工程材料学 铸铁的组织与性能

合集下载

金属材料学第章课后习题答案

金属材料学第章课后习题答案

金属材料学习题与思考题第七章铸铁1、铸铁与碳钢相比,在成分、组织和性能上有什么区别(1)白口铸铁:含碳量约%,硅在1%以下白口铸铁中地碳全部以渗透碳体(Fe3c)形式存在,因断口呈亮白色.故称白口铸铁,由于有大量硬而脆地Fe3c,白口铸铁硬度高、脆性大、很难加工.因此,在工业应用方面很少直接使用,只用于少数要求耐磨而不受冲击地制件,如拔丝模、球磨机铁球等.大多用作炼钢和可锻铸铁地坯料(2)灰口铸铁;含碳量大于%,铸铁中地碳大部或全部以自由状态片状石墨存在.断口呈灰色.它具有良好铸造性能、切削加工性好,减磨性,耐磨性好、加上它熔化配料简单,成本低、广泛用于制造结构复杂铸件和耐磨件.(3)钢地成分要复杂地多,而且性能也是各不相同钢是含碳量在%%之间地铁碳合金.我们通常将其与铁合称为钢铁,为了保证其韧性和塑性,含碳量一般不超过%.钢地主要元素除铁、碳外,还有硅、锰、硫、磷等,而且钢还根据品质分类为①普通钢(P≤%,S≤%)②优质钢(P、S均≤%)③高级优质钢(P≤%,S≤%)按照化学成分又分①碳素钢:.低碳钢(C≤%).中碳钢(C≤~%).高碳钢(C≤%).②合金钢:低合金钢(合金元素总含量≤5%).中合金钢(合金元素总含量>5~10%).高合金钢(合金元素总含量>10%).2、C、Si、Mn、P、S元素对铸铁石墨化有什么影响为什么三低(C、Si、Mn低)一高(S高)地铸铁易出现白口(1)合金元素可以分为促进石墨化元素和阻碍石墨化元素,顺序为:Al、C、Si、Ti、Ni、P、Co、Zr、Nb、W、Mn、S、Cr、V、Fe、Mg、Ce、B等.其中,Nb为中性元素,向左促进程度加强,向右阻碍程度加强.C和Si是铸铁中主要地强烈促进石墨化元素,为综合考虑它们地影响,引入碳当量CE = C% + 1/3Si%,一般CE≈4%,接近共晶点.S是强烈阻碍石墨化元素,降低铸铁地铸造和力学性能,控制其含量.(2)铸铁地含碳量高,脆性大,焊接性很差,在焊接过程中易产生白口组织和裂纹.白口组织是由于在铸铁补焊时,碳、硅等促进石墨化元素大量烧损,且补焊区冷速快,在焊缝区石墨化过程来不及进行而产生地.白口铸铁硬而脆,切削加工性能很差.采用含碳、硅量高地铸铁焊接材料或镍基合金、铜镍合金、高钒钢等非铸铁焊接材料,或补焊时进行预热缓冷使石墨充分析出,或采用钎焊,可避免出现白口组织,.3、铸铁壁厚对石墨化有什么影响冷速越快,不利于铸铁地石墨化,这主要取决于浇注温度、铸型材料地导热能力及铸件壁厚等因素.冷速过快,第二阶段石墨化难以充分进行.4、石墨形态是铸铁性能特点地主要矛盾因素,试分别比较说明石墨形态对灰铸铁和球墨铸铁力学性能及热处理工艺地影响.墨地数量、大小和分布对铸铁地性能有显着影响.如片状石墨 ,数量越多对基体地削弱作用和应力集中程度越大.石墨形状影响铸铁性能:片状、团絮状、球状.对于灰铸铁,热处理仅能改变基体组织,改变不了石墨形态,热处理不能明显改善灰铸铁地力学性能.球墨铸铁是石墨呈球体地灰铸铁,简称球铁.由于球墨铸铁中地石墨呈球状,对基体地割裂作用大为减少,球铁比灰铸铁及可锻铸铁具有高得多地强度、塑性和韧性.5、球墨铸铁地性能特点及用途是什么球墨铸铁.将灰口铸铁铁水经球化处理后获得,析出地石墨呈球状,简称球铁.比普通灰口铸铁有较高强度、较好韧性和塑性.用于制造内燃机、汽车零部件及农机具等..珠光体型球墨铸铁——柴油机地曲轴、连杆、齿轮;机床主轴、蜗轮、蜗杆;轧钢机地轧辊;水压机地工作缸、缸套、活塞等. 铁素体型球墨铸铁——受压阀门、机器底座、汽车后桥壳等.6、和刚相比,球墨铸铁地热处理原理有什么异同球墨铸铁地热处理主要有退火、正火、淬火加回火、等温淬火等.7、HT200、HT350、KTH300-06、QT400、QT600各是什么铸铁数字代表什么意义各具有什么样地基体和石墨形态说明他们地力学性能特点及用途.(1)灰铸铁常用型号为HT100/HT150/HT200/HT250/HT300/HT350球墨铸铁常用型号为QT400-18/QT400-15/QT450-10/QT500-7/QT600-3/QT700-2/QT800-2/QT900-2黑心可锻铸铁常用牌号为KTH300-06/KTH350-10/KTZ450-06/KTZ550-04/KTZ650-02/KTZ700-02,其中KTH300-06适用于气密性零件,KTH380-08适用于水暖件,KTH350-10适用于阀门、汽车底盘.(2)牌号中代号后面只有一组数字时,表示抗拉强度值;有两组数字时,第一组表示抗拉强度值,第二组表示延伸率值.两组数字中间用“一”隔开.抗拉强度随壁厚而变化,壁厚越大抗拉强度越小.3)①灰口铸铁:灰铸铁是指石墨呈片状分布地灰口铸铁.灰铸铁价格便宜,应用广泛,其产量约占铸铁总产量地80%以上.1.牌号:常用地牌号为HT100、HT150、HT200、……、HT3502.组织灰铸铁地组织是由液态铁水缓慢冷却时通过石墨化过程形成地,其基体组织有铁素体、珠光体和铁素体加珠光体三种.灰铸铁地显微组织如下图所示.为提高灰铸铁地性能,常对灰铸铁进行孕育处理,以细化片状石墨,常用地孕育剂有硅铁和硅钙合金.经孕育处理地灰铸铁称为孕育铸铁.3.热处理热处理只能改变铸铁地基体组织,但不能改变石墨地形态和分布.由于石墨片对基体地连续性地破坏严重,产生应力集中大,因而热处理对灰铸铁地强化效果不大,其基体强度利用率只有30%-50%.灰铸铁常用地热处理有:消除内应力退火、消除白口组织退火和表面淬火.4.用途灰铸铁主要用于制造承受压力和振动地零部件,如机床床身、各种箱体、壳体、泵体、缸体等.②球墨铸铁:球墨铸铁是指石墨呈球形地灰口铸铁,是由液态铁水经石墨化后得到地.与灰铸铁相比,它地碳当量较高,一般为过共晶成分,这有利于石墨球化.1.牌号:QT400-17、QT420-10、QT500-05、QT600-02、 QT700-02、QT800-02、QT1200-012.组织球墨铸铁是由基体+球状石墨组成,铸态下地基体组织有铁素体、铁素体加珠光体和珠光体3种.球状石墨是液态铁水经球化处理得到地.加入到铁水中能使石墨结晶成球形地物质称为球化剂,常用地球化剂为镁、稀土和稀土镁.镁是阻碍石墨化地元素,为了避免白口,并使石墨细小且分布均匀,在球化处理地同时还必须进行孕育处理,常用地孕育剂为硅铁和硅钙合金.3.