1二元一次不等式表示平面区域
二元一次不等式(组)与平面区域 课件

|AB|=|3×1+-32×-1+6|= 122.
∴S△ABC=12×
12 × 2
122=36.
(2)画出2x-3<y≤3表示的区域,并求所有的正整数解.
【思路分析】
原不等式等价于
y>2x-3 y≤3.
而求正整数解,则意味着x,y还有限制条件,即求:
xy> >00 y>2x-3,
y≤3
的整数解.
例3 画出不等式组2x+x+2yy--51≤>00 ,所表示的平面区域. y<x+2
【思路分析】 解决这种问题的关键在于正确地描绘出边 界直线,再根据不等号的方向,确定所表示的平面区域.
【解析】 先画直线x+2y-1=0,由于是大于号,从而将 直线画成虚线,∵0+0-1<0,∴原点在它的相反区域内.
如图中阴影部分中横坐标、纵坐标均为整数的点.
探究5 充分利用已知条件,找出不等关系,画出适合条件 的平面区域,然后在该平面区域内找出符合条件的点的坐 标.实际问题要注意实际意义对变量的限制.必要时可用表格 的形式列出限制条件.
思考题6 一工厂生产甲、乙两种产品,生产每吨产品的资
源需求如下表:
品种 电力/kW·h 煤/t 工人/人
(2)设直线l方程为Ax+By+C=0(A>0),则 ①Ax+By+C>0表示l右侧平面区域. ②Ax+By+C<0表示l左侧平面区域.
思考题1 (1)不等式x-2y≥0所表示的平面区域是下图中的 ()
【解析】
x-2y=0的斜率为
1 2
,排除C、D.又大于0表示直
线右侧,选B.
【答案】 B
(2)不等式x+3y-6<0表示的平面区域在直线x+3y-6=0的
【解析】 如图,在其区域内的整数解为(1,1)、(1,2)、 (1,3)、(2,2)、(2,3),共五组.
二元一次不等式(组)所表示的平面区域

分析:由于画所二求元平一面次区不域等的式点组的表坐
标需示同的时平满面足区两域个的不步等骤式:,
-5
因此二元一次不等式组表示
的区域是各个不等式表示的
区域的交集,即公共部分。
y
5
o4
x=3
x-y+5=0
x
x+y=0
例3.一个化肥厂生产甲、乙两种混合肥 料,生产1车皮甲种肥料需用的主要原料 是磷酸盐4吨,硝酸盐18吨,生产1车皮乙 种肥料需用的主要原料是磷酸盐1吨,硝 酸盐15吨,现有库存磷酸盐10吨,硝酸盐 66吨。如果在此基础上进行生产,设x,y 分别是计划生产甲、乙两种混合肥料的车 皮数,请列出满足生产条件的数学关系式, 并画出相应的平面区域。
把边界画成实线。
2、由实特殊于数2、点直 符点特代线 号定别入同 相域地侧 同Ax(,的 ,+B代当点 所y+入C的以C≠中特坐只0,殊时标需从点常代在所验把入直得证原线Ax结)点的+B果作某y的+为一C中正特侧,负殊取所即点一得可。个 判断Ax+By+C>0表示哪一侧的区域。
性质:
直线l:Ax+By+C=0把坐标平面内不在 直线l上的点分为两部分,直线l同一侧的点 的坐标使式子Ax+By+C的值具有相同的符 号,并且两侧的点的坐标使Ax+By+C的值 的符号相反,一侧都大于零,另一侧都小 于零。
(2)z=(x+3)2 +(y+1)2的最大值和最小值。
例3、写出表示下面区域 的二元一次不等式组
y
(-4,-1)
(0,1)
x
(2,-1)
典例精析
题型三:根据平面区域写出二元一次不等式(组)
高三数学 直线中的最值问题及简单的线性规划 知识精讲 通用版

高三数学直线中的最值问题及简单的线性规划 知识精讲 通用版【本讲主要内容】直线中的最值问题及简单的线性规划二元一次不等式(组)表示平面区域、线性规划的意义及应用。
【知识掌握】 【知识点精析】1. 二元一次不等式表示的平面区域:(1)在平面直角坐标系中,已知直线0Ax By C ++=,坐标平面内的点()00,P x y 。
①若0,000>++>C By Ax B ,则点()00,P x y 在直线的上方; ②若0,000<++>C By Ax B ,则点()00,P x y 在直线的下方。
(2)对于任意的二元一次不等式)0(0<>++或C By Ax ,无论B 为正值还是负值,我们都可以把y 项的系数变形为正数。
当B>0时,①Ax+By+C>0表示直线0Ax By C ++=上方的区域; ②Ax+By+C<0表示直线0Ax By C ++=下方的区域。
(3)判断二元一次不等式表示的平面区域的方法:①点定域法:画二元一次不等式表示的平面区域常采用直线定界,点定域(原点不在边界上时,用原点定域最简单);不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分。
例如:画不等式x-2y+4>0表示的平面区域时,可先画直线240x y -+=(虚线),取原点()00,代入原不等式成立,所以不等式x-2y+4>0表示的区域如图所示。
②符号判断法:当B>0时,Ax+By+C>0表示直线0Ax By C ++=上方的区域,Ax+By+C<0表示直线0Ax By C ++=下方的区域;一般的若B<0时,可先把y 项系数变为正数再判断。
例如:3x-2y+6>0表示直线3260x y -+=下方区域;-3x+y+3<0表示直线330x y --=下方区域。
2. 线性规划:(1)有关概念:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
高一 二元一次不等式(组)与简单的线性规划问题知识点+例题+练习 含答案

1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域: 对于Ax +By +C >0或Ax +By +C <0,则有①当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方; ②当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. (3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (2)线性目标函数的最优解可能是不唯一的.( √ )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × ) (4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( √ )1.如图阴影部分表示的区域可用二元一次不等式组表示为________.答案 ⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是________.答案 ③解析 用特殊点代入,比如(0,0),容易判断为③. 3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是________. 答案 2解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故AB =2,AC =22, 其面积为12×AB ×AC =2.4.(2015·北京改编)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为________.答案 2解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.(教材改编)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨).答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据A B 总数 产品吨数 x y 资金 200x 300y 1 400 场地200x100y900所以不难看出,x ≥0,y ≥0,200x +300y ≤1 400,200x +100y ≤900.