【配套K12】[学习]2018中考数学试题分类汇编 考点21 全等三角形(含解析)
2018年中考数学总复习:三角形及全等三角形

★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3
★知识点5
★知识要点导航 ★热点分类解析
★知识点1 ★知识点2 ★知识点3 ★知识点4 ★考点1 ★考点2 ★考点3
★知识点5
★知识要点导航 ★热点分类解析
精品-2018年中考数学真题分类汇编第三期专题21全等三角形试题含解析

全等三角形一.填空题1. (2018·湖北荆州·3分)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是.【解答】解:由作法①知,OM=ON,由作法②知,CM=CN,∵OC=OC,∴△OCM≌△OCN(SSS),故答案为:SSS.二.解答题1.(2018·云南省昆明·6分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.【分析】根据ASA证明△ADE≌△ABC;【解答】证明:(1)∵∠1=∠2,∵∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ADE≌△ABC(ASA)∴BC=DE,【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等2.(2018·云南省·6分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的SAS定理是解题的关键.3.(2018·浙江省台州·12分)如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.【分析】(1)直接判断出△ACE≌△BCD即可得出结论;(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;(3)先求出BD=3,进而求出CF=,同理:EG=,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.【解答】解:(1)在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠BAC=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=×1×=,由(2)知,AE⊥CF,∴S△CEF=CF•ME=×ME=ME,∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,∴S△CFG=CF•GM=××=.【点评】此题是三角形综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,三角形的中位线定理,三角形的面积公式,勾股定理,作出辅助线求出△CFG的边CF上的是解本题的关键.4. (2018•呼和浩特•6分)如图,已知A.F、C.D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,∵AB=DE,∴△ABC≌△DEF.(2)如图,连接AB交AD于O.在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4,∴DF==5,∵四边形EFBC是菱形,∴BE⊥CF,'∴EO==,∴OF=OC==,∴CF=,∴AF=CD=DF﹣FC=5﹣=.5. (2018•乐山•9分)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.证明:∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB和△ACB中,,∴△ADB≌△ACB(ASA),∴BD=CD.6. (2018•广安•6分)如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E作EF⊥AM,垂足为F,求证:AB=EF.【分析】根据AAS证明△ABM≌△EFA,可得结论.【解答】证明:∵四边形ABCD为正方形,∴∠B=90°,AD∥BC,(2分)∴∠EAF=∠BMA,∵EF⊥AM,∴∠AFE=90°=∠B,(4分)在△ABM和△EFA中,∵,∴△ABM≌△EFA(AAS),(5分)∴AB=EF.(6分)【点评】本题考查了正方形的性质、三角形全等的性质和判定,熟练掌握三角形全等的判定是关键.7.(2018·辽宁大连·9分)如图,▱ABCD的对角线AC,BD相交于点O,点E.F在AC上,且AF=CE.求证:BE=DF.证明:∵四边形ABCD是平行四边形,∴OA=OC,OD=OB.∵AE=CF,∴OE=OF.在△BEO和△DFO中,,∴△BEO≌△DFO,∴BE=DF.8.(2018·江苏镇江·6分)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=75 °.【解答】(1)证明:∵AB=AC,∴∠B=∠ACF,在△ABE和△ACF中,,∴△ABE≌△ACF(SAS);(2)∵△ABE≌△ACF,∠BAE=30°,∴∠BAE=∠CAF=30°,∵AD=AC,∴∠ADC=∠ACD,∴∠ADC==75°,故答案为:75.。
【配套K12】[学习]2018年中考数学试题分类汇编 知识点27 三角形(含多边形及其内角和)
![【配套K12】[学习]2018年中考数学试题分类汇编 知识点27 三角形(含多边形及其内角和)](https://img.taocdn.com/s3/m/8f5978df4693daef5ff73d1a.png)
三角形(含多边形及其内角和)一、选择题1. (2018湖南长沙,4题,3分)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cmB.8cm,8cm,15cmC.5cm,5cm,10cmD.6cm,7cm,14cm【答案】B【解析】三角形中,两边之和大于第三边,两边之差小于第三边。
A选项中4+5=9,两边之和等于第三边,故A 错误;C选项5+5=10,两边之和等于第三边,故C错误;D选项6+7=13<14,两边之和小于第三边,故D错误;B选项8+8=16>15,故B正确。