性能由于球状石墨圆整程度高,对基体地割裂作用和产生地应力集中更小,基体强度利用率可达70%-90%.接近于碳钢,塑性和韧性比灰铸铁和可锻铸铁都高.4.热处理由于球状石墨危害程度小,因而可以对球墨铸铁进行各种热处理强化.球墨铸铁地热处理主要有退火、正火、淬火加回火、等温淬火等.5.用途球墨铸铁在汽车、机车、机床、矿山机械、动力机械、工程机械、冶金机械、机械工具、管道等方面得到广泛应用,可代替部分碳钢制造受力复杂,强度、韧性和耐磨性要求高地零件.③可锻铸铁:可锻铸铁是由白口铸铁经石墨化退火后获得地,其石墨呈团絮状.可锻铸铁中要求碳、硅含量不能太高,以保证浇注后获得白口组织,但又不能太低,否则将延长石墨化退火周期.1.牌号:KTH KTB KTZ分别表示黑心、白心、珠光体可锻铸铁代号2.组织可锻铸铁地组织与第二阶段石墨化退火地程度有关.当第一阶段石墨化充分进行后(组织为奥氏体+团絮状石墨),在共析温度附近长时间保温,使第二阶段石墨化也充分进行,则得到铁素体+团絮状石墨组织,由于表层脱碳而使心部地石墨多于表层,断口心部呈灰黑色,表层呈灰白色,故称为黑心可锻铸铁.若通过共析转变区时,冷却较快,第二阶段石墨化未能进行,使奥氏体转变为珠光体,得到珠光体+团絮状石墨地组织,称为珠光体可锻铸铁.3.性能由于可锻铸铁中地团絮状石墨对基体地割裂程度及引起地应力集中比灰铸铁要小,因而其强度、塑性和韧性均比灰铸铁高,接近于铸钢,但不能锻造,其强度利用率达到基体地40%-70%.4.用途可锻铸铁常用于制造形状复杂且承受振动载荷地薄壁小型件,如汽车、拖拉机地前后轮壳、管接头、低压阀门等.这些零件如用铸钢制造则铸造性能差,用灰铸铁则韧性等性能达不到要求.8、如何理解铸铁在一般地热处理过程中,石墨参与相变,但是热处理并不能改变石墨地形态和分布.铸铁地热处理目地在于两方面:一是改变基体组织,改善铸铁性能,二是消除铸件应力.值得注意地是:铸件地热处理不能改变铸件原来地石墨形态及分布,即原来是片状或球状地石墨热处理后仍为片状或球状,同时它地尺寸不会变化,分布状况不会变化.铸铁件热处理只能改变基体组织,不能改变石墨地形态及分布,机械性能地变化是基体组织地变化所致.普通灰口铸铁(包括孕育铸铁)石墨片对机械性能(强度、延性)影响很大,灰口铸铁经热处理改善机械性能不显着.还需要注意地是铸铁地导热性较钢差,石墨地存在导致缺口敏感性较钢高,因此铸铁热处理中冷却速度(尤其淬火)要严格控制.9、某厂生产球墨铸铁曲拐.经浇注后,表面常出现“白口”,为什么为消除白口,并希望得到珠光体基体组织,应采用什么样地热处理工艺铸件冷却时,表层及薄截面处,往往产生白口.白口组织硬而脆、加工性能差、易剥落.因此必须采用退火(或正火)地方法消除白口组织.退火工艺为:加热到550-950℃保温2~5 h,随后炉冷到500—550℃再出炉空冷.在高温保温期间 ,游高渗碳体和共晶渗碳体分解为石墨和A,在随后护冷过程中二次渗碳体和共析渗碳体也分解,发生石墨化过程.由于渗碳体地分解,导致硬度下降,从而提高了切削加工性.10、解释机床底座常用灰铸铁制造地原因.工艺问题,这些零件形状复杂,除铸造用其他方法难以得到毛坯,而灰口铸铁具有十分优秀地铸造性能.而钢地铸造性很差. 其一,价格便宜,这些产品地重量很重. 其二,减震,灰铸铁中含碳量比较高,石墨在铸铁中地吸振能力或阻止振动传播地作用,使灰铸铁有优良地减振性,钢材没有这个特性. 其三,减磨.灰铸铁中石墨有储油地作用,在有润滑地条件下,加上石墨本身是良好地润滑剂和冷却剂,所以灰铸铁有很好地减磨作用,从而灰铸铁比结构钢耐.其四,对缺口敏感性很低,灰铸铁本身地显微结构石墨是呈现细片状结构,千疮百孔地,再加几个缺口不要紧.钢要是有缺口,十分容易在缺口处疲劳破坏.11、影响铸态组织地主要因素是什么铸铁地组织取决于石墨化进行地程度,为了获得所需要地组织,关键在于控制石墨化进行地程度.实践表明,铸铁地化学成分和结晶时地冷却速度是主要因素.第八章铝合金1、试述铝合金地合金化原则.为什么以硅、铜、镁、锰、锌等元素为主加元素,而以钛、硼、稀土等作为辅加元素.铝具有一系列比其他有色金属、钢铁和塑性等更优良地性能,如密度小,仅为,约为钢或铜地1/3;优良地导电性、导热性;良好地耐蚀性;优良地塑性和加工性能等.但纯铝地力学性能不高,不适合作为承受较大载何地结构零件.为了提高铝地力学性能,在纯铝中加入某些合金元素,制成铝合金.铝合金仍保持纯铝地密度小和耐蚀性好地特点,且力学性能比纯铝高得多.经热处理后地铝合金地力学性能可以和钢铁材料相媲美. 铝合金中常加入地元素为硅、铜、镁、锰、锌元素等.这些合金元素在固态铝中地溶解度一般都是有限地.2、铝合金热处理强化和钢淬火强化地主要区别是什么铝合金地热处理强化不发生同素异构转变.铝合金地淬火处理称为固溶处理,由于硬脆地第二相消失,所以塑性有所提高.过饱和地a固溶体虽有强化作用,但是单相地固溶强化作用是有限地,所以铝合金固溶处理强度、硬度提高并不明显,而塑性却有明显提高.铝合金经固溶处理后,获得过饱和固溶体.在随后地室温放置或低温加热保温时,第二相从过饱和固溶体中析出,引起温度、硬度以及物理和化学性能地显着变化,这一过程称为时效.铝合金地热处理强化实际上包括了固溶处理与时效处理两部分.3、以Al-Cu合金为例,简要说明铝合金时效地基本过程.①形成溶质原子偏聚区-G·P(Ⅰ)区.在新淬火状态地过饱和固溶体中,铜原子在铝晶格中地分布是任意地、无序地.时效初期,即时效温度低或时效时间短时,铜原子在铝基体上地某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区.G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形地共格应变区,故使合金地强度、硬度升高.②G·P区有序化-形成G·P(Ⅱ)区.随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P (Ⅱ)区.它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大.它可视为中间过渡相,常用θ”表示.它比G·P(Ⅰ)区周围地畸变更大,对位错运动地阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化地阶段.③形成过渡相θ′.?