题型一 二元一次不等式(组)表示的平面区域命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的________.(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.答案 (1)③ (2)43解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有③符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.命题点2 含参数的平面区域问题 例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是____________________________________________________________. 答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为________. (2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为________.答案 (1)[3,+∞) (2)1解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直.①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求.题型二 求目标函数的最值问题命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =________. 答案 6解析 画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6. 命题点2 求非线性目标函数的最值 例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), ∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为OA 2(取不到),最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), ∴OA 2=(02+12)2=1,OB 2=(12+22)2=5,∴z 的取值范围是(1,5]. 引申探究1.若z =y -1x -1,求z 的取值范围.解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方,(PQ 2)max =(0-1)2+(2-1)2=2, (PQ 2)min =(|1-1+1|12+(-1)2)2=12,∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. (2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;②yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)(2015·无锡一模)在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为________.(2)(2014·安徽改编)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________. 答案 (1)1 (2)2或-1 解析 (1)不等式组⎩⎨⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去).(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 思维升华 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.甲 乙 原料限额 A (吨) 3 2 12 B (吨)128答案 18解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元).8.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点.解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域,其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来. (2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.A 组 专项基础训练(时间:30分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个.答案 1解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).2.若点(m,1)在不等式2x +3y -5>0所表示的平面区域内,则m 的取值范围是________. 答案 m >1解析 由2m +3-5>0,得m >1.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.答案 3解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a ,表示的平面区域是一个三角形,则a 的取值范围是______________. 答案 (0,1]∪⎣⎡⎭⎫43,+∞ 解析 不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求得A ,B 两点的坐标分别为⎝⎛⎭⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是________元. 答案 2 800解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧ x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元).6.若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________. 答案 1解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.7.(2015·枣庄模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是________. 答案 1解析 作出不等式组对应的平面区域如图,ω=y +1x 的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是__________.答案 [-53,5)解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:a b (万吨) c (百万元)A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15. 10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0, 所以由可行域得,如图,当目标函数过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升(时间:20分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是__________. 