【知识点】三角形三边关系2. (2018山东省济宁市,8,3)如图,在五边形ABCDE中,∠A+∠B+∠E=300°.DP,CP分别平分∠EDC,∠BCD,则∠P的度数是( )A.50°B.55°C.60°D.65°【答案】D【解析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°-300°=240°,∵∠BCD 、∠CDE 的平分线在五边形内相交于点P ,∴∠PDC+∠PCD=12(∠BCD+∠CDE )=120°, ∴∠P=180°-120°=60°,因此,本题应该选D.【知识点】多边形的内角和公式 角平分线的定义3. (2018浙江杭州,5,3分) 若线段AM ,AN 分别是△ABC 的BC 边上的高线和中线,则( )A. AM AN >B. AM AN ≥C. AM AN <D. AM AN ≤【答案】D【解析】AM 和AN 可以看成是直线为一定点到直线上两定点的距离,由垂线段最短,则AM AN <,再考虑特殊情况,当AB=AC 的时候AM=AN【知识点】垂线段最短4. (2018宁波市,5题,4分) 已知正多边形的一个外角等于40°,那么这个正多边形的边数为A .6B .7C .8D .9 【答案】D【解析】利用正多边形的每个外角都相等,外角和360°,除以外角的度数,即可求得边数解:360°÷40°=9【知识点】多边形外角和1. (2018湖北鄂州,5,3分)一副三角板如图放置,则∠AOD 的度数为( )A . 75°B . 100°C . 105°D .120°【答案】C【解析】如下图(1),由题意可知,∠ABC=45°,∠DBC=30°,∴∠ABO=∠ABC-∠DBC=45°-30°=15°,又∵∠BOC是△AOB的一个外角,∴∠BOC=∠ABO+∠A=15°+90°=105°,∴∠AOD=∠BOC=105°.【知识点】三角形的外角;对顶角2. (2018内蒙古呼和浩特,3,3分)已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形答案B【解析】设这个多边形为n边形,则(n-2) 180=1080,解得n=8,故选B.【知识点】多边形的内角和3. (2018河北省,1,3)下列图形具有稳定性的是( )【答案】A【解析】三角形是具有稳定性的图形,故选A.【知识点】三角形的稳定性4. (2018福建A卷,3,4)下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2 B.1,2,4C. 2,3,4D.2,3,5【答案】C【解析】三数中,若最小的两数和大于第三数,符合三角形的三边关系,则能成为一个三角形三边长,否则不可能.解:∵1+1=2 ,∴选项A不能;∵1+2<4,∴选项B不可能;∵2+3>4,∴选项C能;∵2+3=5,∴选项D不能.故选C.【知识点】三角形三边的关系5. (2018福建A卷,4,4)一个n边形的内角和是360°,则n等于( )A.3 B.4 C. 5 D. 6【答案】B【解析】先确定该多边形的内角和是360゜,根据多边形的内角和公式,列式计算即可求解.解:∵多边形的内角和是360゜,∴多边形的边数是:360゜=(n-2)×180°,n=4.【知识点】多边形;多边形的内角和6.(2018福建B卷,3,4)下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2 B.1,2,4C. 2,3,4D.2,3,5【答案】C【解析】三数中,若最小的两数和大于第三数,符合三角形的三边关系,则能成为一个三角形三边长,否则不可能.解:∵1+1=2 ,∴选项A不能;∵1+2<4,∴选项B不可能;∵2+3>4,∴选项C能;∵2+3=5,∴选项D不能.故选C.【知识点】三角形三边的关系7. (2018福建B卷,4,4)一个n边形的内角和是360°,则n等于( )A.3 B.4 C. 5 D. 6【答案】B【解析】先确定该多边形的内角和是360゜,根据多边形的内角和公式,列式计算即可求解.解:∵多边形的内角和是360゜,∴多边形的边数是:360゜=(n-2)×180°,n=4.【知识点】多边形;多边形的内角和8. (2018四川雅安,5题,3分)已知n边形的每个外角都等于60°,则它的内角和是A.180°B.270°C.360°D.720°【答案】D【解析】n边形的外角和为360°,因为每个外角都等于60°,所以这个多边形是六边形,所以内角和=(6-2)×180°=720°,故选D【知识点】多边形的内角和、外角和9.(2018浙江省台州市,7,3分)正十边形的每一个内角的度数为()A.120 B.135 C.140 D.144【答案】D【解析】要计算正十边形的内角,首先利用内角和公式计算出正十边形的内角和,然后再计算每一个内角.∵(10-2)×180°=1440°,∴1440°÷10=144°,还有1种解法,利用正多边形的外角和是360°进行计算,360°÷10=36°,180°-36°=144°,故选D.【知识点】正多边形的内角和公式,外角和是360°;邻补角的定义;10.(2018·北京,5,2)若正多边形的一个外角为60°,则该多边形的内角和为()A.360° B.540° C.720° D.900°【答案】C .【解析】∵正多边形的一个外角为60°,∴该正多边形的边数n =36060=6.∴正多边形的的内角和=(6-2)×180°=720°.故选C .【知识点】多边形的内角和;正多边形11. (2018江苏省宿迁市,6,3)若实数m 、n 满足等式∣m -2∣+4-n =0,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .12B .10C .8D .6【答案】B【解析】根据两个非负数的和为0,则各自为0.∴m -2=0,n -4=0.∴m =2,n =4.根据三角形中两边之和大于第三边,则三条边长分别是2,4,4,∴周长是10.故选B .【知识点】非负数的性质,三角形的三边关系二、填空题1. (2018山东滨州,13,5分)在△ ABC 中,若∠A =30°,∠B =50°,则∠C =___________.【答案】100°【解析】∠A +∠B +∠C =180°,所以∠C =100°【知识点】三角形内角和定理。
2018年中考数学真题汇编三角形(K12教育文档)

(直打版)2018年中考数学真题汇编三角形(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2018年中考数学真题汇编三角形(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2018年中考数学真题汇编三角形(word版可编辑修改)的全部内容。
2018年中考数学真题汇编:三角形(填空+选择=50题)一、选择题1.(2018山东滨州)在直角三角形中,若勾为3,股为4,则弦为()A. 5B。
6C。
7D. 8【答案】A2.(2018江苏宿迁)如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是( )。
A。
24°B。
59°C. 60°D. 69°【答案】B3.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据:)()A。
4。
64海里B。
5.49海里C。
6。
12海里D。
6。
21海里【答案】B4。
若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是().A. 12B. 10C。
8D. 6【答案】B5。
在中,,于, 平分交于,则下列结论一定成立的是( )A. B。
C。
D。
【答案】C6.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()。
2018年中考数学试题分类汇编:考点20-等腰三角形、等边三角形(含答案)

2018中考数学试题分类汇编