随着时效过程地进一步发展,铜原子在G·P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′.由于θ′地点阵常数发生较大地变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体地共格畸变减弱,对位错运动地阻碍作用亦减小,表现在合金性能上硬度开始下降.由此可见,共格畸变地存在是造成合金时效强化地重要因素.④形成稳定地θ相.过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面地独立地稳定相Al2Cu,称为θ相此时θ相与基体地共格关系完全破坏,并有自己独立地晶格,其畸变也随之消失,并随时效温度地提高或时间地延长,θ相地质点聚集长大,合金地强度、硬度进一步下降,合金就软化并称为“过时效”.θ相聚集长大而变得粗大.4、铝合金地成分设计要满足哪些条件才能有时效强化一种合金能否通过时效强化,首先取决于组成合金地元素能否溶解于固溶体以及固溶度随温度变化地程度.如硅、锰在铝中地固溶度比较小,且随温度变化不大,而镁、锌虽然在铝基固溶体中有较大地固溶度,但它们与铝形成地化合物地结构与基体差异不大,强化效果甚微.因此,二元铝-硅、铝-锰、铝-镁、铝-锌通常都不采用时效强化处理.而有些二元合金,如铝-铜合金,及三元合金或多元合金,如铝-镁-硅、铝-铜-镁-硅合金等,它们在热处理过程中有溶解度和固态相变,则可通过热处理进行强化.为获得良好地时效强化效果,在不发生过热、过烧及晶粒长大地条件下,淬火加热温度高些,保温时间长些,有利于获得最大过饱和度地均匀固溶体.另外在淬火冷却过程不析出第二相,否则在随后时效处理时,已析出相将起晶核作用,造成局部不均匀析出而降低时效强化效果.5、硬铝合金有哪些优缺点说明2A12(LY12)地热处理特点.硬铝属于Al-Cu-Mg系合金,具有强烈地时效强化作用,经时效处理后具有很高地硬度、强度,故Al-Cu-Mg系合金总称为硬铝合金.这类合金具有优良地加工性能和耐热性,但塑性、韧性低,耐蚀性差,常用来制作飞机大梁、空气螺旋桨等.硬铝合金地热处理特性是强化相地充分固溶温度与(α+β+S)三元共晶地熔点507℃.因此,硬铝淬火加热地过烧敏感性很大,为了获得最大固溶度地过饱和固溶体,2A12合金最理想地淬火温度为500℃±3℃,但实际生产条件很难做到,所以2A12合金常用地淬火温度为495~500℃.6、试述铸造铝合金地类型、特点和用途.铸造铝合金一般分为以下 4 个系列 :Al-Si 合金该系合金又称为硅铝明 , 一般 Si 地质量分数为 4%-22%.Al-Si 合金具有优良地铸造性能 , 如流动性好、气密性好、收缩率小和热裂倾向小 , 经过变质和热处理之后 , 具有良好地力学性能、物理性能、耐腐蚀性能和中等地机加工性能 , 是铸造铝合金中品种最多 , 用途最广地一类合金.Al-Cu 合金该系合金中 Cu 地质量分数为 3%-11% , 加人其他元素使室温和高温力学性能大幅度提高 , 如ZL205A (T6) 合金地标准性能σb 为 490MPa, 是目前世界上强度最高地铸造铝合金之一 , ZL206 、 ZL207 和 ZL208 合金具有很高地耐热性能. ZL207 中添加了混合稀土 , 提高了合金地高温强度和热稳定性 , 可用于 350-400 ℃ 下工作地零件 , 缺点是室温力学性能较差 , 特别是伸长率很低. Al-Cu 合金具有良好地切削加工和焊接性能 , 但铸造性能和耐腐蚀性能较差.这类合金在航空产品上应用较广 , 主要用作承受大载荷地结构件和耐热零件.Al-Mg 合金该系合金中 Mg 地质量分数为 4%-11% , 密度小 , 具有较高地力学性能 , 优异地耐腐蚀性能 , 良好地切削加工性能 , 加工表面光亮美观.该类合金熔炼和铸造工艺较复杂 , 除用作耐蚀合金外 , 也用作装饰用合金.Al-Zn 合金 Zn 在 Al 中地溶解度大 , 当 Al 中加人 Zn 地质量分数大于 10% 时 , 能显着提高合金地强度 , 该类合金自然时效倾向大 , 不需要热处理就能得到较高地强度.这类合金地缺点是耐腐蚀性能差 , 密度大 , 铸造时容易产生热裂 , 主要用做压铸仪表壳体类零件.7、试解释:铝合金地晶粒粗大,不能靠重新加热处理来细化.由于铝合金不象钢基体在加热或冷却时可以发生同素异构转变,因此不能像钢一样可以通过加热和冷却发生重结晶而细化晶粒.8、Al-Zn-Cu-Mg系合金地最高强度是怎样通过化学成分和热处理获得地热处理可强化型铝合金:AL—Zn--Mg--Cu系合金--7XXX系,如7075合金,以Mg和Si为主要合金元素并以Zn为主要合金元素地铝合金.7XXX系合金中含铜地AL—Zn--Mg--Cu,还有一些其他微量元素,它有较强地韧性和强度,为代表地7075合金,用于飞机及航空制造业.这类合金有抗应力腐蚀性和抗剥落腐蚀地能力会随之下降.如果对成份和热处理以及显微组织进行全面设计,可以得到综合性能良好地高强度合金,该系合金中主要强化相为Mn Zn z(n)与Al2 Mg3 Zn3(T)相.用于制作轮椅地材料7003-C合金主要强化相为?相和Mg2Si..有很好地抗应力腐蚀性能和焊接性能,又有比6XXX系列高地强度和塑性,便于热成形和冷加工,在冷加工和焊接后不需再进行热处理.研究2种不同热处理方式对喷射成形超高强度Al-Zn-Mg-Cu系铝合金地显微组织和力学性能地影响.观察沉积态、挤压态、固溶及时效处理后样品地显微组织,对经时效处理地样品进行了力学性能测试.结果表明:沉积态合金晶粒均匀细小;挤压态合金存在大量地第二相颗粒,为富铜相;固溶处理后,合金出现了再结晶现象.在T6条件下,采用常规470℃单级固溶和时效处理,其抗拉强度仅为710MPa,延伸率为6.5%;采用双级固溶和时效处理,其抗拉强度超过800MPa,延伸率达到9.3%.(T6:固溶热处理后进行人工时效地状态)9、不同铝合金可通过哪些途径达到强化地目地代号名称说明与应用F 自由加工状态适用于在成形过程中,对于加工硬化和热处理条件无特殊要求地产品,对该状态产品地力学性能不作规定O 退火状态适用于经完全退火获得最低强度地加工产品H 加工硬化状态适用于通过加工硬化提高强度地产品,产品在加工硬化后要经过(也可不经过)使强度有所降低地附加热处理.H代号后面必须跟有两位或三位何拉伯数字W 固溶热处理状态一种不稳定状态,仅适用于经固溶热处理后,室温下自然时效地合金,该状态代号仅表示产品处于自然时效阶段T 热处理状态适用于热处理后,经过(或不经过)加工硬化达到稳定状态(不同于F、O、H状态)地产品, T代号后面必须跟有一位或多位阿拉伯数字.TO 固溶热处理后,经自然时效再经过冷加工地状态.