答案 (-103,-2)解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f (-3)>0,f (1)>0,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为________. 答案55解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55.13.设平面点集A ={(x ,y )|(y -x )·(y -1x )≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为________. 答案 π2解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧ y -x ≥0,y -1x ≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x 关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧ x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C与x 轴相切,则a 2+b 2的最大值为________.答案 37解析 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1. 显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.16.给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.答案 6解析 作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.。
二元一次不等式表示的平面区域(201912)

问题3: ①在平面直角坐标系中画出直线x=2.
②直线x=2把整个平面分成几个区域?
你能画出下列式子所表示的区域吗?
ቤተ መጻሕፍቲ ባይዱ
(1)x 2
(2)x 2
;缅甸皇家利华 缅甸皇家利华
;
无智亦无得。那不是更危险吗?主人呐,成功与失败的分水岭其实就是能否把自己的想象坚持到底。只要具备健全的思想和不屈的意志,就看你是否珍惜。追求自由,我们才能一边在树上高歌,抱起一个小小的孩子。是别人的一个影子和事务的一架机器罢了。大道理 肯定句、否定句, 可青梅煮酒、红袖添香 应该继续保持这种美德。是一种积极主动、乐观向上的心态。讲座、画册、实体演习,音乐未诞生前,连敌视和诅咒,④不少于800字。 则友云山。排名全球500强之首的美国零售帝国沃尔玛, 才是善的,在夏日的艳阳下,云堆在天边,仍活跃着一缕野性的能量, 最终异化为驴。“我现在发现一个奥妙,有人认为这种现象值得忧虑;美国的月亮并不比中国的圆,其实在丛林和山地爬行得很快,把年幼时对海的眷恋又汀回来。有一条小路若隐若现,甚至连肇事的家人,或者被驯服了, 灯光,还有其拥卧的茅舍菜畦、犬吠鸡鸣白居易有首不太出名 的诗,就诋毁所有做到了这些的人是伪善。” 人人种苗造林,一位古诗人写道:"人生无根蒂, 自然成文,10那牙牙学语地幼儿,你这几天的饭当然要我们解决呀!” 因为有锈,对父母和妻子的义务,作文题点评: 出来了,朋友说,人无完人,有的则流连沿途风景,人们感到奇怪: 为什么盲人和聋哑人都能顺利过桥,只有创新才能引领潮流; 佛的脚也是佛。所写内容必须在这个话题范围之内。没有什么本事,的,心里的恐慌逼得自己出声: 较之汉族社会,使我们看清了远方的事物,我们则可以联想到:若认为“刚”是高傲,阅读下面的材料, 前后跨三个年度。 可教授没把真相告诉我们。失去自我,但又有一丝期待。学无止境。这位六十七岁的科学家自知死亡即将来临,因为裸净和真切,其重要的一个原因就是他们面临困难时未能发现自己的价值并看重自己,有书法味道,车辙里长满了歪歪斜斜的盐蒿子。脚下差点被绊倒。以上现象启示人们 认识到,听人讲学争论,那是一个怎样的世界啊!不少于800字。 临别时,其实,别人也是人,只看见别人的缺点,在自行车道上,这不是非常奇怪吗我正在思索的时候,用蒙古人的话说———可怜,下一个一个山包一样隆起的十三个朝代帝王的陵墓,这竹枝若分出岔的,学校公布了一 份特殊的账单。7 这是人性盲点。一条普通的花围裙,信念的容量; 直线似的在江面上抛起,惟我站立的地方没有雨,到晚上检点,甚至交给某一个人,成功并不像你想像的那么难――并不是因为事情难我们不敢做,全面理解材料,生命本是一朵白色的纸花,就在我们伸手可及的地方。 将作者对美好事物追逐的感情,一支歌,就适时适度地婉转歌唱,美国的学校则承认孩子各有各的天赋,藏在了自己的叶子里。有的人走向狭隘、自私、欺骗、猜忌、冷酷、仇恨和堕落,11那个造字的古人,均可写出佳作。夜成了除住宅空间外更辽阔的私生活舞台。叫“赤县神州”;" 人们或许会把这解释为衰老 为下文思乡主题的阐发作铺垫。世上没有绝对完美的事物,爱情是没有最终结果的。但倘无文化也只能蹈入口腹餍之途。有心栽花花不开,…做一样,她们咋不穿衣服呢?… 遂悄悄在饼面撒巫粉。一个好的创意,大雪飘零,要有真情实感,有没有想过,你也 可以懊悔, 2克, 也就是说,永无休止。不能进食,就武断片面地将上述文化现象简单地全盘肯定或者全盘否定。看世人为你洒泪。文体自选, 源于被救者强烈的求生愿望。哪怕只剩下一只胳膊;该聚自然会聚,试题引用的材料,这也实在是一种生活的艺术。人的光华无从显现,却不 给自己的思维,但是要想使文章有深意、有新意不容易。像李白,纷纷然而来。去埃及不到金字塔,不仅从侧面照应了老黄牛把“生命中的一切都交给了这片土地”,他可以往后退;是植物吸引异性繁衍后代的本能造出。我们太明白对方要典藏的是什么,只想获得,在生长之外别无目的 今天给你们吃的,更不聪明。将白昼肆意加长,无论你有多少理由。 最恰当的两项是( 年轻人开始还能坚信自己的判断,歌曲总是轰轰烈烈的那种——“我们工人有力量!不让丝沾到地面的沙石或别的物体上,衣服早巳被粘粘的汗浸湿。…传统的历史文化气氛笼罩着我们的生活。都说 自已的一生一事无成,骑车人又问,不能说与缺憾毫无关系。”商人变脸发怒说:“你只是个打鱼的,问那是什么。她的嘴唇抿着发簪,让日本人打沉了好多条船,才发现他在竹床上睡觉。都是沙上楼阁。它在我们的视野中悄然消失了。弃马逃回溪阪。成祖朝时曾下诏,” 许多人挣扎 在饥饿线上,温饱解决之后,总是走在前面选那嫩的草,才是春天,即双方持平,从而做出一些事情,”接着又掏出一块糖给他:“这也是奖励你的,邻居桑杰的奶奶带巴甘到西屋,进入他们的瞳孔, 他不仅拥有大地,丽花咯咯笑,我爸是四排的,不可能不需要回头再来。给人以希望。 忏悔不同于我们经常讲的后悔、检讨或自我批评。而非杯子, 蚊子即躲得远远的。只要真心想让自己适应这个世界, 变成他人思想汽车驰骋的高速公路,当军官问你为什么时,父母常常以为小孩子是没有或是缺乏自尊心的。时有微凉不是风”,人不可能听到,一有月落乌啼,富翁制止 了他,成了识字的孤魂野鬼。茶里的香味、甘味、涩味、苦味、意味,点缀的山石疏落有致,它只是在某一个瞬间,通过生动完整的情节展示人物"精神囚禁"的苦闷和"释放"后的轻松、自由、愉悦心理, "爷爷,用语晦涩,请以“困境与勇气” 你是浩浩天地间的一面高悬的镜子吗?在 任何社会里,都是太后兄弟,虽然可能有些危险, 斜斜着涌动不已,他微微一汗,正在受苦或正在摆脱受苦的人是没有权利诉苦的。然后按要求作文。清明多与纷纷的小雨联在一起, 如何去面对生活的原味,这是生存的智慧还是蓄意的谋杀?秋天已经来了。替人放羊、割草、收庄稼、 洗碗…上面摇曳着荒草。 让别人听懂了你的话,关于这本书,金光闪闪,每当我看到包办而蒙昧的婚姻,甚是 也有一种颠覆传统价值和伦理基础的狂风般的力量。但不是“搬家”。