考点20等腰三角形、等边三角形和直角三角形
一.选择题(共5小题)
1.(2018?湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()
A.20°B.35°C.40°D.70°
【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°
.
【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,
∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.
∵CE是△ABC的角平分线,
∴∠ACE=∠ACB=35°.
故选:B.
2.(2018?宿迁)若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()
A.12B.10C.8D.6
【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.
【解答】解:∵|m﹣2|+=0,
∴m﹣2=0,n﹣4=0,
解得m=2,n=4,。
2018年最新全国中考数学试题分类整理考点汇总

2018年最新全国中考数学试题分类整理考点汇总目录考点集锦目录 (1)考点1 有理数 (1)考点2无理数与实数 (13)考点3 代数式 (24)考点4 整式 (46)考点5 因式分解 (62)考点6 分式 (69)考点7 二次根式 (83)考点8 一元一次方程 (91)考点9 二元一次方程组 (98)考点10 一元二次方程 (122)考点11 分式方程 (142)考点12:不等式与不等式组 (164)考点13:平面直角坐标系与函数基础知识 (182)考点14:一次函数 (209)考点15:反比例函数 (245)考点16 二次函数 (295)考点17 图形认识初步 (333)考点18相交线与平行线 (341)考点19 三角形和角平分线 (366)考点20 等腰三角形、等边三角形和直角三角形 (380)考点21 全等三角形 (391)考点22 勾股定理 (418)考点23 多边形 (431)考点24 平行四边形 (439)考点25 矩形 (458)考点26 正方形 (474)考点27 菱形 (489)考点28圆的有关概念 (506)考点29 与园有关的位置关系 (531)考点30 切线的性质和判定 (549)考点31 弧长和扇形面积 (602)考点32 尺规作图 (622)考点33 命题与证明 (656)考点34 图形的对称 (672)考点35 图形的平移和旋转 (705)考点36 相似三角形 (730)考点37锐角三角函数和解直角三角形 (774)考点38 投影与视图 (814)考点39 统计初步 (836)考点40 概率初步 (861)考点41 数据的搜集与处理 (891)考点1 有理数一.选择题(共28小题)1.(2018•连云港)﹣8的相反数是()A.﹣8 B.C.8 D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.2.(2018•泰州)﹣(﹣2)等于()A.﹣2 B.2 C.D.±2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣2)=2,故选:B.3.(2018•青岛)如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.【分析】根据负数的绝对值是其相反数解答即可.【解答】解:|﹣3|=3,故选:A.4.(2018•海南)2018的相反数是()A.﹣2018 B.2018 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.5.(2018•自贡)计算﹣3+1的结果是()A.﹣2 B.﹣4 C.4 D.2【分析】利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.【解答】解:﹣3+1=﹣2;故选:A.6.(2018•柳州)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.7.(2018•呼和浩特)﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣5【分析】直接利用有理数的减法运算法则计算得出答案.【解答】解:﹣3﹣(﹣2)=﹣3+2=﹣1.故选:A.8.(2018•铜仁市)计算+++++……+的值为()A. B. C.D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.9.(2018•台湾)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c【分析】根据有理数的减法的运算方法,判断出a 、c ,b 、c 的关系即可.【解答】解:∵a=(﹣)﹣=﹣﹣,b=﹣(﹣)=﹣+,c=﹣﹣, ∴a=c ,b ≠c .故选:B .10.(2018•台州)比﹣1小2的数是( )A .3B .1C .﹣2D .﹣3【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D .11.(2018•新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高() A .10℃ B .6℃ C .﹣6℃ D .﹣10℃【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A .12.(2018•临安区)我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的() A .(+39)﹣(﹣7) B .(+39)+(+7) C .(+39)+(﹣7) D .(+39)﹣(+7)【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A .13.(2018•淄博)计算的结果是( )A .0B .1C .﹣1D .【分析】先计算绝对值,再计算减法即可得.【解答】解: =﹣=0,故选:A.14.(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.15.(2018•宿迁)2的倒数是()A.2 B.C.﹣D.﹣2【分析】根据乘积是1的两数互为倒数可得答案.【解答】解:2的倒数是,故选:B.16.(2018•贵港)﹣8的倒数是()A.8 B.﹣8 C.D.【分析】根据倒数的定义作答.【解答】解:﹣8的倒数是﹣.故选:D.17.(2018•通辽)的倒数是()A.2018 B.﹣2018 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,×2018=1即可解答.【解答】解:根据倒数的定义得:×2018=1,因此倒数是2018.故选:A.18.(2018•宜宾)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4 B.6.5×104C.