适用于经冷加工提高强度地产品T1 由高温成形冷却,然后自然时效至基本稳定地状态.适用于由高温成形过程冷却后,不再进行冷加工(可进行矫直、矫平,但不影响力学性能极限)地产品T2 由高温成形冷却,经冷加工后自然时效至基本稳定地状态.适用于由高温成形过程冷却后,进行冷加工或矫直、矫平以提高强度地产品T3 固溶热处理后进行冷加工,再经自然时效至基本稳定地状态.适用于在固溶热处理后,进行冷加工或矫直、矫平以提高强度地产品T4 固溶热处理后自然时效至基本稳定地状态.适用于固溶热处理后,不再进行冷加工(可进行矫直、矫平,但不影响力学性能极限)地产品T5 由高温成形过程冷却,然后进行人工时效地状态.(不经过冷加工可进行矫直、矫平但不影响力学性能极限),予以人工时效地产品T6 固溶热处理后进行人工时效地状态T7 固溶热处理后进行过时效地状态.适用于固溶热处理后,为获取某些重要特性,在人工时效时强度在时效曲线上越过了最高峰点地产品T8 固溶热处理后经冷加工,然后进行人工时效地状态.适用于经冷加工或矫直、矫平以提高强度地产品T9 固溶热处理后人工时效,然后进行冷加工地状态.适用于经冷加工提高强度产品T10 由高温成形过程冷却后,进行冷加工,然后人工时效地状态10、为什么大多数铝硅铸造合金都要进行变质处理铝硅铸造合金当硅含量为多少时一般不进行变质处理,原因是什么铝硅铸造合金中加入镁、铜等元素作用是什么一般情况下,铝硅合金地共晶体由粗针状硅晶体和α固溶体构成,强度和塑性都较差;经变质处理后地组织是细小均匀地共晶体加初生α固溶体,合金地强度和塑性显着提高,因此,铝硅合金要进行变质处理.铸造硅铝合金一般需要采用变质处理,以改变共晶硅地形态.常用地变质剂为钠盐.钠盐变质剂易与熔融合金中地气体起反应,使变质处理后地铝合金铸件产生气孔等铸造缺陷,为了消除这种铸造缺陷,浇注前必须进行精炼脱气,导致铸造工艺复杂化.故一般对于Si小于7%--8%地合金不进行变质处理.若适当减少硅含量而加入铜和镁可进一步改善合金地耐热性,获得铝硅铜镁系铸造合金,其强化相除了Mg2Si、CuAl2外,还有Al2CuMg、AlxCu4Mg5Si4等相,常用地铝硅铜镁系铸造合金有ZL103、ZL105、ZL111等合金.它们经过时效处理后,可制作受力较大地零件,如ZL105可制作在250℃以下工作地耐热零件,ZL111可铸造形状复杂地内燃机汽缸等.11、铸造铝合金地热处理与变形铝合金地热处理相比有什么特点为什么铝合金分两大类:铸造铝合金,在铸态下使用;变形铝合金,能承受压力加工,力学性能高于铸态.可加工成各种形态、规格地铝合金材.主要用于制造航空器材、日常生活用品、建筑用门窗等.铝合金按加工方法可以分为变形铝合金和铸造铝合金.变形铝合金又分为不可热处理强化型铝合金和可热处理强化型铝合金.不可热处理强化型不能通过热处理来提高机械性能,只能通过冷加工变形来实现强化,它主要包括高纯铝、工业高纯铝、工业纯铝以及防锈铝等.可热处理强化型铝合金可以通过淬火和时效等热处理手段来提高机械性能,它可分为硬铝、锻铝、超硬铝和特殊铝合金等. 铝合金可以采用热处理获得良好地机械性能,物理性能和抗腐蚀性能. 铸造铝合金按化学成分可分为铝硅合金,铝铜合金,铝镁合金和铝锌合金.第九章铜合金1、锌含量对黄铜性能有什么影响(1)普通黄铜地室温组织普通黄铜是铜锌二元合金,其含锌量变化范围较大,因此其室温组织也有很大不同.根据Cu -Zn二元状态图(图6),黄铜地室温组织有三种:含锌量在35%以下地黄铜,室温下地显微组织由单相地α固溶体组成,称为α黄铜;含锌量在36%~46%范围内地黄铜,室温下地显微组织由(α+β)两相组成,称为(α+β)黄铜(两相黄铜);含锌量超过46%~50%地黄铜,室温下地显微组织仅由β相组成,称为β黄铜.(2)压力加工性能α单相黄铜(从H96至H65)具有良好地塑性,能承受冷热加工,但α单相黄铜在锻造等热加工时易出现中温脆性,其具体温度范围随含Zn量不同而有所变化,一般在200~700℃之间.因此,热加工时温度应高于700℃.单相α黄铜中温脆性区产生地原因主要是在Cu-Zn合金系α相区内存在着Cu3Zn和Cu9Zn两个有序化合物,在中低温加热时发生有序转变,使合金变脆;另外,合金中存在微量地铅、铋有害杂质与铜形成低熔点共晶薄膜分布在晶界上,热加工时产生晶间破裂.实践表明,加入微量地铈可以有效地消除中温脆性.两相黄铜(从H63至H59),合金组织中除了具有塑性良好地α相外,还出现了由电子化合物CuZn为基地β固溶体.β相在高温下具有很高地塑性,而低温下地β′相(有序固溶体)性质硬脆.故(α+β)黄铜应在热态下进行锻造.含锌量大于46%~50%地β黄铜因性能硬脆,不能进行压力加工.(3)力学性能黄铜中由于含锌量不同,机械性能也不一样.对于α黄铜,随着含锌量地增多,σb和δ均不断增高.对于(α+β)黄铜,当含锌量增加到约为45%之前,室温强度不断提高.若再进一步增加含锌量,则由于合金组织中出现了脆性更大地r相(以Cu5Zn8化合物为基地固溶体),强度急剧降低.(α+β)黄铜地室温塑性则始终随含锌量地增加而降低.所以含锌量超过45%地铜锌合金无实用价值.普通黄铜地用途极为广泛,如水箱带、供排水管、奖章、波纹管、蛇形管、冷凝管、弹壳及各种形状复杂地冲制品、小五金件等.随着锌含量地增加从H63到H59,它们均能很好地承受热态加工,多用于机械及电器地各种零件、冲压件及乐器等处.2、单相α黄铜中温脆性产生地原因是什么如何消除单相黄铜(从H96至H65)具有良好地塑性,能承受冷热加工,但α单相黄铜在锻造等热加工时易出现中温脆性,其具体温度范围随含Zn量不同而有所变化,一般在200~700℃之间.因此,热加工时温度应高于700℃.单相α黄铜中温脆性区产生地原因主要是在Cu-Zn合金系α相区内存在着Cu3Zn和Cu9Zn两个有序化合物,在中低温加热时发生有序转变,使合金变脆;另外,合金中存在微量地铅、铋有害杂质与铜形成低熔点共晶薄膜分布在晶界上,热加工时产生晶间破裂.实践表明,加入微量地铈可以有效地消除中温脆性.3、什么是黄铜地“自裂”产生地原因是什么通常采用什么方法消除。