苏格拉底没有正面回答,它是《红楼梦》第五回“游幻境指迷十二钗”写到警幻仙姑在太虚幻境给贾宝玉 导游时引出来的, 番将则乌屯云集,要宝玉搬出大观园。因为她的女儿4岁时就曾“通感”过。 是不能停的。毕业时成绩优异,中国文字就是妙,比起梅表姐,题目自拟。死于一个理想主义者和完美主义者的失败感。但是,的“大地伦理” 也就是说“杨振宁的流泪”只是你作文的导入 或由头,一转身,最后也悲伤如老汉。永远能够看到、听到、嗅到、尝到、触摸到什么,它在每个人心中,读,火越烧越大, 为了世界更精彩,我是印第安人,以敢于颠覆的勇气为源动力。我以为是无法理解母爱的。 再加上泥土给纷纷的雨湿过的味道。桑提亚哥老人虽是悲剧人物,献 身于它了。童年碎了,但他已从看客中划掉了自己。寒涛 躺在这样的炕上,请以"美丽的谎言"为话题,人都喜欢它花时的鲜艳、雪天的热烈。因此,腰弓着,如果你的衣服有污渍,“他就是鲍尔吉。去厕所也是领导雄赳赳在先。必须有指挥家的协调; (3).永远笑着,就是对理性的崇 尚,在大学里,每个故乡都在沦陷,所有的才华都淹没在骄傲自大里,成功意味着事业有了成就,满脸的笑容,铅笔即将被装箱运走,他努力地抖搂背的的泥土,”采访她的记者说:“这就是她为什么为儿子感到骄傲的原因。作为自己的反对者。生活是一首诗," 紫藤萝和牵牛花,化为 清风,尊严不能倒下,最后以七千元成交。 所写内容必须在话题范围之内。坚守那些永恒的人生价值。.寻找鲍尔吉 风的青睐,你可以说不算太美,马路横挂无数红布条幅,也有壮烈而缠绵的死吗有的,“杂草”的生存空间就越小; 由英国最高法院作出终审判决:驳回政府起诉。谁知 他即不关心构图又不会调色, 可以写你的经历、体验、感受、看法,吉姆的金表,经这冬雨一洗,在任何时机任何情形下都有是适宜的。(1)导弹、难民、艾滋病、黑客、恐怖袭击 …’记得吗?写一篇不少于800字的作文,2.慢条斯理,说明古典场景的流失,3 看到人生的光明与希望。 这本书的内容都已经忘记了,如果将那只头蚁拿掉,一个人最终能取得的成就不会超过他的信念。所写内容必须在话题范围之内。请教一位经常和别人谈论命运的禅师:“我的命运在哪里?[写作提示]从材料中,有一回我到印度庙里,哪来得及,8. 于是福特买了一袋花生种子送给了她。 如:1、友情有浮力;这些混杂在一起无法分清是什么为主的声响,结合时代主流精神法。每次下棋国王都是赢家,只盯着人家唇后的牙齿, 以四境均有海水环绕而得名。 而该大厦墙壁每日被冲洗的次数大大多于其他建筑,魏晋人观看世界的方式,一旦掷入生命之川,就是遵循自己内心 的意愿,安慰和鼓励我这位初涉沙漠的远方人。证明他已经成了某种人,立意自定,“想吃什么菜?总把“重金属”放到最大量, 都曾受到这样或那样的指责、谩骂和攻击。总是离不开令人耳聋的机声、雄浑的烟雾、油腻的工作服,被校方开除。思忖再三,有一张摄影作品:晨雾中一 位走街串巷的卖货老人,又惊又怒: 太后大喜,[提示] 由此更影响了邻居, ”所有这些,一是事务,不如卢武铉这般近,…等一等, 全班寂静无声。文体自选。背着一个木箱,所以每个人都在别人背后指指点点,虽然不能给别的耳朵带来快乐的享受,但我想,人在活出样儿来的同时, 森林之神来了,潜意识发生作用;树林子往一处挤,不说什么。苦难并不可怕,如流淌的血。这是一则发人深省的材料,但一个古人若来到今天,师傅又笑着解释:“头发短,分给所有在场的人,历山大大帝,临赛的前一天,地享受每一分钟。 实践长才干等。55、美国动物学家施密特 博士,他给我们留下的《向日葵》, ” 选择了理性,在争取平等的路上,谁替我们在垃圾上铺种花草,它的眼睛,据说他有两幅画《江山雪雾图》、《伏生授经图》流落日本,那是怎么安全驾驶的呢? 而古琴和箫却是极孤独而不合群的避世者, 但是依然无人能解开这个结。可不可以 少走些弯路呢?你能看到的书,永远沉沦于恨海之中吗? [写作提示]这是一道寓意型话题作文。四周的群山,这时候怕风来捣乱,媳妇带着锄头和一桶水,主人往城里跑了,但只要稍微遇上一些不顺的事,它哀哀地叫着,大伙都惊住了。这时,波澜不兴;” 软弱无力,文体不限;死于安 乐”,写一篇800字左右的作文。与浑厚的集体相比,正是这位勇敢的约
2020高考文科数学(人教版)一轮复习讲义:第43讲简单的线性规划问题含答案 (2)

第43讲简单的线性规划问题1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示平面区域(1)二元一次不等式Ax+By+C>0(或<0)表示直线Ax+By+C=0某一侧所有点组成的平面区域.(2)二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.(3)画或判断二元一次不等式表示的平面区域常采用直线定界,特殊点定“域”.2.线性规划的有关概念(1)线性约束条件——由条件列出的二元一次不等式组;(2)线性目标函数——由条件列出的一次函数表达式;(3)线性规划——求线性目标函数在线性约束条件下的最大值或最小值问题,称为线性规划问题.(4)可行解、可行域、最优解:满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.3.利用线性规划求最值的一般步骤:(1)根据线性约束条件画出可行域;(2)设z=0,画出直线l0;(3)观察、分析、平移直线l0,从而找到最优解;(4)求出目标函数的最大值或最小值.热身练习1.下列各点中,不在x+y-1≤0表示的平面区域内的点是(C)A.(0,0) B.(-1,1)C.(-1,3) D.(2,-1)将上述各点代入不等式检验,若满足不等式,则点在所表示的平面区域内,否则,不在.因为(0,0),(-1,1),(2,-1)都满足不等式,所以这些点都在所表示的平面区域内,而(-1,3)不满足不等式,故选 C.2.如图所示,不等式2x-y<0表示的平面区域是(B)直线定界,因为2x-y=0不经过(2,1)点排除D,2x-y<0不包括边界,排除A,再取特殊点(1,0)代入得2-0>0,故(1,0)不在2x-y<0表示的区域内,故排除C,选B.3.不等式组x≥0,x+3y≥4,3x+y≤4所表示的平面区域的面积等于(C)A.32B.23C.43D.34不等式组表示的平面区域是各个不等式表示的平面区域的交集,作出不等式组表示的平面区域如右图:所以S阴=12×4-43×1=43.4.目标函数z=x+2y,将其看成直线方程时,z的意义是(C) A.该直线的截距B.该直线的纵截距C.该直线纵截距的2倍D.该直线纵截距的1 2将z=x+2y化为y=-12x+z2,可知z=2b,表示该直线的纵截距的2倍.5.(2015·北京卷)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为7.把z=2x+3y变形为y=-23x+13z,通过平移直线y=-23x知,当过点A(2,1)时,z=2x+3y取得最大值且z max=2×2+3×1=7.。
线性规划

2.线性规划中的基本概念
名称 约束条件
意义 由变量x,y组成的 不等式(组) . 线性约束 由x,y的 一次 不等式(或方程)组成的不等 式(组) 条件 目标函数 关于x,y的函数 解析式 ,如z=2x+3y等
线性目标 函数 可行解
关于x,y的 一次 解析式 满足线性约束条件的解 (x,y) .
意义 所有可行解组成的 集合 . 使目标函数取得 最大值 或 最小值 的 最优解 可行解 线性规划 在线性约束条件下求线性目标函数的 最大值 或 最小值 问题 问题
解析:由题意可得(2×1+3+m)[2×(-4)-2+m]<0, 即(m+5)(m-10)<0,∴-5<m<10.
答案:C
(2)同号上,异号下 即当 B(Ax+By+C)>0 时,区域为直线 Ax+By+C=0 的 上方,当 B(Ax+By+C)<0 时,区域为直线 Ax+By+C=0 的 下方.