﹣6.5×104D.65×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:65000=6.5×104,故选:B.19.(2018•贵港)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×105【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数据2180000用科学记数法表示为2.18×106.故选:A.20.(2018•天津)计算(﹣3)2的结果等于()A.5 B.﹣5 C.9 D.﹣9【分析】根据有理数的乘方法则求出即可.【解答】解:(﹣3)2=9,故选:C.21.(2018•宜昌)计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.24【分析】根据有理数的乘方、乘法和加法可以解答本题.【解答】解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.22.(2018•台湾)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61000元,若活动期间此款微波炉总共卖出50台,则其总销售额为多少元?()A.305000 B.321000 C.329000 D.342000【分析】根据题意求出此款微波炉的单价,列式计算即可.【解答】解:此款微波炉的单价为(61000+10×800)÷10=6900,则卖出50台的总销售额为:61000×2+6900×30=329000,故选:C.23.(2018•烟台)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为()A.0.827×1014B.82.7×1012 C.8.27×1013 D.8.27×1014【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:82.7万亿=8.27×1013,故选:C.24.(2018•绵阳)四川省公布了2017年经济数据GDP排行榜,绵阳市排名全省第二,GDP总量为2075亿元,将2075亿用科学记数法表示为()A.0.2075×1012B.2.075×1011C.20.75×1010D.2.075×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2075亿用科学记数法表示为:2.075×1011.故选:B.25.(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108D.1.496×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据1.496亿用科学记数法表示为1.496×108,故选:D.26.(2017•宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选:A.27.(2017•通辽)近似数5.0×102精确到()A.十分位B.个位C.十位 D.百位【分析】根据近似数的精确度求解.【解答】解:近似数5.0×102精确到十位.故选:C.28.(2018•河南)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.二.填空题(共16小题)29.(2018•达州)受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为 5.5×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.5亿=5 5000 0000=5.5×108,故答案为:5.5×108.30.(2018•东营)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×101131.(2018•泰州)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为 4.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:44000000=4.4×107,故答案为:4.4×107.32.(2018•湘西州)﹣2018的绝对值是2018 .【分析】根据绝对值的定义即可求得.33.(2018•张家界)目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为 1.6×10﹣8米.【分析】由1纳米=10﹣9米,可得出16纳米=1.6×10﹣8米,此题得解.【解答】解:∵1纳米=10﹣9米,∴16纳米=1.6×10﹣8米.故答案为:1.6×10﹣8.34.(2018•南充)某地某天的最高气温是6℃,最低气温是﹣4℃,则该地当天的温差为10 ℃.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:6﹣(﹣4),=6+4,=10℃.故答案为:1035.(2018•香坊区)将数字37000000用科学记数法表示为 3.7×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:37000000=3.7×107.故答案为:3.7×107;36.(2018•玉林)计算:6﹣(3﹣5)= 8 .【分析】直接利用去括号法则进而计算得出答案.【解答】解:6﹣(3﹣5)=6﹣(﹣2)=8.故答案为:8.37.(2018•无锡)﹣2的相反数的值等于 2 .【分析】根据相反数的定义作答.38.(2018•云南)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为 3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.39.(2018•哈尔滨)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×10840.(2018•德州)计算:|﹣2+3|= 1 .【分析】根据有理数的加法解答即可.【解答】解:|﹣2+3|=1,故答案为:141.(2018•邵阳)点A在数轴上的位置如图所示,则点A表示的数的相反数是﹣2 .【分析】点A在数轴上表示的数是2,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【解答】解:∵点A在数轴上表示的数是2,∴点A表示的数的相反数是﹣2.故答案为:﹣2.42.(2018•南京)写出一个数,使这个数的绝对值等于它的相反数:﹣1 .【分析】根据绝对值的意义求解.【解答】解:一个数的绝对值等于它的相反数,那么这个数0或负数.故答案为:﹣143.(2018•云南)﹣1的绝对值是 1 .【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.44.(2018•宁波)计算:|﹣2018|= 2018 .【分析】直接利用绝对值的性质得出答案.【解答】解:|﹣2018|=2018.