Sensor Fault Detection, Isolation and Reconstruction Using Nonlinear Principal Component Analys
电力专业英语

arc电弧arc-suppressing灭弧的be in phase with与…同相位bare conductor裸导线break up断开Bundle 一捆bulk-power大功率容量base-loading基本负荷breaking down击穿core磁心clearance间隙creepage漏电conductivity导电率circuit breaker断路器cycle周期clear清除、排除Corona 电晕,放电current电流current transformer电流互感器daily load-demand curve日负荷曲线dielectric strength介电强度dam大坝、水坝distribution circuit配电线路deterioration老化、变坏distribution of the electricity 配电disconnect switch隔离开关dispatcher调度员energize带电field磁场Film 薄层,膜fuse保险丝、熔断器fusible易熔的feed给…馈电fault故障flashover飞弧、闪络field current励磁电流flash闪光、发火花generato发电机generation of the electricity发电Guyed 牵线式的high voltage line高压线路hydroelectric powerplant水电厂installed generatingcapacity装机容量infinite bus无限长母线intermittent间歇的inherently固有地in series with串联instrument transformer互感器interference干扰、妨碍insulation绝缘interconnection互联Insulator string 绝缘子串load负载low head低位差lightning雷电Lightning shielding 避雷lightning stroke雷击insulator绝缘子loop system环网系统momentary rating瞬时额定值moving contact动触头magnitude幅值、大小moment of inertia惯性矩monitor监视、监测Neutral 中性线network system网络系统nominal voltage标称电压off-peak非峰期overhead line架空线路photovoltaic effect光电效应pollution free无污染的parallel connection并联percentage百分数potential transformer电压互感器primary一次侧phase angle相角peak-load峰荷per unit system标幺制permanent永久的potential电势、潜在的quantitatively数量上restoration恢复rate估算、定额rating额定值rms均方根,有效值reliability可靠性relay继电器remote control遥控removal of fault事故处理ratio变比radial system辐射状系统reclosing重合闸resort求助、诉请Right-of-way 道路用地Shunt displacementcurrent 旁路位移电流Stranded 绞合的(线)Sag 下垂Series compensation 串联补偿Shunt compensation 并联补偿spring弹簧symmetrical对称的stationary contact静触头stand-by supply备用电源scheme方案switchboard配电盘,开关屏swing摆动、摇荡shave削、修整supporting structure支撑结构serve loads为负载供电synchronism同步synchronous speed同步转速short circuit短路transformer变压器tide潮汐trough谷three-phase三相电tank变压油箱transmission line输电线transformation of the electricity 变电temporary暂时的transmission of the electricity 输电trip circuit跳闸电路transient瞬变过程turn一匝线圈transient stability瞬态稳定度utilization equipment用电设备undervoltage电压不足的void空隙、空洞vacuum真空winding绕组Zero sequence current 零序电流A3. A fault is the unintentional or intentional connecting together of two or more conductors which ordinarily operate with a difference of potential between them.故障时由于有意或无意地使两个或更多的导体相接触而造成的。
基于滑模观测器的不确定系统传感器故障重构

基于滑模观测器的不确定系统传感器故障重构杨俊起;陈滟涛;朱芳来【摘要】针对一类不确定线性系统,讨论了观测器匹配条件不满足下的传感器故障重构方法.首先,引入增维向量形成观测器匹配条件不满足增维系统,使得增维系统的未知输入包含原系统的未知输入和传感器故障向量;其次,通过构造辅助输出的方法,使得观测器匹配条件满足,然后再利用高阶滑模观测器对辅助输出进行精确估计;第三,基于辅助输出的精确估计,设计鲁棒滑模观测器对系统状态进行估计,在此基础上提出一种传感器故障代数重构方法;最后,通过对一个四阶飞行器模型进行仿真,验证了方法的实用性和有效性.%This paper considers the problem of sensor fault reconstruction for a class of uncertain systems when observer matching conditions are not satisfied. A new augmented system is constructed by introducing a new augmented sate vector. The new augmented system is only with an unknown input vector which consists of the original system's unknown input and sensor fault vector. An auxiliary output vector which can satisfy the observer matching condition is proposed, and a high-order sliding mode observer is considered to obtain the exact estimates of the auxiliary outputs. Then, a robust sliding mode observer is developed to asymptotically estimate the system states using the estimated auxiliary outputs. A kind of algebraic reconstruction method of sensor fault is developed. Finally, a numerical simulation example is given to illustrate the effectiveness of the proposed methods.【期刊名称】《河南理工大学学报(自然科学版)》【年(卷),期】2012(031)004【总页数】6页(P447-452)【关键词】传感器故障重构;滑模观测器;匹配条件【作者】杨俊起;陈滟涛;朱芳来【作者单位】同济大学电子与信息工程学院,上海201804 河南理工大学电气工程与自动化学院,河南焦作454000;河南理工大学电气工程与自动化学院,河南焦作454000;同济大学电子与信息工程学院,上海201804【正文语种】中文【中图分类】TP130 引言自20世纪90年代以来,控制系统故障检测和隔离(Fault Detection and Isolation,FDI)不但成为国内外学者研究的热门课题,而且还提出了多种基于模型的FDI方法.其中,基于观测器的FDI方法得到了广泛关注.该方法包括基于滑模观测器的FDI[1-3]、基于自适应观测器的FDI[4-5]以及基于H∞观测器的FDI[6-7]等,其基本思想是通过观测器产生残差,以标识是否有故障发生,然后进行故障隔离.然而,故障检测并不能确定故障信号波形,但故障重构在检测故障的同时,却能够告诉故障信号的大小等信息,因而,故障重构具有重大意义.本文针对具有传感器故障的不确定系统,通过设计未知输入观测器(Unknown Input Observer,UIO)达到对状态估计的目的,并在状态估计的基础上提出传感器故障重构方法.正如文献[8]所述,UIO设计的充要条件是系统所有的不变零点在左半开复平面内且所谓的观测器匹配条件满足.然而,对于大多数物理系统而言,观测器匹配条件是一个很强的匹配条件.本文的创新点在于:在处理匹配条件不满足问题的同时,将该问题和传感器故障重构问题有机地结合了起来.1 模型描述考虑具有未知输入和传感器故障的不确定线性系统为,(1)式中:x∈,y∈和u∈分别为状态向量、可测输出和已知输入向量;η(t)∈k为未知输入向量;fs(t)∈q为传感器故障向量;A,B,D,C和F为相应维已知常量矩阵.假设rank F=q,rank C=p,rank D=k和n≥p≥q+k.假设1 对于系统(1),所有具有Re(s)≥0的复数s,下式成立.(2)假设2 系统状态x(t)、未知输入η(t)和传感器故障fs(t)以及它们的微分范数有界.引入状态向量z∈p,且满足下述微分方程,(3)式中:Ad∈p×p为非奇异Hurwitz矩阵.设增维向量,那么原系统(1)被扩充为如下增维系统,即,(4)式中:和.φ由原系统的未知输入向量η和传感器故障向量fs组成,并被看作增维系统(4)的未知输入.