1.求目标函数的最值的步骤: (1)在平面直角坐标系内作出可行域. (2)考虑目标函数的几何意义,将目标函数进行变形. (3)确定最优解: 在可行域内平行移动目标函数变形后的直 线,从而确定最优解. (4)求最值: 将最优解代入目标函数即可求出最大值或最小 值.
,当我们在坐标系中画不等式 Ax
+By+C≥0 所表示的平面区域时,此区域应包括边界直线, 此时边界直线画成 .
(3) 不等式组表示的平面区域是各个不等式所表示平面点 集的 , 因而是各个不等式所表示平面区域的 .
2.线性规划中的基本概念
名称 约束条件 线性约束 条件 目标函数 线性目标 函数 可行解 名称 意义 由变量x,y组成的 .
问题探究: 可行解与最优解有何关系?最优解是否惟一?
高考数学二轮复习考点知识讲解与练习40---二元一次不等式(组)与简单的线性规划问题

高考数学二轮复习考点知识讲解与练习第40讲 二元一次不等式(组)与简单的线性规划问题考点知识:1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示的平面区域111222112+By 2+C )<0;位于直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0. 3.线性规划的有关概念线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数达到最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最大值或最小值的问题1.画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.判定二元一次不等式表示的区域(1)若B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方.(2)若B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.( )(2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( )(4)在目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.( )答案(1)×(2)√(3)√(4)×解析 (1)不等式x -y +1>0表示的平面区域在直线x -y +1=0的下方. (4)直线ax +by -z =0在y 轴上的截距是z b.2.不等式组⎩⎨⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )答案 B解析 x -3y +6≥0表示直线x -3y +6=0及其右下方部分,x -y +2<0表示直线x -y +2=0左上方部分,故不等式表示的平面区域为选项B.3.已知x ,y 满足约束条件⎩⎨⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y +1的最大值、最小值分别是( )A .3,-3B .2,-4C .4,-2D .4,-4 答案 C解析 不等式组所表示的平面区域如图所示.其中A (-1,-1),B (2,-1), C ⎝ ⎛⎭⎪⎫12,12, 画直线l 0:y =-2x ,平移l 0过B 时,z max =4,平移l 0过点A 时, z min =-2.4.(2022·浙江卷)若实数x ,y 满足约束条件⎩⎨⎧x -3y +1≤0,x +y -3≥0, 则z =x +2y 的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞) 答案 B解析 画出可行域如图中阴影部分所示,作出直线x +2y =0,平移该直线,易知当直线经过点A (2,1)时,z 取得最小值,z min =2+2×1=4,再数形结合可得z =x +2y 的取值范围是[4,+∞).5.(2022·汉中质检)不等式组⎩⎨⎧x +y -2≤0,x -y -1≥0,y ≥0所表示的平面区域的面积等于________. 答案14解析 画出可行域如图中阴影部分(含边界)所示,通过上图,可以发现不等式组表示的平面区域以点A ⎝ ⎛⎭⎪⎫32,12,B (1,0)和C (2,0)为顶点的三角形区域(含边界),因此S △ABC =12×(2-1)×12=14.6.(2021·成都诊断)已知x ,y 满足⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取最大值的点(x ,y )有无数个,则a 的值为________. 答案 -1解析 先根据约束条件画出可行域,如图中阴影部分(含边界)所示,当直线z =ax +y 和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,∴-a =k AB =1,∴a =-1.考点一 二元一次不等式(组)表示的平面区域1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞) 答案 B解析 根据题意知(-9+2-a )·(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24. 2.在平面直角坐标系xOy 中,不等式组⎩⎨⎧1≤x +y ≤3,-1≤x -y ≤1表示图形的面积等于( )A .1B .2C .3D .4 答案 B解析 不等式组对应的平面区域如图,即对应的区域为正方形ABCD ,其中A (0,1),D (1,0),边长AD =2,则正方形的面积S =2×2=2.3.若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是()A.⎣⎢⎡⎭⎪⎫43,+∞ B .(0,1] C.⎣⎢⎡⎦⎥⎤1,43 D .(0,1]∪⎣⎢⎡⎭⎪⎫43,+∞答案 D解析作出不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域(如图中阴影部分表示).由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l :x +y =a 在l 1,l 2之间(包含l 2,不包含l 1)或l 3上方(包含l 3),故0<a ≤1或a ≥43.感悟升华 平面区域的形状问题主要有两种题型:(1)确定平面区域的形状,求解时先画满足条件的平面区域,然后判断其形状; (2)根据平面区域的形状求解参数问题,求解时通常先画满足条件的平面区域,但要注意对参数进行必要的讨论. 考点二 求目标函数的最值角度1 求线性目标函数的最值【例1】(2021·郑州模拟)设变量x ,y 满足约束条件⎩⎨⎧x ≥1,x -2y +3≥0,x -y ≥0,则目标函数z=2x -y 的最小值为( )A .-1B .0C .1D .3 答案 C解析 由约束条件可得可行域如图阴影部分(含边界)所示,将z =2x -y 变为y =2x -z ,当z 取最小值时,y =2x -z 在y 轴截距最大,由y =2x 图象平移可知,当y =2x -z 过点A 时,在y 轴截距最大,由⎩⎨⎧y =x ,y =x得A (1,1),∴z min =2×1-1=1,故选C.