故答案为:2018.三.解答题(共2小题)45.(2018•湖州)计算:(﹣6)2×(﹣).【分析】原式先计算乘方运算,再利用乘法分配律计算即可求出值.【解答】解:原式=36×(﹣)=18﹣12=6.46.(2018•高邑县一模)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30 .(2)经过几秒,点M、点N分别到原点O的距离相等?【分析】(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.46.(2018•高邑县一模)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30 .(2)经过几秒,点M、点N分别到原点O的距离相等?【分析】(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.考点2无理数与实数一.选择题(共24小题)1.(2018•铜仁市)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.(2018•南通模拟)的值是()A.4 B.2 C.±2 D.﹣2【分析】根据算术平方根解答即可.【解答】解:=2,故选:B.3.(2018•杭州)下列计算正确的是()A.=2 B.=±2 C.=2 D.=±2【分析】根据=|a|进行计算即可.【解答】解:A、=2,故原题计算正确;B、=2,故原题计算错误;C、=4,故原题计算错误;D、=4,故原题计算错误;故选:A.4.(2018•黔南州)下列等式正确的是()A.=2 B.=3 C.=4 D.=5 【分析】根据算术平方根的定义逐一计算即可得.【解答】解:A、==2,此选项正确;B、==3,此选项错误;C、=42=16,此选项错误;D、=25,此选项错误;故选:A.5.(2018•济宁)的值是()A.1 B.﹣1 C.3 D.﹣3【分析】直接利用立方根的定义化简得出答案.【解答】解:=﹣1.故选:B.6.(2018•恩施州)64的立方根为()A.8 B.﹣8 C.4 D.﹣4【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故选:C.7.(2018•衡阳)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=【分析】原式利用平方根、立方根定义计算即可求出值.【解答】解:A、原式=3,不符合题意;B、原式=|﹣3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2﹣=,符合题意,故选:D.8.(2018•广州)四个数0,1,,中,无理数的是()A.B.1 C.D.0【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:0,1,是有理数,是无理数,故选:A.9.(2018•玉林)下列实数中,是无理数的是()A.1 B.C.﹣3 D.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:1,﹣3,是有理数,是无理数,故选:B.10.(2018•聊城)下列实数中的无理数是()A.B.C.D.【分析】分别根据无理数、有理数的定义即可判定选择项【解答】解:,,是有理数,是无理数,故选:C.11.(2018•菏泽)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.1【分析】依据无理数的三种常见类型进行判断即可.【解答】解:在﹣2,0,,0.020020002…,π,中,无理数有0.020020002…,π这2个数,故选:C.12.(2018•黄石)下列各数是无理数的是()A.1 B.﹣0.6 C.﹣6 D.π【分析】依据无理数的三种常见类型进行判断即可.【解答】解:A、1是整数,为有理数;B、﹣0.6是有限小数,即分数,属于有理数;C、﹣6是整数,属于有理数;D、π是无理数;故选:D.13.(2018•温州)给出四个实数,2,0,﹣1,其中负数是()A.B.2 C.0 D.﹣1【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数,2,0,﹣1,其中负数是:﹣1.故选:D.14.(2018•荆门)8的相反数的立方根是()A.2 B.C.﹣2 D.【分析】根据相反数的定义、立方根的概念计算即可.【解答】解:8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选:C.15.(2018•眉山)绝对值为1的实数共有()A.0个B.1个C.2个D.4个【分析】直接利用绝对值的性质得出答案.【解答】解:绝对值为1的实数共有:1,﹣1共2个.故选:C.16.(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.17.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.18.(2018•常德)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b| C.ab>0 D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.19.(2018•福建)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.20.(2018•苏州)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.21.(2018•淄博)与最接近的整数是()A.5 B.6 C.7 D.8【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:B.22.(2018•南京)下列无理数中,与4最接近的是()A. B.C. D.【分析】直接利用估算无理数的大小方法得出最接近4的无理数.【解答】解:∵=4,∴与4最接近的是:.故选:C.23.(2018•台州)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】直接利用2<<3,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,故选:B.24.(2018•重庆)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【分析】首先利用二次根式的乘法化简,进而得出答案.【解答】解:(2﹣)•=2﹣2=﹣2,∵4<<5,∴2<﹣2<3,故选:B.二.填空题(共10小题)25.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x= 2 .【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.26.(2017•恩施州)16的平方根是±4 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.27.