根据假设2可知,存在正常量ρ,使得‖φ‖≤ρ.(5)引理1 系统(4)是最小相位的,即,,的所有不变零点在左半开复平面内,或对所有具有Re(s)≥0的复数s,有(6)成立,当且仅当对所有个有Re(s)≥0的复数s,式(2)成立.证明基于式(2),可以得到成立.由于Ad是非奇异的,所以对所有具有Re(s)≥0的复数s,式 (2)成立,当且仅当成立.又因为,由此可以推断,对所有具有Re(s)≥0的复数s,式(2)成立,当且仅当成立.引理1得证.对于增维系统(4),由于和,故观测器匹配条件(7)不成立即.(7)不成立.对于增维系统(4),在(6)和观测器匹配条件(7)满足时,一些UIO已经被提出了[1-3,5-7,10].然而,已经证明,对于增维系统(4),观测器匹配条件(7)不成立.以下通过构造辅助输出向量使得匹配条件满足,接着设计鲁棒滑模观测器估计系统状态,以达到传感器故障重构的目的.2 基于鲁棒滑模观测器的状态估计基于相对阶概念,首先构造一个可以满足观测器匹配条件(7)的辅助输出向量.在假定辅助输出向量已知的情况下,设计一种可以对增维系统(4)进行渐近状态估计的鲁棒滑模观测器.2.1 辅助输出的构造定义1 假定ri(i=1,2,3,…,p)是满足下述方程的最小整数则系统(4)具相对于未知输入φ有向量相对阶(r1,r2,…,rp).其中,向量∈1×(n+p)是的第i个行向量.假设3 假定存在整数γi(1≤γi≤ri,i=1,2,…,p),使得……是满秩矩阵且观测器匹配条件成立.其中,…(i=1,2,…,p),γ=γ1+γ2+…+γp 称为总相对阶.引理 2[9] 系统,,和,,具有相同的不变零点.引理3[10] 引理1和观测器匹配条件(8)成立,当且仅当对于给定的对称正定矩阵∈(n+p)×(n+p),存在矩阵∈(n+p)×γ,∈(k+q)×γ和对称正定矩阵∈(n+p)(n+p),使得下述方程成立.2.2 基于辅助输出的鲁棒滑模观测器设计考虑如下与增维系统(4)具有相同状态,但具有辅助输出的辅助输出系统,(10)式中:∈γ×(n+p)由假设3给出;za为辅助输出向量.构造如下鲁棒滑模观测器α(za,,t),(11)由系统(10)减去式(11)可得观测器误差方程为α(za,,t),(12)式中:滑模控制律为α(za,,t)=ρ.(13)定理1 由式(11)和(13)确定系统(10)的鲁棒滑模观测器,即状态估计渐近收敛到真实状态.证明考虑Lyapunov函数,则V沿着误差方程(12)的微分为α(za,,t)=α(za,,t),由式(5)、(9)和滑模控制律(13)可得α≤≤≤2ρ.α(za,,t)=2ρ2ρρ,将上述方程代入表达式且根据的正定性可得≤<0.基于Lyapunov稳定性理论可知,误差方程(12)是渐近稳定的,即.因而,式(11)和(13)确定系统(10)的状态观测器.定理1得证.2.3 辅助输出及其微分的估计在定理中,辅助输出za被假定是可测的.然而,实际的输出是y或z而不是za.za不仅包含了z,还有其他未知变量.这里,采用高阶滑模观测器在有限时间内对辅助输出za进行精确估计.设,,…,,,zai,2…,zai,γi]T.微分zai可以得到.(14)引入新变量,,且把zi1=zi作为输出方程,可以得到,(15)根据假设2可知,是未知但范数有.有系统(15),考虑如下的高阶滑模观测器[11],(16)·sign(wi,j-1);κai,j>0,(j=1,2,…,γi+1).定理2 在假设2成立的情况下,高阶滑模观测器(16)能够在有限时间内对辅助输出向量zai进行精确估计,即在有限时间内ξai=[ξai,1 ξai,2 … ξai,γi]T是zai=[zai,1 zai,2 … zai,γi]T的精确估计.证明式(15)和(16)之间的误差动态系统为,式中:eai,j=ξai,j-zai,j(j=1,2,…,γi+1).通过与文献[11]相似的方法,选择增益κai,j,可以在有限时间内到达滑模面eai,1=…=eai,γiI1.ξai,j是zai,j(j=1,2,…,γi+1)的精确估计.定理2得证.由于在有限时间内ξ …是辅助输出向量za的精确估计.基于定理1,可得如下定理.定理3 由式(17)和(18)确定系统 (10)的鲁棒滑模观测器,即状态估计渐近收敛到真实状态.ξα(ξa,,t),(17)α(ξa,,t)=ρ,(18)在得到的估计之后,由于,可得系统(1)的状态估计为.由于状态估计向量在有限时间内趋近于,那么输出误差ξ将渐进趋近于0.也就是说,控制律α(ξa,,t)将会无限大.实际上,通常采用如下关系式计算α而不是式(18).,其中,ε是一个充分小的正常量.因此,状态误差被限制在一个很小的邻域内.2.4 传感器故障重构本节基于上述状态和辅助输出微分的估计,给出了一种传感器故障重构方法.定理 4 在假设1~3成立的情况下,,(19)是原系统传感器故障fs的渐近估计.其中,由具有滑模控制律(18)的鲁棒滑模观测器(17)给出.由假设知,F是列满秩矩阵.所以,FTF可逆.定理4的证明可直接由系统(1)的输出方程得到.2.5 仿真以下用飞机侧向动力学模型[12]说明上述方法的实用性.假设某型飞机在高度为5 000 m,马赫数为0.5,初速度为160 m/s,则其如式(1)的侧向线性参考模型,其中各矩阵为,,,,,其中状态变量x1~x4分别为侧滑角变化量、滚转角速率变化量、滚转角变化量和偏航角速率变化量.输入u1和u2分别为差动副翼和方向舵控制输入.故障fs=[0.75cos (3t+4.5) 2sin 2t]T,未知输入η=2.5sin 4t.选择Ad=-10I3,那么根据式(1)和(3)可得增维系统(4)系数矩阵,,和.不难证明,观测器匹配条件是不满足的.根据定义1可知,增维系统(4)有向量相对阶(r1,r2,r3)=(2,1,1).假如选择γ1=r1=2,γ2=r2=1 和γ3=r3=1,则根据假设3可知,容易验证观测器匹配条件是成立的.由的组成可知,辅助输出有一个未知变量za1,2需要用高阶滑模观测器(16)进行精确估计(其估计效果见图1).由图1可以看出,估计效果是好的.如文献[10]所述,利用Matlab中的LMI工具箱可求得满足式(9)的,,和.基于辅助输出的精确估计,利用定理3中的鲁棒滑模观测器和定理4,可分别得到系统的状态估计和传感器故障重构.在仿真中,选ρ=20,图2和3分别给出了状态估计误差图和传感器故障重构曲线.由图2可看出,一旦由式(17)和(18)形成的鲁棒滑模观测器到达滑模面,即可实现状态估计,从而实现传感器故障重构(图3),而且状态估计和传感器重构效果是令人满意的.3 结语在观测器匹配条件不满足情况下,一类不确定线性系统的传感器故障重构方法.首先,引入增维向量,使得含有传感器故障的系统扩充为只含有未知输入的增维系统,通过构造辅助输出突破观测器匹配条件限制并利用高阶滑模观测器对辅助输出进行精确估计.其次,设计鲁棒滑模观测器对系统状态进行估计.仿真实例的结果验证了该方法的可行性.参考文献:[1] EDWARDS C, SPURGEON S K, PATTON R J. Sliding mode observers for fault detection and isolation[J]. Automatica, 2000, 36(4): 541-553.[2] TAN C P, EDWARDS C. Sliding mode observers for robust detection and reconstruction of actuator faults[J]. International Journal of Robust Nonlinear and Control, 2003, 13(5): 443-446.[3] 赵瑾,顾幸生,申忠宇.不确定动态系统的执行器故障检测与重构[J].控制与决策,2007,22(5):510-514.[4] XU A, ZHANG Q. Nonlinear system fault diagnosis based on adaptive estimation[J]. Automatica, 2004, 40(7): 1181-1193.[5] JIANG B, FAHMIDA N C. Parameter fault detection and estimation ofa class of nonlinear systems using observers[J]. Journal of The Franklin Institure, 2005, 342(7): 725-736.[6] 赵瑾,申忠宇.滑模观测器实现不确定系统的鲁棒故障重构[J].东南大学学报:自然科学版,2011,41(S):36-42.[7] PERTEW A M, MARQUEZ H J, ZHAO Q. LMI-based sensor fault diagnosis for nonlinear Lipschitz systems[J]. Automatica, 2007, 43(8): 1464-1469.[8] KALSI K, LIAN J, HUI S, et al. Sliding-mode observers for systems with unknown inputs: A high-gain approach[J]. Automatica, 2010,46(2): 347-353.[9] FLOQUET T, EDWARDS C, SPURGEON S.K. On sliding mode observers for systems with unknown inputs[J]. International Journal of Adaptive Control and Signal Processing, 2007, 21(8/9): 638-656.[10] CORLESS M, TU J. State and input estimation for a class of uncertain systems[J]. Automatica, 1998, 34(6): 757-764.[11] LEVANT A. Higher-order sliding modes, differentiation and output-feedback control[J]. International Journal of Control, 2003, 76(9-10): 924-941.[12] 杨伟,章为国,杨朝旭,等.容错飞行控制系统[M].西安:西北工业大学出版社,2007.。
关于容错和容错率的作文