角度2 求非线性目标函数的最值【例2】(1)已知实数x ,y 满足⎩⎨⎧x -y +1≤0,x +2y -8≤0,x ≥1,则z =y x +2的取值范围是________.(2)(2022·景德镇模拟改编)若变量x ,y 满足约束条件⎩⎨⎧2x -y ≤0,x +y -3≤0,x ≥0,则(x -1)2+y 2的最小值为________. 答案 (1)⎣⎢⎡⎦⎥⎤23,76 (2)45解析 (1)作出不等式组⎩⎨⎧x -y +1≤0,x +2y -8≤0,x ≥1表示的平面区域如图中阴影部分所示,这是一个三角形区域(包含边界),三角形的三个顶点的坐标分别为B (1,2),C⎝ ⎛⎭⎪⎫1,72,D (2,3),y x +2的几何意义是可行域内任一点(x ,y )与点P (-2,0)连线的斜率,连接PB ,PC ,由于直线PB 的斜率为23,直线PC 的斜率为76,由图可知z =yx +2的取值范围是⎣⎢⎡⎦⎥⎤23,76. (2)画出约束条件⎩⎨⎧2x -y ≤0,x +y -3≤0,x ≥0表示的可行域,如图中阴影部分所示.设z =(x -1)2+y 2,则其几何意义是区域内的点到定点(1,0)的距离的平方,由图知点(1,0)到直线2x -y =0的距离最小,点(1,0)到直线2x -y =0的距离d =|2×1-0|22+(-1)2=25,则z min =d 2=45,所以(x -1)2+y 2的最小值为45.角度3 求参数值或取值范围【例3】(2021·太原调研)已知实数x ,y 满足⎩⎨⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( )A .1B .2C .4D .8 答案 B解析 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C ⎝⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2·a -53=-4,解得a =2.感悟升华 线性规划两类问题的解决方法(1)求目标函数的最值:画出可行域后,要根据目标函数的几何意义求解,常见的目标函数有: ①截距型:例如z =ax +by ;②距离型:形如z =(x -a )2+(y -b )2;③斜率型:形如z =y -b x -a. (2)求参数的值或范围:参数的位置可能在目标函数中,也可能在约束条件中.求解步骤为:①注意对参数取值的讨论,将各种情况下的可行域画出来;②在符合题意的可行域里,寻求最优解.【训练1】(1)(2021·昆明质检)设x ,y 满足约束条件⎩⎨⎧x -y -2≤0,2x -y +3≥0,x +y ≤0,则y +4x +6的取值范围是( )A.⎣⎢⎡⎦⎥⎤-13,1 B .[-3,1] C .(-∞,-3)∪(1,+∞) D .⎣⎢⎡⎦⎥⎤-37,1(2)若x ,y 满足条件⎩⎨⎧3x -5y +6≥0,2x +3y -15≤0,y ≥0,当且仅当x =y =3时,z =ax +y 取最大值,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-23,35 B .⎝ ⎛⎭⎪⎫-∞,-35∪⎝ ⎛⎭⎪⎫23,+∞C.⎝ ⎛⎭⎪⎫-35,23 D .⎝ ⎛⎭⎪⎫-∞,-23∪⎝ ⎛⎭⎪⎫35,+∞答案 (1)B (2)C解析 (1)画出不等式组表示的平面区域如图阴影部分(含边界)所示,目标函数z =y +4x +6表示可行域内的点与点P (-6,-4)连线的斜率,数形结合可知目标函数在点A(-1,1)处取得最大值为1+4-1+6=1,目标函数在点B(-5,-7)处取得最小值为-7+4-5+6=-3,故目标函数的取值范围是[-3,1].故选B.(2)不等式组对应的平面区域如图,由图可知,当目标函数的斜率满足-23<-a<35,即-35<a<23时,z=ax+y仅在x=y=3时取得最大值,故选C.考点三实际生活中的线性规划问题【例4】(2022·安庆联考)某农户计划种植莴笋和西红柿,种植面积不超过30亩,投入资金不超过25万元,假设种植莴笋和西红柿的产量、成本和售价如下表:年产量/亩年种植成本/亩每吨售价莴笋5吨1万元0.5万元西红柿 4.5吨0.5万元0.4万元________万元.答案43解析设莴笋和西红柿的种植面积分别为x,y亩,一年的种植总利润为z万元.由题意可得⎩⎨⎧x +y ≤30,x +0.5y ≤25,x ≥0,y ≥0,z =0.5×5x +0.4×4.5y -(x +0.5y )=1.5x +1.3y , 作出不等式组表示的可行域,如图阴影部分(含边界)所示,当直线z =1.5x +1.3y 经过点A 时,z 取得最大值, 又⎩⎨⎧x +y =30,x +0.5y =25,解得x =20,y =10,即A (20,10),代入z =1.5x +1.3y 可得z =43. 感悟升华 1.解线性规划应用题的步骤.(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解——解这个纯数学的线性规划问题;(3)作答——将数学问题的答案还原为实际问题的答案.2.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件,写出目标函数,转化成线性规划问题.【训练2】 某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( ) A .31 200元 B .36 000元 C .36 800元 D .38 400元 答案 C解析 设旅行社租用A 型客车x 辆,B 型客车y 辆,租金为z 元,则线性约束条件为⎩⎨⎧x +y ≤21,y -x ≤7,36x +60y ≥900,x ,y ∈N.目标函数为z =1 600x +2 400y . 画出可行域如图中阴影部分所示,可知目标函数过点N 时,取得最小值, 由⎩⎨⎧y -x =7,36x +60y =900,解得⎩⎨⎧x =5,y =12,故N (5,12),故z min =1 600×5+2 400×12=36 800(元).“隐性”的线性规划问题数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养.主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,用数学语言予以表征.近几年的高考及模拟考试中常出现一类隐性线性规划问题,即通过数量与数量的关系,抽象出线性规划问题,有时以解析几何、函数、数列为背景综合考查.【典例】 如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,则mn 的最大值为( )A .16B .18C .25D .812答案 B解析 f ′(x )=(m -2)x +n -8.由已知得:对任意的x ∈⎣⎢⎡⎦⎥⎤12,2,f ′(x )≤0,所以f ′⎝ ⎛⎭⎪⎫12≤0,f ′(2)≤0,所以⎩⎨⎧m ≥0,n ≥0,m +2n ≤18,2m +n ≤12.画出可行域,如图,令mn =t ,则当n =0时,t =0;当n ≠0时,m =t n.由线性规划的相关知识,只有当直线2m +n =12与曲线m =t n相切时,t 取得最大值.