工程材料与成型工艺基础习题答案

工程材料与成型工艺基础习题答案
工程材料与成型工艺基础习题答案
4.常见的金属晶格类型有体心立方晶格、面心立方晶格和密排 六方晶格三种类型。α–Fe属于体心立方晶格,γ–Fe属于面 心立方晶格,δ–Fe属于体心立方晶格。
5.实际金属的晶体缺陷有点缺陷(空位或间隙原子)、线缺 陷(位错)和面缺陷(晶界)。
6.金属的理论结晶温度与实际结晶温度之差称为过冷度。金 属的冷却速度越快,过冷度越大,获得的晶粒越细。
组织是否相同,各是何种组织?
1)不同。
2)由于铸件壁厚不同,其 各部分冷却速度不同。壁厚 5、10、20、30、40mm 处的组织分别为麻口组织 (Ld'+石墨)、P+石墨、P +石墨、F+P+石墨、F+石 墨。
图2-2 阶梯铸件
7.某厂铸造一个ф1500mm的铸铁顶盖,有如图2-3所示两 种设计方案,试分析哪种方案易于生产?并简述其理由。
34940N,拉断后测得标距长度为65㎜,断裂处直
径为5㎜。试计算σb、σs、δ、ψ的值。
bS Fb 0 33 .144 5924404(M 5 P ) a
s
FS S0
32 .114 5623207(M 5 P ) a
L k L 0 1% 0 0 6 5 31 0% 0 1 0.1 7 % 6
L 0
铸铁污水管 离心铸造,汽轮机叶片 压力铸造
二、简答题与应用题: 1.什么是液态合金的充型能力?影响液态合金充型能力的 因素有哪些?
(1)液态合金的充型能力是液体金属充满铸型型腔,获得 尺寸精确、轮廓清晰的成形件(铸件)的能力。
(2)影响液态合金充型能力的因素有合金的流动性、浇注 条件、铸型充填条件。
形、裂纹的原因是固态收缩 。
4.铸件在凝固过程中所造成的体积缩减如得不到液态金属 的补充,将产生缩孔或缩松。凝固温度范围窄的合金,倾 向于“逐层凝固”,因此易产生缩孔;而凝固温度范围宽 的合金,倾向于“糊状凝固”,因此易产生缩松。

第二篇铸铁及其熔炼 第二章 灰铸铁

第二篇铸铁及其熔炼 第二章 灰铸铁

第三节 灰铸铁癿结晶
• • • • • • • • • 一、碳在铸铁中癿存存形式 二、铁—碳(渗碳体)合金二元相图 三、灰铸铁癿结晶 1、灰铸铁癿一次结晶 2、灰铸铁癿二次结晶 四、石墨结晶癿特点 1、G形核 2、G长大 3、灰铸铁中片状石墨癿形态

第四节 影响铸铁组织和性能癿主要因素
• • • • • • • • • • • • • 一、铸铁癿化学成分对铸铁组织和性能癿影响 1、各元素在铸铁中癿存在形式 2、铸铁中常见元素有对铁—碳双重相图各临界点癿影响 3、化学成份对铸铁G化癿影响 4、化学成分对金属基体癿影响 5、碳当量CE和共晶度SC 二、铸件况却速度对铸铁组织和性能癿影响 1、铸件壁厚对况却速度癿影响 2、浇注温度对铸件况却速度癿影响 3、 2、炉料癿影响
第二节 灰铸铁癿金相组织、性能特点、牌 号及技术要求
一、灰铸铁癿金相组织 • 灰铸铁癿金相组织由片状石墨和金属基体两部分组成(即: F+G片、F+P+G片戒P+G片)。此外,还有少量癿夹杂物, 如硫化物、磷化物、碳化物、氧化物等。 • 1、石墨及其对性能癿影响 • 石墨本身有两个显著癿特点:一是密度小(约2.25g/cm3, 仅为铁癿1/3),在铸铁组织中占体积大;二是石墨本身软 而脆,力学能差,且强度较低(σb<20Mpa)。石墨在铸 铁组织中就相当于存在着许多切口一样,对金属基体起着 割离作用;另一方面,引起应力集中,致使金属基体癿力 学性能得丌到充分癿収挥(据测定基体癿性能収挥 30%~50%)。石墨对灰铸铁性能癿影响起着决定性癿作用。 这主要表现在石墨癿形状、分布、大小和数量等方面。
• 2、金属基体对性能的影响 • 灰铸铁癿金属基体主要分为三种:F体、F体+P体、P体。 如面2-8所示。 • (1)F体:铁素体本身质软,强度和硬度较低(σb约 为250MPa,硬度约为90HBS),塑性高(δ约为50% 左右)。但是在铁素体基体癿灰铸铁中,由于片状石墨 癿存在,铁素体癿塑性难収挥。 • (2)F体+P体:铁珠光体本身强度硬度较高(σb约为 700MPa,硬度约为200HBS),塑性低(δ约为 15%),在实际生产中,随着P含量癿提高,其强度硬 度也在提高,见图2-9所示。

第三章球墨铸铁

第三章球墨铸铁

• 2、力学性能的检验 • 本技术要求适用于砂型或导热性与砂型相当的铸型中
铸造的普通和低合金球墨铸铁件,不适用于球铁管件 和连续铸造的QT件。 • QT的力学性能以抗拉强度及伸长率为验收依据,对于 屈服点及硬度有要求时,共需双方协商决定,可作为 验收依据。QT检验用试块形状见图3-7所示,尺寸分 别见表3-9和表3-10。
强度最高、其次是B上、S体、P体、F体。 • QT静载荷性能的一其个突出的特点是屈服点。σ0.2高,超
过正火45钢,比强度σ0.2/σb也高于钢(据测 试:QTσ0.2/σb=0.7—0.8,钢的 σ0.2/σb= 0.3-0.57)。QT可 以代替钢制造静态承力大、材料强度要求较高的件。 • QT硬度比同基体的钢和灰铸铁要高,所以耐磨性能好。 球墨铸铁的弹性模量在159000~172000MPa,而且随球 化率的降低而降低。
第三章球墨铸铁
第三章球墨铸铁
第三章球墨铸铁
• 浇注单铸试块时应与所测铸件同包铁液在干型或湿型 内浇注。若需热处理时,试块应与铸铁同炉热处理。 当铸件质量大于2000kg,且壁厚在30~200mm时, 一般采用附铸试块,热处理后从铸件上切取,其形状 及尺寸如图3-8和表3-11所示。
第三章球墨铸铁
• 三、本章的重点知识
• 本章主要介绍铁素体、珠光体及贝氏体球墨铸铁的金 相组织、性能特点及技术要求,化学成分确定及熔制 工艺,球墨铸铁的热处理、铸造性能及铸造工艺特点, 常见缺陷及其防止措施等。
第三章球墨铸铁
第二节 球墨铸铁的金相组织、性能特点、牌 号及技术要求
• 一、球墨铸铁的金相组织特点 • 1、石墨 • 2、金相基体 • 二、QT的性能特点 • 1、力学性能 • 2、使用性能 • 3、工艺性能 • 三、球墨铸铁的牌号及技术要求 • 1、球墨铸铁的牌号 • 2、力学性能的检验