关于容错和容错率的作文英文回答:Fault tolerance refers to the ability of a system to continue functioning properly even in the presence offaults or errors. It is an important concept in various fields, including computer science, engineering, and telecommunications. The purpose of fault tolerance is to ensure that the system remains reliable and available, even when certain components or processes fail.In computer science, fault tolerance is achieved through various techniques such as redundancy and error detection and correction. Redundancy involves having multiple copies of critical components or data, so that if one fails, the system can switch to a backup without any disruption. This can be seen in data storage systems, where data is often replicated across multiple servers. If one server fails, the data can still be accessed from another server.Error detection and correction techniques involve adding extra bits to data to detect and correct errors. For example, in communication systems, checksums or parity bits are used to verify the integrity of transmitted data. If an error is detected, the system can request for retransmission or use error correction algorithms to fix the errors.Another aspect of fault tolerance is the ability to recover from failures. This can be done through techniques such as fault detection, isolation, and recovery. Fault detection involves monitoring the system for any abnormalities or deviations from expected behavior. If a fault is detected, the system can isolate the faulty component or process to prevent it from affecting the rest of the system. Recovery involves restoring the system to a known good state, either by restarting the failed component or switching to a backup.Overall, fault tolerance is crucial in ensuring the reliability and availability of systems. It allows forcontinuous operation even in the presence of faults or errors, minimizing downtime and ensuring a seamless user experience.中文回答:容错指的是系统在发生故障或错误的情况下仍能正常运行的能力。
集中式非线性抗差卡尔曼滤波算法研究_黄珏

*
(1.海军工程大学 兵器工程系,武汉 430033;2.国防科技大学 电子工程学院,长沙 410073) 摘 要:针对传感器量测信息异常和传感器之间数据传输错误,融合系统中的数据会出现异常值(outlier)的目标跟踪
问题,提出了一种集中式非线性抗差卡尔曼滤波算法,该方法应用鲁棒统计理论,通过设计代价函数来对系统的量测噪 声方差进行重新构造,并利用标准无味卡尔曼滤波(UKF)的观测更新算法对非线性观测方程进行滤波,该方法无需对 观测方程进行线性近似,在保持鲁棒性的同时不损失 UKF 的滤波精度。通过一个简明实例说明了该方法在量测出现异 常值的情况下依然能对目标进行有效的跟踪滤波,鲁棒性和滤波精度优于传统的 Huber 鲁棒跟踪方法。 关键词:目标跟踪;代价函数;量测噪声方差;无味卡尔曼滤波;鲁棒性 中图分类号:TN911
zk Rk1/2 zk
(18) (19)
ki|k 1 hk (ki )
ˆk |k 1 wi( m ) ki |k 1 z
i 0 2n
(10)
gk ( xk ) Rk1/2hk ( xk )
则有等价的观测方程为:
(11)
zk g k ( xk ) k
式中 K k 为滤波增益矩阵。
(hk21 ( xk 1 ))T
T T
(h ( xk 1 )) ]
T 2 T vk 1 [(v1 (vk k 1 ) 1 )
(5)
2 抗差滤波方法
由滤波更新方程可以看出,在 k 时刻的状态估计值 xk |k 是 通过量测信息的残差 zk
M T T (vk 1 ) ]
(23)
式中 k ,i 表示残差 k 的第 i 个分量, 为使代价函数式 (17) 达到最小,有:
基于MRAS的无直流母线电压传感器PMSM滑模控制

基于MRAS的无直流母线电压传感器PMSM滑模控制常海赐;滕青芳;靳宇星【摘要】针对永磁同步电机直流母线电压传感器故障的问题,提出一种无直流母线电压传感器的永磁同步电机滑模控制策略。
设计了基于自适应技术的模型参考自适应观测器,以精确估计直流母线电压值,从而保证电机正常运行,利用滑模控制技术,设计了积分滑模面,以保证电机转速、直轴、交轴电流能够快速收敛到给定值。
同时采用连续幂次函数设计滑模控制律,消除了滑模抖振。
仿真结果表明,所设计的直流母线电压观测器能够精确观测直流母线电压值,当直流母线电压传感器故障时亦能够保证系统的正常运行,且滑模控制器能够使转速、电流更快的跟随给定值,使系统具有更强的鲁棒性。
%In view of the fault of DC bus voltage sensor of the permanent magnet synchronous mo-tor (PMSM),the sliding mode control strategy of PMSM for DC bus voltage sensor is proposed. A model reference adaptive observer is designed to exactly estimate DC bus voltage and to ensure the normal operation of the motor with adaptive techniques.By making use of the sliding mode control techniques,an integral sliding surface is designed to ensure that the motor speed,direct-axis and quadrature-axis current can quickly converge to the given value.At the same time,the control law is designed by using the continuous power function to eliminate the chattering of slid-ing mode.The simulation results show that the designed DC bus voltage observer can accurately observe DC bus voltage value to guarantee the normal operation of the system when DC bus volt-age sensor is fault.The sliding mode controllercan make the rotating speed and current follow the given value faster,and make the system more robust.【期刊名称】《兰州交通大学学报》【年(卷),期】2016(035)006【总页数】7页(P76-82)【关键词】永磁同步电机;直流母线电压;模型参考自适应观测器;滑模控制【作者】常海赐;滕青芳;靳宇星【作者单位】兰州交通大学自动化与电气工程学院,甘肃兰州 730070;兰州交通大学自动化与电气工程学院,甘肃兰州 730070;兰州交通大学自动化与电气工程学院,甘肃兰州 730070【正文语种】中文【中图分类】TM351永磁同步电机(permanent magnet synchronous motor,PMSM)因其结构简单、高效率、高功率密度和形状、尺寸灵活多样等突出优点,在工业、交通、军事等领域被广泛的应用.对于一个典型的电压源逆变器驱动PMSM控制系统而言,需要一个直流母线电压传感器来传递直流母线信息.通过传感器检测直流母线电压信息,不仅增加了成本和体积,而且当直流母线电压传感器出现故障时控制系统无法精确获取直流母线电压值,进而损害系统的可控性[1-3].针对上述问题,有两种容错方案,即硬件冗余法和解析冗余法[4-6].硬件冗余即增加冗余传感器法,这样既增加生产成本,也使系统体积更加庞大,使系统结构复杂化.故硬件冗余法较少采用;解析冗余则基于系统数学模型,通过软件算法实现电机直流母线电压辨识,具有编程灵活、功能强大、易于实现和成本低廉等优点,因此是电机容错系统的首选容错方案[7-9].PMSM直流母线电压的容错方案,国外学者研究较多.