(2018•资阳)已知a、b满足(a﹣1)2+=0,则a+b= ﹣1 .【分析】直接利用非负数的性质得出a,b的值,进而得出答案.【解答】解:∵(a﹣1)2+=0,∴a=1,b=﹣2,∴a+b=﹣1.故答案为:﹣1.28.(2018•上海)﹣8的立方根是﹣2 .【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.29.(2017•西藏)下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的有②③(填序号).【分析】根据无理数的定义即可判断;【解答】解:下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的为:②③,故答案为②③30.(2018•襄阳)计算:|1﹣|= ﹣1 .【分析】根据负数的绝对值等于它的相反数解答.【解答】解:|﹣|=﹣1.故答案为:﹣1.31.(2018•昆明)在实数﹣3,0,1中,最大的数是 1 .【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.【解答】解:在实数﹣3,0,1中,最大的数是1,故答案为:1.32.(2018•陕西)比较大小:3 <(填“>”、“<”或“=”).【分析】首先把两个数平方法,由于两数均为正数,所以该数的平方越大数越大.【解答】解:32=9,=10,∴3<.33.(2018•咸宁)写出一个比2大比3小的无理数(用含根号的式子表示).【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.【解答】解:∵4<5<9,∴2<<3,即为比2大比3小的无理数.故答案为.34.(2018•烟台)(π﹣3.14)0+tan60°=1+.【分析】直接利用零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=1+.故答案为:1+.三.解答题(共8小题)35.(2018•怀化)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1+﹣1+2=1+.36.(2018•台州)计算:|﹣2|+(﹣1)×(﹣3)【分析】首先计算绝对值、二次根式化简、乘法,然后再计算加减即可.【解答】解:原式=2﹣2+3=3.37.(2018•曲靖)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣1【分析】直接利用立方根的性质以及零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=2+1+3﹣3=3.38.(2018•海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)【分析】(1)直接利用二次根式性质和负指数幂的性质分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【解答】解:(1)原式=9﹣3﹣2×=5;(2)原式=a2+2a+1+2﹣2a=a2+3.39.(2018•遵义)2﹣1+|1﹣|+(﹣2)0﹣cos60°【分析】直接利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=+2﹣1+1﹣=2.40.(2018•娄底)计算:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°.【分析】根据零指数幂、负整数指数幂、绝对值和特殊角的三角函数值可以解答本题.【解答】解:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°=1+9﹣+4×=1+9﹣2+2=10.41.(2018•连云港)计算:(﹣2)2+20180﹣.【分析】首先计算乘方、零次幂和开平方,然后再计算加减即可.【解答】解:原式=4+1﹣6=﹣1.42.(2018•桂林)计算:+(﹣3)0﹣6cos45°+()﹣1.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1﹣6×+2=3+1﹣3+2=3.考点3 代数式一.选择题(共25小题)1.(2018•齐齐哈尔)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【分析】分别判断每个选项即可得.【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.2.(2018•大庆)某商品打七折后价格为a元,则原价为()A.a元B.a元C.30%a元D.a元【分析】直接利用打折的意义表示出价格进而得出答案.【解答】解:设该商品原价为:x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元).故选:B.3.(2018•河北)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.4.(2018•临安区)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.【分析】整个组的平均成绩=15名学生的总成绩÷15.【解答】解:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为.故选B.5.(2018•枣庄)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b 的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.6.(2018•桂林)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3 B.2a+3 C.2(a﹣3)D.2(a+3)【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.7.(2018•安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a【分析】根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.【解答】解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.8.(2018•河北)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【分析】直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.。
2018中考数学三角形分类汇总

2018中考数学三角形分类汇总
新一轮中考复习备考周期正式开始,中考网为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《2018中考数学三角形分类汇总》,仅供参考!