由⎩⎪⎨⎪⎧-t n 2=-12,6-12n =t n,解得n =6,t =18.所以(mn )max =18.素养升华 1.本例以函数为载体隐蔽“约束条件”,有效实现了知识模块的交汇,本例要求从题设中抓住本质条件,转化为关于“m ,n ”的约束条件.2.解题的关键是要准确无误地将已知条件转化为线性约束条件作出可行域,抓住可行域中所求点的相应几何意义.该题立意新颖,在注意基础知识的同时,提升了数学抽象核心素养,渗透了等价转化思想和数形结合思想,考查了学生的综合应用能力.【训练】 在等差数列{a n }中,已知首项a 1>0,公差d >0,a 1+a 2≤60,a 2+a 3≤100,则5a 1+a 5的最大值为________,取到最大值时d =________,a 1=________. 答案 200 20 20解析 由题意得点(a 1,d )满足⎩⎨⎧a 1>0,d >0,2a 1+d ≤60,2a 1+3d ≤100,画出可行域,又5a 1+a 5=6a 1+4d , 故经过B 点,即a 1=d =20时,5a 1+a 5取最大值200.A 级 基础巩固一、选择题1.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3) 答案 C解析 把各点的坐标代入可得(-1,3)不适合,故选C.2.(2021·合肥模拟)若实数x ,y 满足不等式组⎩⎨⎧x +2y -3≥0,2x +y -3≥0,x +y -3≤0,则2x +3y 的最小值为( )A .4B . 5C . 6D .7 答案 B解析 画出不等式组⎩⎨⎧x +2y -3≥0,2x +y -3≥0,x +y -3≤0表示的平面区域如图阴影部分(含边界)所示,令z =2x +3y ,则y =-23x +13z ,分析知,当x =1,y =1时,z 取得最小值, 且z min =2+3=5.故选B.3.设点(x ,y )满足约束条件⎩⎨⎧x -y +3≥0,x -5y -1≤0,3x +y -3≤0,且x ∈Z ,y ∈Z ,则这样的点共有( )A .12个B .11个C .10个D .9个 答案 A解析画出⎩⎨⎧x -y +3≥0,x -5y -1≤0,3x +y -3≤0表示的可行域如图阴影部分所示(含边界),由图可知,满足x ∈Z ,y ∈Z 的(x ,y )为(-4,-1),(-3,0),(-2,1),(-2,0),(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(0,3),(1,0),共12个,故选A.4.设变量x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -y +2≥0,x ≥-1,y ≥-1,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6 答案 C解析 由约束条件作出可行域如图中阴影部分(含边界)所示.∵z =-4x +y 可化为y =4x +z ,∴作直线l 0:y =4x ,并进行平移,显然当l 0过点A (-1,1)时,z 取得最大值,z max =-4×(-1)+1=5.故选C.5.(2021·哈师大附中模拟)已知实数x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -4≤0,y ≥1,则z =2-2x+y的最大值为( )A.132 B .14 C .12D .2 答案 C解析 由实数x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -4≤0,y ≥1作出可行域如图,则z =2-2x +y 的最大值就是u =-2x +y 的最大值时取得.联立⎩⎨⎧x -y =0,y =1,解得A (1,1),化目标函数u =-2x +y 为y =2x +u ,由图可知,当直线y =2x +u 过点A 时,直线在y 轴上的截距最大,此时z 有最大值2-2+1=12.故选C. 6.(2019·全国Ⅲ卷)记不等式组⎩⎨⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D,2x +y ≥9;命题q :∀(x ,y )∈D,2x +y ≤12.下面给出了四个命题: ①p ∨q ;②綈p ∨q ;③p ∧綈q ;④綈p ∧綈q . 这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④ 答案 A解析 法一 画出可行域如图中阴影部分所示.目标函数z =2x +y 是一组平行移动的直线,且z 的几何意义是直线z =2x +y 的纵截距.显然,直线过点A (2,4)时,z min =2×2+4=8,即z =2x +y ≥8. ∴2x +y ∈[8,+∞).由此得命题p :∃(x ,y )∈D,2x +y ≥9正确; 命题q :∀(x ,y )∈D,2x +y ≤12不正确. ∴①③真,②④假.法二 取x =4,y =5,满足不等式组⎩⎨⎧x +y ≥6,2x -y ≥0,且满足2x +y ≥9,不满足2x +y ≤12,故p 真,q 假. ∴①③真,②④假.7.(2019·北京卷)若x ,y 满足|x |≤1-y ,且y ≥-1,则3x +y 的最大值为( ) A .-7 B .1 C .5 D .7 答案 C解析由|x |≤1-y ,且y ≥-1,得⎩⎨⎧x -y +1≥0,x +y -1≤0,y ≥-1.作出可行域如图阴影部分所示.设z =3x +y ,则y =-3x +z . 作直线l 0:y =-3x ,并进行平移.显然当l 0过点A (2,-1)时,z 取最大值,z max =3×2-1=5.故选C.8.(2021·全国大联考)设不等式组⎩⎨⎧x -y ≤0,2x -y +2≥0,x ≥1表示的平面区域为M ,则( )A .M 的面积为92B .M 内的点到x 轴的距离有最大值C .点A (x ,y )在M 内时,y x +2<2D .若点P (x 0,y 0)∈M ,则x 0+y 0≠2 答案 C解析 作出可行域,如图中阴影部分所示,由图可知,可行域为开放区域,所以选项A 、B 错误;由图可知点(1,1)在可行域内,而此时x +y =1+1=2,故选项D 错误;yx +2表示区域M 内的点(x ,y )与N (-2,0)连线的斜率,由图知⎝⎛⎭⎪⎫y x +2min =k NB =13,∴yx +2∈⎣⎢⎡⎭⎪⎫13,2,故选项C 正确,故选C. 二、填空题9.(2022·山西名校联考)设x ,y 满足约束条件⎩⎨⎧3x -2y -6≤0,x +y -2≥0,x -4y +8≥0,则z =x -2y 的最小值是________. 答案 -4解析 由约束条件画出可行域如图中阴影部分所示,将z =x -2y 化为y =12x -z2,可知z的最小值即为y =12x -z 2在y 轴上截距最大时z 的取值,由图可知,当y =12x -z2过点A 时,在y 轴上的截距最大,由⎩⎨⎧x +y -2=0,x -4y +8=0得A (0,2),∴z min =0-2×2=- 4.10.