文献[10]采用直接替换法,当直流母线电压传感器出现故障时,直接采用额定直流母线电压值代替实际值,以保证系统的持续运行,该方法局限于直流母线电压恒定的系统,不能适用于母线电压随时间波动的系统,比如混合动力电动汽车;文献[11]采用自适应磁链观测法,提出了一种在线直流母线电压观测器,但因设计复杂而难于实现,且该方法只能针对感应电机系统.文献[12]针对电力牵引系统的单相PWM整流器,利用电网侧已知信息设计了龙贝格状态观测器以重构直流母线电压,因其需要得到电网侧的实时信息,具有一定的局限性.基于此,设计一个简单有效的直流母线电压观测器来实时观测直流母线电压值很有必要.针对永磁同步电机控制系统采用自适应技术,设计了模型参考自适应(model reference adaptive system,MRAS)观测器对直流母线电压进行实时在线观测.传统的矢量控制一般采用PI控制器作为转速和电流调节器,在一定条件下它能起调节作用,但当系统参数变化或存在外部干扰时(例如,模型不确定、参数摄动、摩擦阻力和负载扰动等),则难以保证电机系统获得满意性能[13-15].为了改善控制系统的的鲁棒性,一些非线性控制方法相继被提出.其中滑模(sliding mode,SM)变结构控制因为对PMSM系统参数时变和外部扰动的强鲁棒性,成为国内外的研究热点[16-18].滑模控制无需精确的数学模型,可根据当前的系统状态构造滑模面,通过控制量的切换作用,迫使系统沿着既定的“滑动模态”运动.具有响应速度快、对外界参数不敏感、易于实现等优点[19],在永磁同步电机控制领域被广泛使用.为提高PMSM控制系统的响应速度和抗负载扰动能力,本文根据矢量控制原理,设计了积分滑模控制器(integral sliding mode controller,ISMC),使得电机转速、直轴电流、交轴电流能快速收敛到给定值.此外采用连续幂次函数代替传统开关函数,以消除抖振、保证系统的稳定性.假设磁路不饱和,空间磁场呈正弦分布,不计涡流和磁滞损耗,PMSM定子电流方程在dq两相旋转坐标系下可表示为式中:ud,uq,id,iq,Ld,Lq分别为定子电压、电流、电感在dq轴的分量;Rs为定子电阻;ψf为永磁体磁链;np为磁极对数;wr为转子机械角速度. PMSM机械转动方程为式中:J为转动惯量;T1为负载转矩;Bm为阻力.电磁转矩可以表示为对于隐极式永磁同步电机而言,由于Ld=Lq=L,因此,电磁转矩可表示为Te=1.5npψfiq.针对三相六开关电压源逆变器驱动PMSM控制系统,基于模型参考自适应观测器和滑模变结构控制理论,提出了PMSM无直流母线电压传感器积分滑模控制策略.系统结构框图如图1所示,该系统主要包括:模型参考自适应观测器、转速环积分滑模控制器、q轴电流积分滑模控制器、d轴电流积分滑模控制器、SVPWM模块及电压源逆变器等.2.1 模型参考自适应观测器设计对于由电压源型逆变器驱动的三相永磁同步电机,定子相电压是由施加在功率开关门极上的PWM信号和直流母线电压所决定的.因此定子电压幅值可近似的表示为式中:ma为调制系数;Vdc为直流母线电压;γ是由PWM开关方式决定的.当直流母线电压传感器发生故障,直流母线电压值无法获得的情况下,可将定子电压值近似为式中:Vdc(nom)为给定的直流母线电压值;若定义α=Vdc/Vdc(nom),则us=αu.通过准确观测α就可以得到真正的直流母线电压值.1)参考模型由式(1)可得模型自适应观测器的参考模型为式中:2)可调模型考虑直流母线电压是未知的,模型参考自适应观测器的可调模型表示(表示的估计值)如下:式中为反馈项,kv为反馈系数.对参考模型式(6)和可调模型式(7)做差,得到两个模型的输出之差(,表示的误差值)如式(8)所示.将式(8)写成向量形式如下:式中:为了得到使观测器稳定的自适应律,选择如下Lyapunov函数:式中:kα为正增益.对式(10)求导可得为保证误差系统式(8)稳定,需满足V1≤0.为此可做如下假设:则因为直流母线电压的变化率远小于定子电流变化率,可以认为因此可以得到从而得到的自适应律为为了提高直流母线电压的估计精度,本文采用基于比例积分作用的模型参考自适应观测器:式中:kp,ki分别为比例和积分增益.则Vdc的估计值可由得到.由以上分析可构造出基于MRAS的PMSM直流母线电压观测器结构框图,如图2所示.2.2 积分滑模控制器设计2.2.1 电机转速控制器设计转速控制器的设计目的就是寻找合适控制律,使得电机实际转速ωr能够快速准确地跟随给定转速,因此定义速度误差为eω=-ωr.为提高电机转速的响应速度和跟踪精度,设计如下积分滑模面:式中:c1为常数;t→∞.根据式(2)和式(3)可进一步得到为避免滑模控制中由于开关项sign(·)函数引起的高频抖振现象,通常的做法是采用饱和函数sat(·)函数代替sign(·)函数,但是当系统进入稳态后,抖振现象依然存在.为了彻底消除这种抖振现象,本文通过引入连续幂次函数fal(·)函数将滑模控制律设计为其中:η1为滑模正增益;连续幂次函数fal(·)的定义如下:其中:δ为滤波因子;ε为非线性因子;当ε∈(0,1)时式(16)具有小误差大增益,这种特性是传统的饱和函数sat(·)所不具备的.根据式(14)和式(15)可以得出转速积分滑模控制器的输出为根据以上各式可得出PMSM转速控制器结构框图,如图3所示.为验证以式(17)为输出时滑模控制器的稳定性,定义Lyapunov函数为对上式求导,并将式(13)和式(17)代入得当δ1>0,ε1∈(0,1)时Lyapunov函数V2正定,且其导数≤0,因此当采用式(17)所示的滑模控制律时,系统满足Lyapunov稳定性条件.2.2.2 电机交、直轴电流控制器设计交、直轴电流控制器用于精确跟踪dq轴电流,因此将dq轴电流误差定义为其中分别为dq轴坐标系下的定子电流参考值,且=0.采用和转速环一样的控制策略将滑模切换面设计为进一步可得到同转速环一样,为减小dq轴电流脉动采用连续幂次函数函数fal(·)将电流环滑模控制趋近律取为由式(20)和式(21)即可求得交、直轴电流的输出为稳定性证明,同转速环,略.为验证所设计系统的正确性和有效性,采用Matlab/Simulink/Simspace进行了仿真研究,所采用的PMSM各项参数如表1所列.仿真过程中采样时间设置为100μs,电机参考转速1 000r/min,带2N·m负载启动,直流母线电压参考值Vdc(nom)=300V.转速滑模控制器的参数为:c1=0.2,η1=2 400,ε1=0.5,δ=0.1;电流滑模控制器参数为:c2=c3=0.01,η2=η3=500,ε2=ε3=0.5,δ2=δ3=0.1;直流母线电压MRAS观测器中PI 控制器参数选择为:kp=0.01,ki=0.02.图4至图7分别给出了系统的直流母线电压观测曲线图和电机转速、转矩以及dq 轴电流曲线图.从图4可以看出所设计的MRAS观测器能够快速、准确地估计出系统直流母线电压值.图5至图7可以看出基于积分滑模的转速控制器、电流控制器能够使系统具有良好的转速、转矩响应以及稳定的dq轴电流值.针对PMSM驱动系统中直流母线电压传感器故障的情况,本文采用MRAS技术设计了一种简单易于实现的MRAS直流母线电压观测器,利用已知的转速、定子电流等信息精确估算出了直流母线电压值,保证了永磁同步电机在直流母线电压传感器故障状态下的正常运行,提高了PMSM的运行可靠性;采用积分滑模控制器作为系统的转速和电流控制器,提高了系统的响应速度,减小了转矩和电流脉动,将连续幂次函数fal(.)函数引入滑模控制律中,有效的消除了滑模抖振,提高了滑模控制器的控制性能.仿真结果表明了本文控制策略的正确性和实用性.【相关文献】[1] Foo G H B,Zhang X,Vilathgamuwa D M.A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended kalman filter[J].IEEE Transactions on Industrial Electronics,2013,60(8):3485-3495.[2] Zakzouk N E,Abdelsalam A K,Helal A A,et al.DC-link voltage sensorless control technique for singlephase two-stage photovoltaic grid-connected system[C]//IEEE International Energy Conference.Piscataway,NJ:IEEE Press,2014:58-64.[3]王本振,邓堪谊,于艳君,等.直流母线电压对载波频率成份法无位置传感器控制的影响分析[J].微电机,2010,43(10):10-12.[4]滕青芳,柏建勇,朱建国,等.基于滑模模型参考自适应观测器的无速度传感器三相永磁同步电机模型预测转矩控制[J].控制理论与应用,2015,32(2):150-161.[5] Berriri H,Naouar M W,Slama-Belkhodja I.Easy and fast sensor fault detection and isolation algorithm for electrical drives[J].IEEE Transactions on Power Electronics,2012,27(2):490-499.[6] Wallmark O,Harnefors L,Carlson O.Control algorithms for a fault-tolerant PMSM drive[J].IEEE Transactions on Industrial Electronics,2007,54(4):1973-1980. [7]滕青芳,李国飞,朱建国,等.基于扩张状态观测器的无速度传感器容错逆变器驱动永磁同步电机系统自抗扰模型预测转矩控制[J].控制理论与应用,2016,33(5):676-684.[8] Kim G S,Lee K B.Fault diagnosis and fault-tolerant control of a dc-link voltage sensor for PV inverters[C]//International Power Electronics and Motion Control Conference.Piscataway,NJ:IEEE Press,2012:1408-1412.[9]滕青芳,左瑜君,柏建勇,等.基于MRAS观测器的无速度传感器永磁同步电机模型预测控制[J].兰州交通大学学报,2014,33(4):6-11.