序号
详情
1
2018中考数学知识点:相似三角形
2
2018中考数学知识点:三角形的三边关系定理及推论
3
2018中考数学知识点:三角形的三边关系
4
2018中考数学知识点:解直角三角形的函数值列举
5
2018中考数学知识点:相似三角形的判定方法
6
2018中考数学知识点:与三角形有关的线段
7
2018中考数学知识点:与三角形有关的角
8
2018中考数学知识点:三角形的稳定性
9
2018中考数学知识点:角平分线的性质及判定
10
2018中考数学知识点:全等图形、全等三角形
11
2018中考数学知识点:全等三角形的判定
12
2018中考数学知识点:区分三角形的中位线和中线
13
2018中考数学知识点:三角形的中位线
14
2018中考数学知识点:三角形的内角
15
2018中考数学知识点:三角形的外角
16
2018中考数学三角形全等的证明极易出错典型例题(图片版)
17
2018苏科版等腰三角形练习题(图片版)
18
2018苏科版三角形练习题(图片版)。
2018年 中考数学 精选题---全等三角形(含答案)

2018年中考数学精选题作业本全等三角形一、选择题:1.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC大小是()A.40°B.45°C.50°D.60°2.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对3.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,若BC=7,则AE的长为()A.4 B.5 C.6 D.74.如图,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=47°,则∠DEF等于( )A.100°B.53°C.47°D.33°5.如图,若△ABC≌△DEF,则∠E等于()A.30°B. 50°C.60°D.100°6.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC7.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.如图,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA.OB于CD,则CD()P点到∠AOB两边距离之和.A.小于B.大于C.等于D.不能确定二、填空题:9.如图,在△ABC中,AB=AC,BE、CF是中线,则由可得△AFC≌△AEB.10.如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是__________,图中相等的线段有__________.11.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .12.如图,△ABC≌△DCB,A.B的对应顶点分别为点D、C,如果AB=7cm,BC=12cm,AC=9cm,DO=2cm,那么OC的长是cm.13.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是18cm2,AC=8cm,DE=2cm,则AB的长是.14.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点.若AC=8,则CP的长为.15.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEO的度数是.16.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上块,其理由是.三、解答题:17.如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.18.如图,已知在四边形ABCD中,E是AC上一点,∠1=∠2,∠3=∠4.求证:∠5=∠6.19.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.20.如图,在平面直角坐标系中,O为坐标原点,A.B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA.OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.参考答案1.B2.C3.D.4.D5.D6.B7.C8.B9.填SAS.10.答案为:∠OBA,OA=OC、OB=OD、AB=CD11.答案为:135°.12.答案为:713.答案为:10cm.14.答案为:.15.答案为:100°.16.答案为:第1,利用SAS得出全等三角形,即可配成与原来同样大小的一块.17.解:AB∥CF.证明如下:∵∠AED与∠CEF是对顶角,∴∠AED=∠CEF,在△ADE和△CFE中,∵DE=FE,∠AED=∠CEF,AE=CE,∴△ADE≌△CFE.∴∠A=∠FCE.∴AB∥CF.18.证明:∵,∴△ADC≌△ABC(ASA).∴DC=BC.又∵,∴△CED≌△CEB(SAS).∴∠5=∠6.19.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠ABE=∠CBE 所以:AE=CE 所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA 所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB 所以:△AEC≌△AGB所以:EC=BG=DG 所以:BD=2CE20.解:(1)∵|m﹣n﹣3|+=0,且|m﹣n﹣3|≥0,≥0∴|m﹣n﹣3|==0,∴n=3,m=6,∴点A(0,6),点B(3,0);(2)连AP=t,OP=|6﹣t|,∴S=0.5OPOB=1.5|6﹣t|;(t≥0)(3)作出图形,∵∠OAB+∠OBA=90°,∠OAB+∠OPE=90°,∴∠OBA=∠OPE,∴只要OP=OB,即可求证△EOP≌△AOB,∴AP=AO+OP=9,∴t=9.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018中考数学试题分类汇编:考点21 全等三角形一.选择题(共9小题)1.(2018•安顺)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.2.(2018•黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.【解答】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.3.(2018•河北)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【分析】利用判断三角形全等的方法判断即可得出结论.【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.4.(2018•南京)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b ﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.5.(2018•临沂)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2 D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.6.