的速度与加速度的变化情况;
(2)求小球的质量m和电量q;
(3)斜杆底端至小球速度最大处由底端正点电荷形成的电场的电势差U;
(4)在图(b)中画出小球的电势能ε随位移s变化的图线.(取杆上离底端3m处为电势零点)
【答案】(1)小球的速度先增大,后减小;小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.(2)4kg;1.11×10﹣5C;(3)4.2×106V(4)图像如图,线3即为小球电势能 随位移s变化的图线;
(1)求滑块第一次运动到B点时对轨道的压力。
(2)求滑块在粗糙斜面上向上滑行的最大距离。
(3)通过计算判断滑块从斜面上返回后能否滑出A点。
【答案】(1)70N;(2)1.2m;(3)能滑出A
【解析】
【分析】
【详解】
(1)滑块从P到B的运动过程只有重力做功,故机械能守恒,则有
那么,对滑块在B点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且
mgsin - LAB= mv2
v=7m/s
(2)从开始到最后停下在BC段所经过的路程为x
mgsin LAB- mgx=0
x=24.9m
=31.1
经过AB的次数为31 2+1=63次
(3)设小物块平抛时的初速度为V0
H -r = gt2
r+ =v0t
v0=3 m/s
设第n次后取走挡板
mv2- mv02=2 Lbcn
故由牛顿第三定律可得:滑块第一次运动到B点时对轨道的压力为 ,方向竖直向下。
(2)设滑块在粗糙斜面上向上滑行的最大距离为L,滑块运动过程只有重力、摩擦力做功,故由动能定理可得
所以
(3)对滑块从P到第二次经过B点的运动过程应用动能定理可得
所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A点。
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.