[10] Jeong Y S,Sul S K,Schulz S E,et al.Fault detection and fault-tolerant control of interior permanent-magnet motor drive system for electric vehicle[J].IEEE Transactions on Industry Applications,2005,3(1):458-1463.[11] Salmasi F R,Najafabadi T A,Jabehdar-Maralani P.An adaptive flux observer with online estimation of DC-link voltage and rotor resistance for VSI-based induction motors[J].IEEE Transactions on Power E-lectronics,2010,25(5):1310-1319. [12] Youssef A B,El Khil S K,Slama-Belkhodja I.State observer-based sensor fault detection and isolation,and fault tolerant control of a single-phase PWM rectifier for electric railway traction[J].IEEE Transactions on Power Electronics,2013,28(12):5842-5853.[13]王德贵.永磁同步电机调速系统的变参数PI控制[J].伺服控制,2014(6):39-41. [14] Tursini M,Parasiliti F,Zhang D.Real-time gain tuning of PI controllers for high-performance PMSM drives[J].IEEE Transactions on Industry Applications,2002,38(4):1018-1026.[15]鲁文其,胡育文,杜栩杨,等.永磁同步电机新型滑模观测器无传感器矢量控制调速系统[J].中国电机工程学报,2010,30(33):78-83.[16]茅靖峰,吴爱华,吴国庆,等.永磁同步电机幂次变速趋近律积分滑模控制[J].电气传动,2014(6):50-53.[17]郑剑飞,冯勇,陆启良.永磁同步电机的高阶终端滑模控制方法[J].控制理论与应用,2009,26(6):697-700.[18]张晓光,赵克,孙力.永磁同步电动机混合非奇异终端滑模变结构控制[J].中国电机工程学报,2011(27):116-122.[19]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.。
国外继电保护教材

国外继电保护教材Over the past few decades, the field of power system protection has undergone significant advancements, with the development of new technologies and the emergence of sophisticated equipment. Among the various protection systems used in power systems, one of the most critical and widely used is relay protection. Relay protection plays a crucial role in detecting and isolating faults in power systems, thereby ensuring the safety and reliability of the system.In this textbook, we will focus on the concept of relay protection, particularly in the context of international standards and practices. We will delve into the various types of relay protection schemes, their principles of operation, and the different components that make up a typical relay protection system. Additionally, we will explore the latest trends and advancements in relay protection technology, including digital relays, adaptive protection, and wide-area protection systems.Chapter 1: Fundamentals of Relay ProtectionIn this chapter, we will provide an overview of relay protection and its importance in power systems. We will discuss the basic principles of relay protection, including the concept of fault detection, discrimination, and isolation. We will also explore the various types of faults that can occur in power systems and the role of relay protection in mitigating these faults.Chapter 2: Types of Relay Protection SchemesIn this chapter, we will delve into the different types of relay protection schemes used in power systems. We will discuss the characteristics and applications of overcurrent relays, distance relays, differential relays, and other commonly used relay protection schemes. We will also explore the advantages and limitations of each type of relay protection scheme. Chapter 3: Components of Relay Protection SystemsIn this chapter, we will examine the various components that make up a typical relay protection system. We will discuss the role of current transformers, voltage transformers, relays, and supervisory control and data acquisition (SCADA) systems in relay protection. We will also explore the latest advancements in relay protection components, including the use of microprocessor-based relays and intelligent electronic devices.Chapter 4: Relay Coordination and SettingsIn this chapter, we will delve into the importance of relay coordination and settings in relay protection systems. We will discuss the concept of coordination time curves, relay grading, and settings coordination to ensure proper operation of relay protection schemes. We will also explore the challenges and considerations involved in coordinating relays in a complex power system.Chapter 5: Advanced Technologies in Relay ProtectionIn this chapter, we will explore the latest trends and advancements in relay protection technology. We will discuss the use of digital relays, adaptive protection, and wide-area protection systems in modern power systems. We will also examine the benefits and challenges associated with these advanced technologies and their potential impact on the future of relay protection.ConclusionIn conclusion, relay protection plays a critical role in ensuring the safety and reliability of power systems. By understanding the fundamentals of relay protection, the different types of relay protection schemes, the components of relay protection systems, and the latest advancements in relay protection technology, power system engineers can design and deploy effective protection schemes to safeguard power systems against faults and disturbances. This textbook aims to provide a comprehensive overview of relay protection, with a focus on international standards and best practices, to equip engineers with the knowledge and skills needed to tackle the challenges of modern power systems.。