工程材料及机械制造基础 第八章铸铁

工程材料及机械制造基础  第八章铸铁

第二阶段 石墨化
铸铁的显微组织
铸铁类型
完全进行 F+C 部分进行 F+P+C 未进行 P+C 灰口铸铁
部分进行 未进行
ILMTAM
未进行 未进行
Ld’+P+C Ld’
麻口铸铁 白口铸铁
14 14
华东交通大学 先进材料激光制造技术研究所 Institute of Laser Manufacture Technology for Advanced Materials, ECJTU
碳、硅含量对铸铁石墨化的影 响
麻口 铸 铁
C 白口铸铁
灰口铸铁
Si
华东交通大学 先进材料激光制造技术研究所 Institute of Laser Manufacture Technology for Advanced Materials, ECJTU
15 15

碳、硅量控制范围:2.5~4.0%C,1.0~3.0%Si。 Al、Cu、Ni、Co等元素对石墨化有促进作用。
P’
ILMTAM
华东交通大学 先进材料激光制造技术研究所 Institute of Laser Manufacture Technology for Advanced Materials, ECJTU
13 13
铸铁的石墨化程度与其组织之间的关系
(以共晶铸铁为例)
石墨化进行程度
第一阶段 石墨化
完全进行
二次结晶(1154℃→738℃)
共析石墨化
台车式石墨化退火炉
三次结晶( 738 ℃→室温)
ILMTAM
华东交通大学 先进材料激光制造技术研究所 Institute of Laser Manufacture Technology for Advanced Materials, ECJTU

工程材料习题与辅导第三版习题3.2参考答案(配朱张校主编、清华大学出版社)

工程材料习题与辅导第三版习题3.2参考答案(配朱张校主编、清华大学出版社)

1.用下述三种方法制成齿轮,那一种方法较为理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。

2.冷加工与热加工后的金属能否根据其显微组织加以区别?为什么?3.铜只能通过冷加工并经随后加热才能细化晶粒,而铁则不需要冷加工,只需加热到一定温度即可细化晶粒,分析两者差别的原因。

1.用下述三种方法制成齿轮,那一种方法较为理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。

2.冷加工与热加工后的金属能否根据其显微组织加以区别?为什么?3.铜只能通过冷加工并经随后加热才能细化晶粒,而铁则不需要冷加工,只需加热到一定温度即可细化晶粒,分析两者差别的原因。

1. 共析钢加热到相变点以上,用图1 的冷却曲线冷却,各应得到什么组织?各属于何种热处理方法?(工程材料习题与辅导,P14,第26题)2. T12钢加热到Ac1以上,用图2 的各种方法冷却,分析其所得到的组织。

(旧版工程材料习题与辅导,P 23 ,第22题)3. 残余奥氏体对钢淬火后的性能有何影响?用什么方法可以减少残余奥氏体的数量?[思考题]1. 淬硬性和淬透性有什么不同?决定淬硬性和淬透性的因素是什么?2. 淬火内应力是怎样产生的?它与哪些因素有关?1. 共析钢加热到相变点以上,用图1 的冷却曲线冷却,各应得到什么组织?各属于何种热处理方法?(工程材料习题与辅导,P14,第26题)2. T12钢加热到Ac1以上,用图2 的各种方法冷却,分析其所得到的组织。

(旧版工程材料习题与辅导,P 23 ,第22题)3. 残余奥氏体对钢淬火后的性能有何影响?用什么方法可以减少残余奥氏体的数量?[思考题]1. 淬硬性和淬透性有什么不同?决定淬硬性和淬透性的因素是什么?2. 淬火内应力是怎样产生的?它与哪些因素有关?1. 出现下列不正常现象时,应采取什么有效措施予以防止或改善?a. 灰铸铁磨床床身铸造以后就进行切削, 在切削加工后出现不允许的变形。

铸铁样品的制备实验报告

铸铁样品的制备实验报告

铸铁样品的制备实验报告实验报告:铸铁样品的制备实验一、实验目的:1. 了解铸铁材料的制备方法以及性能特点;2. 掌握铸铁样品的制备方法。

二、实验原理:铸铁是一种具有较高的碳含量和铸性好的合金材料。

其主要成分是铁、碳和一些合金元素。

铸铁在工业生产中广泛应用于我们生活中的各个领域,如机械工程、汽车制造等。

铸铁根据其碳含量的不同可以分为灰口铸铁、球墨铸铁和白口铸铁。

本实验主要是制备灰口铸铁样品。

三、实验步骤:1. 准备好所需的实验器材和试剂;2. 将铸铁原料(常用的包括铁、钢、废铁等)加入炉内,并严格按照一定的配方比例加入合适的石墨和合金元素;3. 打开炉门,点燃燃烧器,并加热升温,使铸铁原料逐渐熔化;4. 等待熔化后的铸铁液达到一定的温度和质量,然后进行熔炼和净化处理,去除杂质;5. 将熔化后的铸铁液倒入预先准备好的铸模中;6. 等待铸铁冷却固化,取出样品;7. 进行必要的后续处理,例如去除模型砂、氧化皮等,并磨光样品的外表面。

四、实验结果和分析:通过上述步骤制备出的铸铁样品,应具有一定的均匀性和致密性。

在实验中,我们可以通过观察样品表面的颜色、质地以及用相应的检测仪器测量其硬度、强度、韧性等物理性能指标来进行分析。

同时,铸铁样品还可以进一步进行金相观察和显微组织分析,通过光学显微镜观察样品内部的晶粒结构和相组成,以评估铸铁的显微组织特征和性能。

五、实验总结:铸铁样品的制备是工程材料学中的一项重要实验,通过此次实验,我们对铸铁的制备过程和相关性能进行了初步了解。

铸铁作为一种重要的工程材料,在工业生产中具有广泛应用,因此掌握铸铁样品的制备方法,对我们理解和掌握铸铁的性能和应用具有重要的意义。

通过此次实验,我们还了解到了铸铁制备过程中的一些关键问题和注意事项,如燃烧器的调整、温度的控制等,这些知识将有助于我们今后在专业实践中更好地进行铸铁的制备和应用。

参考内容:[1] 杨成林. 铸铁铸造技术与标准[M]. 北京: 中国标准出版社, 2018.[2] 曾瑞章. 铸造工艺学[M]. 北京: 化学工业出版社, 2015.[3] 徐海军, 张辉. 灰铁和球墨铸铁的组织与性能对比分析[J]. 铸造技术, 2010, 31(4): 327-331.[4] 蓝琛, 金伟, 钟超. 铸铁的显微组织图像特征分析[J]. 铸造技术, 2014, 35(4): 303-307.[5] 郝善学. 碳酸盐矿库存铸铁系销矿床特征及选择[J]. 铸造技术, 2010, 31(2): 190-195.。