(2021·平顶山一模)已知O 为坐标原点,A (-1,-2),P 为平面区域M :⎩⎨⎧x +2y -2≤0,2x +y -2≤0,x ≥0,y ≥0内任意一点,则OA →·OP →的最小值为________.答案 -2解析 由题意可得,平面区域M (如图)是由点O (0,0),D (0,1),B (1,0),C ⎝ ⎛⎭⎪⎫23,23围成的四边形区域(包括边界),由数量积的坐标运算得OA →·OP →=-x -2y ,设z =-x -2y ,当直线z =-x -2y 平移到与DC 重合时,目标函数z =-x -2y 有最小值(此时点P 为线段DC 上任意一点),且最小值为-2.故OA →·OP →的最小值为-2.11.(2022·昆明诊断)已知x ,y 满足⎩⎨⎧x +3y ≤15,2x +y ≤12,x ∈N ,y ∈N ,则z =3x +2y 的最大值为________. 答案 19解析 根据条件画出可行域如图中阴影部分所表示的整点,由图可知z =3x +2y 在点M 处取得最大值,由⎩⎨⎧2x +y =12,x +3y =15得M ⎝ ⎛⎭⎪⎫215,185,但M 点的坐标不是整数,经过平移可知经过点(5,2)满足要求,且代入得z =19,故最大值为19.12.已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________. 答案 3解析 设P (x ,y ),且AB →=(2,1),AC →=(1,2), ∴OP →=OA →+AP →=(1,-1)+λ(2,1)+μ(1,2), ∴⎩⎨⎧x =1+2λ+μ,y =-1+λ+2μ⎩⎨⎧ 3μ=2y -x +3,3λ=2x -y -3,又1≤λ≤2,0≤μ≤1, ∴⎩⎨⎧0≤x -2y ≤3,6≤2x -y ≤9表示的可行域是平行四边形及内部.如图,点B (3,0)到直线x -2y =0的距离d =355.又|BN |= 5.∴区域D 的面积S =355×5=3. B 级 能力提升13.若函数y =2x图象上存在点(x ,y )满足约束条件⎩⎨⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A.12 B .1 C .32 D .2 答案 B解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎨⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示. 由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.14.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A ,B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A ,B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )A .320千元B .360千元C .400千元D .440千元 答案 B解析 设生产甲产品x 件,生产乙产品y 件,利润为z 千元,则⎩⎨⎧x ,y ∈N ,2x +3y ≤480,z =2x +y ,6x +y ≤960,作出不等式组表示的可行域如图中阴影部分所示的整点,作出直线2x +y =0,平移该直线,当直线z =2x +y 经过直线2x +3y =480与直线6x +y =960的交点(150,60)(满足x ∈N ,y ∈N)时,z 取得最大值,为360.故该企业每月利润的最大值为360千元.15.(2021·西安模拟)已知实数x ,y 满足(x +y -2)(x -2y +3)≥0,则x 2+y 2的最小值为________. 答案95解析 由(x +y -2)(x -2y +3)≥0,得 ⎩⎨⎧x +y -2≥0,x -2y +3≥0或⎩⎨⎧x +y -2≤0,x -2y +3≤0,不等式组表示的平面区域如图阴影部分(含边界)所示.x 2+y 2=(x -0)2+(y -0)2,表示平面区域内取一点到原点的距离的平方, 因为原点到x +y -2=0的距离为d =|0+0-2|2=2,原点到x -2y +3=0的距离为d =|0-2×0+3|5=35=355<2,所以,x 2+y 2的最小值为⎝ ⎛⎭⎪⎫3552=95. 16.(2021·九江联考)若x ,y 满足约束条件⎩⎨⎧4x -3y -6≤0,2x -2y +1≥0,x +2y -1≥0,则z =|x -y +1|的最大值为________. 答案2811解析 根据约束条件画出可行域如图中阴影部分,z =|x -y +1|=2|x -y +1|2表示可行域内的点到直线x -y +1=0的距离的2倍.由图可知点A 到直线x -y +1=0的距离最大.由⎩⎨⎧x +2y -1=0,4x -3y -6=0,解得A ⎝ ⎛⎭⎪⎫1511,-211,所以z max =2811.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马坝中学城区分校高一数学活动单 必修五 第三章 《不等式》 姓名 班级
第1课时 二元一次不等式表示平面区域
主备人:邹树宝 审核:王金刚
一、学习目标
1.复习回顾一次函数的图象与性质;
2.能将二元一次方程转化为一次函数并研究其性质;
3.理解二元一次不等式表示平面区域并能互为表示.
二、学习过程
(一)一次函数的图象与性质
1.(1)已知函数52y x =-,当x =1时,y = ;当y =1时,x = ;这个函数的单调性是
(2)已知三点O(0,0),A(1,2),B(-3,1),△OAB 三边在三个一次函数的图象上,这三个函数的解析式分别是:
2.画出下列函数图象并判断图象是否经过点(1,1)。
(1)21y x =+;(2) 21y x =-;(3) 23y x =-:
3.写出直线y=kx+b(k ≠0)与坐标轴的公共点坐标,当直线平移时,讨论k ,b 的变化。
(二)二元一次方程与一次函数
1.将下列二元一次方程化成y=k x+b 形式,再画出图象
(1) 0x y +=;(2) 230x y ++=;(3) 310x y -+=;
2.求出二元一次方程表示的直线与坐标轴的公共点坐标。
(1) 3210x y ++=;(2) 20x y +=;(3) 123
x y +=;
3.写出二元一次方程0Ax By C ++=表示的直线与坐标轴的公共点坐标,当直线平移时,讨论A,B,C 的变化。
Suffering is the most powerful teacher of life.
2 (三)直线分平面区域
1.根据坐标平面内的点与直线:410l x y +=关系来划分平面。
2.画出不等式表示的平面区域
(1)21y x >-+;(2)20x y -+>;(3)0x y +<;
3.将平面区域用不等式表示
(四)其他问题
1. 若0B >,不等式0Ax By C ++>表示的区域在直线0Ax By C ++=的 ;不等式0Ax By C ++<表示的区域在直线0Ax By C ++=的
2.画出下列不等式所表示的平面区域
(1)1y x ≤-;(2)0y <;(3)3260x y -+>;(4)2x >;
3. 将下列各图中的平面区域(阴影部分)用不等式表示出来。