A320飞机常见词汇

A Amber 琥珀色A/BRK Autobrake 自动刹车A/C Aircraft 飞机A/COLL A/DA/ICEA/SA/SKID A/THR AAP ABNORMAnti-CollisionAnalog/DigitalAnti-ice,Anti-icingAirspeedAnti-SkidAutothrustAdditional Attendant PanelAbnormal防撞模拟/数字防冰空速防滞自动推力附加乘务员面板特别,非正常ABRN Airborne 在空中,离陆ABS Autobrake System 自动刹车系统ABSORB Absorber 减震器,缓冲器ABVACACARS SystemACC ACCEL ACCU ACP ACP Above 在...以上,高于Alternating Current 沟通电Aircraft Communication Addressing and Reporting 飞机通讯寻址和报告系统Active Clearance Control 主动间隙掌握Acceleration/Accelerate 加速度/加速Accumulator 储压器Area Call Panel 区域呼叫面板Audio Control Panel 音频掌握面板ACT Active 主动的,动态的ACTR Actuator 作动器ACTVT Activate 引发,动作ADC Air Data Computer 大气数据计算机ADD Addition,Additional 加装,附加的ADF Automatic Direction Finder 自动定向仪ADIRS Air Data/Inertial Reference System 大气数据/惯性基准系统ADIRU Air Date/Inertial Reference Unit 大气数据/惯性基准组件ADM Air Data Module 大气数据组件ADPTR Adapter 转接器ADR Air Data Reference 大气数据基准ADS Air Data System 大气数据系统ADV Advisory 询问AEVC Avionics Equipment Ventilation Computer 电子设备通风计算机AFS Automatic Flight System 自动飞行系统AGB Accessory Gearbox 附件齿轮箱AGL Above Ground Level 距地面的高度AIDS Aircraft Integrated Data System 飞机综合数据系统AIL Aileron 副翼AIP Attendant Indication Panel 乘务员指示面板ALIGN Alignment 对正,校准ALT Altitude 高度ALTM AltimeterALTN Alternate,Alternative选择的AMB Ambient邻的AMU Audio Management Unit ANNCMT Announcement ANT AntennaAOA Angle-Of-Attack 高度表交替的,备用的,大气,四周的,相音频治理组件通知,声明天线迎角AOG Aircraft Operating Ground 飞机停场AP Autopilot 自动驾驶AP/FD Autopilot/flight Director 自动驾驶/飞行指引仪APPR ApproachAPU Auxiliary Power UnitAR As RequiredARINC Aeronautical Radio Incorporated 无线电公司ARPT AirportASI Airspeed IndicatorAT Autothrust进近关心动力装置按需艾瑞克,航空机场空速表自动推力ATA Air Transport Association of America 美国空运协会ATC Air Traffic Control 空中交通管制ATIMS Air Traffic and Information management System 空中交通和信息治理系统ATSU Air Traffic Service Unit 空中交通效劳组件ATT Attitude 姿势ATTND Attendant 乘务员AUTO Automatic 自动的AUTOLAND Automatic Landing 自动着陆AUX Auxiliary 关心的AVAIL Available 可用的AVNCS Avionics 电子设备,电子技术员AWL Aircraft Wiring list 飞机线路清单AWM 手册AXB BARO BAT BCL BGM BITEAircraft Wiring ManualLongitudinal AccelerationBlueBarometricBattery(Electrical)Battery Charge LimiterBoarding MusicBuilt-in Test Equipment飞机线路图纵向加速度蓝色的气压的电瓶〔电源〕电瓶充电限制器登机音乐内置自测设备BL Bleed 放气,引气BLOW Blower 鼓风机BLST Ballast 配重,镇流器BMCBNR BRTBSCU 件BTL 等〕BTMU 件BUSBleed Monitoring Computer 引气监控计算机Binary 二进制Bright,Brightness 光明,亮度Braking/Steering Control Unit 刹车/转弯掌握组Bottle 瓶子〔灭火瓶,气瓶Brake Temperature Monitoring Unit 刹车温度监控组Busbar 汇流条导电条BYP Bypass 旁通C Celsius,Centigrade 摄氏CCC/B C/L CAB CAM CAPT CAUT CDLCloseCyanCircuit BreakerCheck ListCabinCabin Assignment ModuleCaptainCautionConfiguration Deviation List关闭,闭合深蓝色电路跳开关检查单客舱客舱安排组件机长戒备,留意外形缺损清单CDU Control and Display Unit 掌握显示组件CFDIU Centralized Fault Display Interface Unit 集中故障显示接口组件CG Center of Gravity CHMBR Chamber CHRO Chronometer CKPT CockpitCKT CircuitCLB ClimbCLK ClockCLNG Ceiling 重心腔,室计时钟驾驶舱电路爬升时钟顶板,升限CLOG Clogging 堵塞CMM Component Maintenance Manual 部件修理手册C-MOS Complementary Metal Oxyde Semiconductor 互补氧化金属半导体CMPTR Computer 计算机CNTOR Contactor 接触器COAX Coaxial 同轴的COC Customer Originated Change 客户发起更改COM Communication 通讯COMP Compass 罗盘COMPT Compartment 舱CONFIG Configuration 构形,形态,布局COWL Cowling 整流罩,包皮CPC掌握器CPLG 轴器CPLR CPRSRCPU件CRG CRZCabin Pressure ControllerCouplingCouplerCompressorCentral Processing UnitCargoCruise客舱压力连接器,连耦合器压气机中心处理组货物巡航CSD Constant Speed Drive 恒速传动装置CSL Console 操纵台CSM/G Constant Speed Motor/Generator 发电机CSTR ConstraintCSU Command Sensor Unit件CTK Center TankCTL Central心的CTL ControlCTR Center恒速马达/强制指令感应组中心油箱中心的,中掌握,管制中心CUR Current 电流CVR Cockpit Voice Recorder 驾驶舱舱音记录器CW Clockwise 顺时针,顺时针方向CY Cycle 循环CYL Cylinder 缸筒DAR Digital AIDS Recorder 数字式飞机综合数据记录器DCDR Decoder 译码器DDRMI Digital Distance and Radio Magnetic Indicator 数字式距离和无线电磁指示器DECEL Decelerate 减速DEL Delete 取消,删除DEU Decoder/Encoder Unit 译码/编码组件DFDR Digital Flight Date Recorder记录器DFDRS Digital Flight Date Recorder System 记录系统DH Decision HeightDISC Disconnect,Disconnected的DISCH Discharge,Discharged的DITCH Ditching数字飞行数字飞行决断高度断开,断开排出,排出水上迫降DLRB Date Loading Routing Box 数据装载器发送盒DLS Date Loading Selector 