铸铁材料性能

铸铁材料性能

铸铁材料性能铸铁是一种常见的工业材料,具有优良的性能和广泛的应用。

它主要由铁、碳和硅组成,具有较高的硬度和耐磨性。

铸铁材料性能的优劣直接影响着其在工程领域的应用范围和效果。

下面将从几个方面介绍铸铁材料的性能特点。

首先,铸铁材料的强度和硬度较高。

铸铁的强度主要取决于其组织结构和碳含量,一般来说,碳含量越高,强度也越高。

而硬度则取决于铸铁中的碳化物含量,碳化物越多,硬度也越高。

因此,铸铁通常被用于制造对强度和硬度要求较高的零部件,如机床、汽车发动机缸体等。

其次,铸铁具有良好的耐磨性和耐热性。

由于铸铁中含有较高的碳含量,碳化物的形成使得铸铁具有很好的耐磨性,能够在摩擦和磨损的环境下保持较长的使用寿命。

同时,铸铁的熔点较高,耐热性也较好,能够在高温环境下保持较好的稳定性。

另外,铸铁还具有较好的液态流动性和铸造性能。

铸铁在液态状态下具有较好的流动性,能够填充模具中的各个角落,从而制造出形状复杂的零部件。

同时,铸铁的铸造性能也较好,能够通过各种铸造工艺制造出不同形状和尺寸的铸件。

最后,铸铁还具有较好的耐腐蚀性和成本效益。

铸铁在一定条件下能够抵抗大部分化学腐蚀介质的侵蚀,能够保持较长时间的使用寿命。

与此同时,铸铁的生产成本较低,加工成本也较低,能够提供较为经济实惠的解决方案。

总的来说,铸铁材料具有较好的强度、硬度、耐磨性、耐热性、液态流动性、铸造性能、耐腐蚀性和成本效益等性能特点,因此在工程领域有着广泛的应用。

但是,铸铁材料也存在一些缺点,如脆性较大、冲击韧性较差等,因此在实际应用中需要根据具体情况进行合理选择和设计。

希望本文能够对铸铁材料性能有所了解,并在实际工程中加以应用和改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程材料学铸铁的组织与性能实验一铸铁的组织与性能一、实验目的1、观察灰口铸铁中不同类型石墨的形貌及基体组织。

2、观察灰口铸铁中磷共晶的形态及分布。

二、实验原理铸铁是含碳量大于2.14%或组织中具共晶的铁碳合金。

工业上所用的铸铁,实际上都不是简单的铁——碳二元合金,而是以铁、碳、硅为主要元素的多元合金。

铸铁中的碳可以以渗碳体的形式存在,也可以石墨的形式存在。

根据碳在铸铁中的存在形态的不同,通常可将铸铁分为白口铁、灰口铸铁和麻口铸铁。

而根据铸铁中石墨的形态不同,又可分为普通灰口铸铁,蠕虫状石墨铸铁,球墨铸铁以及可锻铸铁。

铸铁中的金属基体一般都是由珠光体。

铁素体或珠光体+铁素体组成。

基体上与共析钢或亚共析钢的基体组织相同。

灰口铸铁的金相特点,是在钢的基础上分布着片状石墨,其组织是根据石墨片的大小、长度、分布及基体的类型不同有很大的差异,这主要决定于化学成份和铸造条件而定。

(一)灰口铸铁1、灰口铸铁的石墨类型灰口铸铁中石墨的大小、数量和分布对机械性能有很大的影响。

为了便于比较,对铸铁中石墨进行了分类评级,我国按石墨的形成原因和分布特征,将其分为A、B、C、D、E 和F六种类型。

A型石墨:石墨片的尺寸和分布都比较均匀,且无方向性。

这种石墨是碳当量为共晶成份或接近共晶成分的铁水在共晶温度范围内从铁水中和奥氏体同时析出的,其生成条件是具有较小的过冷度,这样才能造成均匀生核和长大,使各处的结晶和生长速度相差不大,最后得到大小和分布均匀的A型石墨(见图1)。

B型石墨:点状石墨被卷曲的片状石墨所包围,无方向性,具有菊花形态。

称为菊花状石墨(见图2)。

这类石墨的特点是由于过冷度较大,首先从液相中析出细小的树枝状奥氏体,接着在树枝的间隙中产生奥氏体与石墨共晶,这时的石墨片分枝多而密,形成菊花中心的点状石墨。

但是,因为不是在非常强烈的过冷条件下结晶,在初晶产物放出结晶潜热的条件下减慢了包围着初晶产物外层的铁水的结晶速度,而且又只能由沿着初生产物向外呈放射状的方向通过液体金属进行散热。

所以外层石墨生长成为较粗大的曲片形,大致呈放射状分布,直至遇到邻近的共晶团为止。

这类石墨常在碳、硅含量较高,过冷度较大的亚共晶灰铸铁中出现,B 型石墨由于呈聚集分布,因而使铸铁的强度有所降低。

C型石墨:是由大片状的初生石墨与较细小的共晶石墨所组成。

石墨大小相差很大,但分布比较均匀,无方向性(见图3)。

这种类型的石墨主要出现在过共晶程度较大,冷却速度较慢的厚壁铸件中,由于缓慢冷却,共晶结晶前形成的初生石墨在铁水中能充分长大,形成粗片状石墨。

随着初生石墨的析出,铁水的含碳量逐渐降低,在共晶温度下,具有共晶成分的铁水发生共晶转变而析出共晶石墨,结果形成粗片状的初生石墨和细小的共晶石墨片混杂分布的形式。

粗大石墨片的存在,使铸铁的机械性能显著降低。

D型石墨:点状与小片状的石墨无方向性的分布(见图4)。

它是在较大过冷条件下生成的共晶石墨。

这类石墨往往出现在碳、硅含量较低,过冷度较大的亚共晶灰口铸铁中。

结晶时,首先形成树枝状的奥氏体,由于过冷度较大,分布于枝晶间隙中的剩余铁水发生共晶转变时,几乎同时生成大量的石墨核心,这些石墨核心只能作微小的生长,产生多而密的分枝,所以在显微镜下,石墨呈点。

片状分布在奥氏体的树枝间隙中,除了低碳和强烈过冷外,铁水过热也是D型石墨生成的条件。

因为过热会使石墨生成的核心减少,石墨结晶困难,需要有较大的过冷度。

这类石墨由于密集分布,也使机械性能有所下降。

E型石墨:在初生奥氏体的晶间分布着有方向性的短片石墨,其特征和成因与D型石墨基本相同,只是E型石墨的分布具有明显的方向性(见图5)。

在实际生产中,D型和E 型石墨通常不作严格区分,分称D、E型石墨,也称过冷石墨或枝晶石墨。

E型石墨因分布的方向性较强,它对机械性能的影响也较D型石墨大一些。

F型石墨:其特点是星状(或蜘蛛状)与短片状石墨混合均匀分布(见图6),F型石墨是过共晶铁水在较大过冷度的条件下形成的。

大块的为初生石墨,片状石墨在其上生长。

(二)灰口铸铁的基体组织实际生产中应用的灰口铸铁主要是以珠光体为基体的,随着基体中珠光体含量的增加和细化,铸铁的强度、硬度和耐磨性提高。

珠光体的细化程度与奥氏体的成分、晶粒度、分解温度有关,灰口铸铁中珠光体类型组织的形成过程与钢相似,不再重述。

灰口铸铁的基体组织为铁素体、铁素体+珠光体、珠光体组织(见图1~图9)。

图1A型石墨100×图2B型石墨100×图3C型石墨100×图4D型石墨100×图5E型石墨100×图6F型石墨100×磷共晶:铸铁经常含有较多的磷,它在奥氏体或体素体中溶解度很小;在古陶纯铁中的溶解12%,而含碳3.5%的铸铁中只能溶解0.3%。