数据装载器选择器DMC Display Management Computer 显示治理计算机DPI Differential Pressure Indicator 压差指示器DSPL Display 显示ECAM Electronic Centralized Aircraft Monitoring 飞机电子中心监控ECON Economy 经济ECP Ecam Control Panel ECAM 掌握面板EFCC Electronic Flight Control Computer 电子飞行掌握计算机EFCS Electrical Flight Control System 电器飞行掌握系统EFF Effective,Effectivity效性EFIS Electronic Flight Instrument System 仪表系统EGIU Electrical Generation Interface Unit 口组件EGT Exhaust Gas Temperature度EIS Electronic Instrument System统EIU Engine Interface Unit 有效的,有电子飞行发电接排气温电子仪表系发动机接口组件ELEC Electric,Electrical,Electricity 电气的,电气的,电学ELEK Electronic 电子的ELEV Elevation,Elevator 标高,升降舵ENCDR Encoder 编码器ENG Engine 发动机EPR Engine Pressure Ratio 发动机压力比EPROM Erasable Programmable Read Only Memory 可去除程序可控只读存储器EPSU Emergency Power Supply Unit 应急电源供电组件ESP Electrical Standard Practices 电气施工标准ESS Essential 重要ET Elapsed Time 已用时间ETOPS Extended Range Twin Engined Aircraft Operations 双发飞机延程运行EVAC Evacuation 撤离EVMU Engine Vibration Monitoring Unit 发动机监控组件EWD Engine/Warning Display 发动机/警告显示EXH Exhaust 排气EXT Exterior,External 外部,外部的F/O Flight Officer 副驾驶FAC Flight Augmentation Computer 飞行增温计算机FADEC Full Authority Digital Engine Control 字式发动机掌握FAIL Failed,Failure效FANS Future Air Navigation System中导航系统FAP Forward Attendant Panel面板FAS Flight Augmentation System统全权限数失效的,失一代空前乘务员飞行增稳系FAV Fan Air Valve 风扇空气活门FCDC Flight Control Date Concentrator 飞行操纵数据集中器FCOM Flight Crew Operating manual组操作手册FCU Fuel Control Unit掌握组件FCU Flight Control Unit组件FD Flight Director指引仪FDBK FeedbackFDIMU Flight Data Interface and Management Unit 口治理组件飞行机燃油飞行掌握飞行反响飞行数据接FDIU Flight Data Interface Unit 飞行数据接口组件FDU Fire Detection Unit 火警探测系统FE Flight Envelope线FF Fuel FlowFH Flight HoursFIDS Fault Isolation and Detection System 与探测系统FIN Functional Item Number号FL Flight Level度层飞行包燃油流量飞行小时故障隔离功能飞行高FLEX Flexible 敏捷的,软的FLSCU Fuel Level Sensing Control Unit 燃油平面感应掌握组件FLXTO Flexible Take-Off 敏捷起飞FM Flight Manual 飞行手册FMA Flight Mode Annunciator 飞行方式信号器FMGC Flight Management and Guidance Computer 飞行治理和制导计算机FMGS Flight Management and Guidance System 飞行治理和制导系统FOB Fuel On Board 机载燃油FOC Fuel/Oil Cooler 燃油/滑油冷却器FOD Foreign Object Damage损伤FPA Flight Path Angle角F-PLN Flight Plan划FPPU Feedback Position Pick-off Unit传感组件FQ Fuel QuantityFQIC Fuel Quantity Indication Computer 指示计算机外来物飞行轨迹飞行计位置反响燃油量燃油量FRV Fuel Return Valve 燃油回油活门FUSLG Fuselage 机身FWC Flight Warning Computer 告计算机FWD ForwardG GreenG/S Glide SlopeG/S Glide SlopeGA Go-AroundGCU Generator Control Unit掌握组件GMT Greenwich Mean Time飞行警前,向前绿色的下滑道下滑道复飞发电机格林尼治标准时间GND Ground 地面GPCU Ground Power Control Unit 地面电源掌握组件GPS Global Positioning System系统GPSSU Global Positioning System Sensor Unit 统感应组件GPU Ground Power UnitGPWC Ground Proximity Warning Computer 算机GRVTY GravityGS Ground Speed全球定位全球定位系地面电源组件近地警告计重力地速HTR GW Gross Weight 全重HCU Hydraulic Control Unit 液压掌握组件HDG Heading航向HDST Headset 耳机 HDWHL Handwheel 手轮 HF High Frequency高频 HSI Horizontal Situation Indicator 水平姿势指示器HLD Hold 保持,〔空中〕 等待HMUHydromechanicalUnit 液压机械组件HPVHP Bleed Valve高压引气活门HS High SpeedHeater HYD Hydraulic压I/OInput/OutputIASIndicated Airspeed高速加热器 液压的,液输入/输出指示空速INDG INRTL ICY Interchangeability 互换性 IDG Integrated Drive Generator综合驱动发电机IGNIgnition点火IFE In-Flight Entertainment 空中娱乐IGVInlet Guide Vane向叶片Illumination亮INBDInboard内的IND Indicator Indicating Inertial Installation Integral合的INTERCOMIntercommunication系,双向通信Interface Internal进口导照明,点内侧的,机指示器指示 惯性的安装 整体的,综相互关接口内部的ILLUMINTFC INSTL INTEG INTLINTMT Intermittent 断续的,脉动的INV Inverter 变流机IP Intermediate Pressure 中压IPC Illustrated Parts Catalog 图解零件名目IRS Inertial ReferenceISIS Integrated Standby Instrument System 仪表系统ISO International Standardization Organisation 准化组织JAM Jammed,Jamming阻,干扰JAR Joint Aviation Requirements条例L LeftL/G Landing GearLAT LatitudeLAV LavatoryLCD Liquid Crystal Display示LDG Landing 惯性基准综合备份国际标卡阻的,卡联合航空左起落架维度厕所液晶显着陆LE Leading Edge 前缘LH Left Hand 左侧,左手LOC Localizer 着陆航向信标LONG Longitude 纵向,经度LOP Low Oil Pressure 低滑油压力LPC Low Pressure Compressor低压压气机LPT Low Pressure Turbine 低压涡轮LPTACC Low Pressure Turbine Active Clearance Control 低压涡轮主动间隙掌握LPTC Low Pressure Turbine Clearance 低压涡轮间隙LPTR Low Pressure Turbine Rotor 低压涡轮转子LRU Line Replaceable Unit 航线可更换组件MAG Magnetic 磁场的,磁力的MAN Manual 手册,人工MAX Maximum 最大MCT Maximum Continuous Thrust 最大连续推力MDDU Multipurpose Disk Drive Unit 磁盘驱动组件MFR Manufacturer造商MI Magnetic Indicator指示器MIC Microphone风MIN Minimum最少MISC MiscellaneousMKR Maker〔radio〕Beacon点标MLG Main Landing GearMPD Maintenance Planning Document 划文件MSG Message多功能制磁麦克最小,最低,其它〔无线电〕指主起落架修理计信息N North 北,北方N/A Not Applicable 不适用N/W Nose Wheel 前轮N/WS Nose Wheel Steering 前轮转弯N1 Low Pressure Rotor Speed 子转速N2 High Pressure Rotor Speed 子转速NAC Nacelle舱,进气道NAV NavigationNBPT No Break Power Transfer 供电转换ND Navigation Display示NDB Non-Directional Beacon信标NDT Non-Destructive Test损探伤NEG Negative负值,否认的低压转高压转短舱,吊导航不连续导航显无方向无负极,NHA Next Higher Assembly 下一级组件NLG Nose Landing Gear 前起落架No Number 数,号NS No Smoking 制止吸烟NUM Numerical 用数字表示的NVM Non-Volatile Memory存储器OpenOAT Outside Air Temperature大气温度OBRM On Board Replaceable Module非易失翻开外界机上可更换模块OC Open Circuit 开路OGV Outlet Guide Vane 出口导向叶片OPP Opposite 相反的,相对的OPS Operation 工作,运行,使用OOVPRESSOPT Optimum 最正确的 OPT装的Optional可选的,选OPV Overpressure Valve 过压活门,超压活门 OutboardOUTR Outer侧OVBDOverboard向外OVFLOverflowOVHT Overheat热 Overpressure外侧外部,外机外,溢流过过压,超压OVRD Override 超控OXY Oxygen 氧 气PA Passenger Address 旅客播送PARAMParameter参OUTBD数PARK Parking 停留PAX Passenger旅客PBE Protective Breathing Equipment 呼吸保护设备 PCPack Controller掌握器PCUPower Control Unit动力掌握组件 PED Pedestal台 PerformancePESPassenger Entertainment 〔System 〕消遣〔系统〕 ProbePFD Primary Flight Display显示器组件电源掌握组件/操纵性能旅客探头主飞行PHC头加温计算机 Probe Heat Computer探PLCRD Placard布告,标牌PERFPFB件PNEU Pneumatic 气源的,气动的 PNLPanelPOSPositionPPU Position Pickoff Unit感组件PRAM Prerecorded Announcement and Music知和音乐Precooler冷器ProximityPRV Pressure Regulating Value节活门PTTPush-to-TalkPWRPowerPYLPylonQNHSea Level Atmospheric Pressure大气压力QTYQuantity面板位置位置传录用的通预邻近压力调按下送话动力,电源吊架海平面数量PRECOOL PROX PMP Pump 泵PN 号 Part NumberR Right 右侧RA Radio Altimeter,Radio Altitude 无线电高度表,无线电高度RAC Rotor Active Clearance 转子主动间隙RACC Rotor Active Clearance Control 主动间隙掌握RAD Radio电RAT Ram Air Turbine气涡轮RCDR RecorderRCVR ReceiverREF Reference基准RES ResistanceREV Revise,Revision修订RF Radio Frequency频率RH Right HandRLY Relay转子无线冲压空记录器接收机参考,电阻修改,无线电右侧继电器RMI Radio Magnetic Indicator 无线电磁指示器RMP Radio Management Panel 无线电治理面板Repellent 排雨剂RPM Revolution Per Minute钟转数RUD Rudder舵RVR Runway Visual Range〔能见度〕距离RWY Runway道S South南方Safety全SAT Static Air Temperature静压温度SB Service BulletinSDAC System Data Acquisition Concentrator 统数据集获器每分方向跑道视程跑南,安大气效劳通告系RPLNT SAFSDCU Smoke Detection Control Unit 烟雾探测掌握组件SEB Seat Electronic Box 座椅电子盒SN Serial Number 序号SKT Socket 套筒SLD Slide,Sliding 滑动SLT Slat 缝翼SM Standards Manual 标准手册SMK Smoke 烟SN Serial Number 序号SOL Solenoid 电磁线圈SOV Shut-Off Valve 关断活门SPD Speed 速度SPKR Speaker 喇叭SPLR Spoiler 扰流板SPLY Supply 供给STA Station 站位STAB Stabilizer 水平安定面STAT Static 静止的STBY Standby 备用STD Standard 标准STRG Steering 转向,转弯STS Status 状态STWG Stowage 贮存SURF Surface 外表SVCE Service 服务,勤务SVO Servo 伺服SW Switch 开关SWTG 交换SYS SwitchingSystem转换,系统T Trim 配平T/R Thrust Reverser 反推TAT Total Air Temperature 全温TCAS Traffic Alert and Collision Avoidance System 空中交通警告和防撞系统TCC Turbine Clearance Control 涡轮间隙掌握Trailing Edge 后缘TEMP Temperature 温度THROT Throttle 油门TK Tank 油箱TLA Throttle Lever Angle油门杆角度TO Takeoff 起飞TOGA起飞/复飞Takeoff/Go Around TOGW Takeoff Gross Weight起飞全重TOIL Toilet TOT Total 厕所总计TETOW Takeoff Weight 起飞总重TPIC Tire Pressure Indicating Computer 轮胎压力指示计算机TR Transformer Rectifier 变压整流器Torque 扭矩TRQETSM Trouble Shooting Manual 排故手册V1 Decision Speed 决断速度V2 Takeoff Safety Speed 起飞安全速度VACU Vacuum 真空VBV Variable Bleed Valve可变放气活门VEL Velocity 速度,速率VENT Ventilation 通风VERT Vertical 垂直的VHF Very High Frequency 甚高频VIB Vibration 振动VLV Valve 活门VOR VHF Omnidirectional Range 甚高频全向信标VSC Vacuum System Controller 空系统掌握器VSV Variable Stator Vane静子叶片WPT Waypoint点WT WeightWTB刹车Wing tip BrakeWXR Weather Radar象雷达X TransX BLEED Crossbleed引气X FEED Crossfeed油X VALVE Cross Valve真可变航路重量翼尖气转换交输交输供交输活门。
计算机联锁的技术条件总则

计算机联锁的技术条件总则**Computer Interlocking Technical Conditions - GeneralPrinciples**The technical conditions for computer interlocking systems serve as the fundamental guidelines for ensuring the safe, reliable, and efficient operation of railway signaling systems. These systems are crucial for controlling the movement of trains and ensuring the smooth flow of traffic on railway networks. The general principles outlined in this document aim to standardize the design, implementation, and maintenance of computer interlocking systems, thereby enhancing the overall safety and performance of railway operations.计算机联锁系统的技术条件,是确保铁路信号系统安全、可靠、高效运行的基本指导原则。
这些系统对于控制列车运行和确保铁路网络交通顺畅至关重要。
本文档中概述的总则旨在标准化计算机联锁系统的设计、实施和维护,从而提高铁路运营的整体安全性和性能。
Firstly, computer interlocking systems must comply with all relevant safety standards and regulations, ensuring that they meet the highest levels of reliability and fail-safe performance. This requires the use of redundant hardware and software components, as well as robust fault detection and isolation mechanisms.首先,计算机联锁系统必须遵守所有相关的安全标准和规定,确保其达到最高水平的可靠性和故障安全性能。