再加上结晶偏析的结果。

虽然含磷量比上述数值小,也总有磷共晶出现。

铸铁中含有0.1%磷,组织中就会出现1%的二元磷共晶。

但铸铁中的磷共晶往往既有二元的也有**的,有时还有碳化物组成磷共晶—碳化物复合物,其数量超过铸铁中磷含量的10倍,主题中促进石墨的因素,大多促进二元磷共晶的生成,促进碳化物形成的因素,则促进**磷共晶的生成。

二元磷共晶:由磷化三铁和点状铁素体多组成(见图10);**磷共晶:由磷化三铁,碳化三铁和点状铁素体所组成(见图11);磷共晶——碳化物复合物,在二元或**磷共晶上镶有较大的碳化物条或块(见图12)。

经硝酸酒精溶液浸蚀后,磷共晶为白亮的,磷化三铁的基体上发表着粒状铁素体,有时粒状呈鱼骨状规则地排列在基体上。

图7灰铸铁正火400×图8灰铸铁铸态400×图9灰铸铁退火400×图10二元磷共晶500×图11**磷共晶500×图12**磷共晶+复合磷共晶500×(二)球墨铸铁图13球墨铸铁铸态400×(珠光体+球状石墨)图14球墨铸铁退火态400×(铁素体+球状石墨)球墨铸铁的组织是由球状石墨和金属基体所组成。

石墨球通常是孤立地分布在金属基体中的、石墨的圆整度越好、球径越小,分布越均匀,则球墨铸铁的机械性能亦越高,球墨铸铁的基体组织在铸态下变化较大,一般很难获得单一的基体组织,其组织:“珠光体+铁素体+球状石墨”(见图13)。

球墨铸铁的组织可以看成是钢的组织加球状石墨所组成,而机械性能又主要取决于金属基体,因此,像钢一样,通过热处理可以改变其基体组织,从而显著地改善球墨铸铁的性能。

球墨铸铁虽然碳含量比钢高得多,但通过热处理控制其不同的石墨化程度、不仅可以获得类似于低碳钢的铁素体基体(退火处理见图14)和类似于中、高碳钢的铁素体+珠光体,甚至珠光体基体组织,而且还可以获得不同相对量和形态的铁素体+珠光体基体组织(正火处理见图15)。

因此,球墨铸铁热处理后,即可获得相当于低碳钢的机械性能,又可获得相当于中、高碳钢的机械性能,这是钢的热处理所达不到的。

此外等温淬火是目前发挥球墨铸铁材料潜力最有效的一种热处理方法,球墨铸铁等温淬火后,可以获得高强度或超强度,同时具有较高的塑性韧性和具备良好的综合机械性能及耐磨性,还有热处理变形小的特点。

所以,经适当的等温处理的球墨铸铁可以满足日益发展的高速、大马达、受力复杂机件的性能要求,从而扩大了球墨铸铁的使用范围。

调质处理后的球墨铸铁,具有较好的综合机械性能,而热处理工艺及设备则比等温淬火简单,且被切割加工性比较好,球墨铸铁经调质处理后,组织为素氏体+球状石墨,可代替部分铸钢和锻钢制造一些重要的结构零件,如连杆、曲轴等。

对球墨铸铁进行感应加热表面淬火,使它们除具有良好的综合机械性能外,同时工作表面具有较高的硬度和耐磨性以及疲劳强度。

根据某些球墨铸铁件往往需要在强烈的磨损或在氧化、腐蚀介质的条件下工作的需要,必须进行化学热处理,如:氮化、软氮化、渗硼等。

图15球墨铸铁正火态400×珠光体+铁素体+球状石墨图16蠕虫状石墨+金属基体100×图17团絮状石墨+铁素体100×珠光体+铁素体+蠕虫状石墨+莱氏体图18蠕墨铸铁100×(三)蠕墨铸铁蠕墨铸铁的石墨形态是蠕虫状和球状石墨共存的混合形态,蠕虫状石墨是介于片状石墨和球状石墨之间的中间石墨形态(见图16)。

其基体组织为铁素体,其力学性能介于灰铸铁与球墨铸铁之间,其铸造性能比球墨铸铁好,与灰铸铁接近。

因此形状复杂的铸铁也能用蠕墨铸铁制造。

此外灰铸铁中还会出现莱氏体,即白口化(见图17)。

(四)可锻铸铁可锻铸铁的生产过程是先浇注成白口铸铁件,然后再退火成灰口组织。

可锻铸铁中的石墨呈团絮状分布(见图18),对金属基体的割裂和破坏较小、石墨尖端引起的应力集中小,金属基体的强度、塑性及韧性可较大程度地发挥作用。

故可锻铸铁的机械性能比灰铸铁高、特别是塑性、韧性要高得多。

可锻铸铁中的团絮状石墨数量愈少、外形越规则,分布愈细小均匀,其机械性能愈多。

可锻铸铁的机械性能除与石墨团的形状、大小、数量和分布有关外、还与金属基体的组织有很大的关系,可锻铸铁的基体有铁素体基体和珠光体基体两种,铁素体基体具有一定的强度和较多的塑性与韧性,主要用作承受冲击和震动的铸件。

珠光体基体具有高的强度、硬度和耐磨性以及一定的塑性、韧性,主要用以要求高强度、硬度、耐磨的铸件。

(五)铸铁金相试样的特点在生产实践和今后的工作中,我们将要碰到大量的铸铁工件的金相检验,在此就铸铁金相试样的制备特点作一简短的说明:铸铁(不包括白口铸铁)试样的抛光,既要使基体表面无道痕,又要保证石墨不污染,不脱落,重要的是要能正确的显示石墨的形态和大小,试样磨平后,用新砂纸(丛粗到细)磨制。

用旧了的砂纸是不利于磨制石墨,会使石**落,石**落后,其空腔会由于周围金属变形而变小,或由于腐蚀而扩大,磨面被污物充填。

在抛光时,为了防止石**落或污染,要选择短毛纤维柔软的丝织物较为适宜。

抛光磨料可用氧化镁,开始抛光时,使用抛光盘的外圈以提高切削速度,要注意随时转动试样(特别是球铁),防止出现“彗星尾巴”。

随着抛光接近完成,要逐步减轻压力,并将试样移至抛光盘中心区。

抛光过程中必须保持抛光盘湿度适宜,水分过多或过少都会带来不良后果。

经正确地抛光后的铸铁试样,石墨呈灰色,球状石墨可见放射状特征。

对于铁素体基体,则推荐用硝酸酒精溶液。

但要注意,石墨会吸收硝酸,腐蚀后,往往引起石墨的膨胀,并导致石墨球或石墨片局部脱落。

三、实验方法及指导1、实验内容及步骤(1)观察灰铸铁、可锻铸铁、球墨铸铁和蠕墨铸铁的金相组织。

见表1。

(2)描绘出几种合金钢的组织示意图。

2、实验设备及材料设备:金相显微镜。

试样:灰铸铁的各种石墨形态和各种基体组织的金相试样一套;球墨铸铁的各种石墨形态和基体组织的金相试样一套;可锻铸铁金相组织试样;蠕墨铸铁金相组织试样。

相关文档
最新文档