(2018•台湾)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.130【分析】根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.【解答】解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△AED,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.7.(2018•成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.8.(2018•黑龙江)如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为()A.15 B.12.5 C.14.5 D.17【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=×5×5=12.5,即可得出结论.【解答】解:如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=×5×5=12.5,∴四边形ABCD的面积为12.5,故选:B.9.(2018•绵阳)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE=,AD=,则两个三角形重叠部分的面积为()A.B.3C.D.3【分析】如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.想办法求出△AOB 的面积.再求出OA与OB的比值即可解决问题;【解答】解:如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.∵∠ECD=∠ACB=90°,∴∠ECA=∠DCB,∵CE=CD,CA=CB,∴△ECA≌△DCB,∴∠E=∠CDB=45°,AE=BD=,∵∠EDC=45°,∴∠ADB=∠ADC+∠CDB=90°,在Rt△ADB中,AB==2,∴AC=BC=2,∴S△ABC=×2×2=2,∵OD平分∠ADB,OM⊥DE于M,ON⊥BD于N,∴OM=ON,∵====,∴S△AOC=2×=3﹣,故选:D.二.填空题(共4小题)10.(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC ≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC .【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.11.(2018•衢州)如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB ∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=ED (只需写一个,不添加辅助线).【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF.【解答】解:添加AB=ED,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB∥DE,∴∠B=∠E,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=ED.12.(2018•绍兴)等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为30°或110°.【分析】分两种情形,利用全等三角形的性质即可解决问题;【解答】解:如图,当点P在直线AB的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC﹣∠ABP=30°,当点P′在AB的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.13.(2018•随州)如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为;⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD时,点F到直线AB的距离为.其中正确的是①③④.(写出所有正确判断的序号)【分析】依据AB=AD=5,BC=CD ,可得AC 是线段BD 的垂直平分线,故①正确;依据四边形ABCD 的面积S=,故②错误;依据AC=BD ,可得顺次连接四边形ABCD 的四边中点得到的四边形是正方形,故③正确;当A ,B ,C ,D 四点在同一个圆上时,设该圆的半径为r ,则r 2=(r ﹣3)2+42,得r=,故④正确;连接AF ,设点F 到直线AB 的距离为h ,由折叠可得,四边形ABED 是菱形,AB=BE=5=AD=GD ,BO=DO=4,依据S △BDE =×BD ×OE=×BE ×DF ,可得DF=,进而得出EF=,再根据S △ABF =S 梯形ABFD ﹣S △ADF ,即可得到h=,故⑤错误.【解答】解:∵在四边形ABCD 中,AB=AD=5,BC=CD ,∴AC 是线段BD 的垂直平分线,故①正确;四边形ABCD 的面积S=,故②错误;当AC=BD 时,顺次连接四边形ABCD 的四边中点得到的四边形是正方形,故③正确; 当A ,B ,C ,D 四点在同一个圆上时,设该圆的半径为r ,则r 2=(r ﹣3)2+42,得r=,故④正确;将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,如图所示, 连接AF ,设点F 到直线AB 的距离为h ,由折叠可得,四边形ABED 是菱形,AB=BE=5=AD=GD ,BO=DO=4,∴AO=EO=3,∵S △BDE =×BD ×OE=×BE ×DF ,∴DF==,∵BF ⊥CD ,BF ∥AD ,∴AD ⊥CD ,EF==,∵S△ABF=S梯形ABFD﹣S△ADF,∴×5h=(5+5+)×﹣×5×,解得h=,故⑤错误;故答案为:①③④.三.解答题(共23小题)14.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).15.(2018•云南)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.16.(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.17.(2018•衡阳)如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.【分析】(1)根据AE=DE,BE=CE,∠AEB和∠DEC是对顶角,利用SAS证明△AEB≌△DEC 即可.(2)根据全等三角形的性质即可解决问题.【解答】(1)证明:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS).(2)解:∵△AEB≌△DEC,∴AB=CD,∵AB=5,∴CD=5.18.(2018•通辽)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠EAF=∠EDB、AE=DE即可判定全等;(2)根据AB=AC,且AD是BC边上的中线可得∠ADC=90°,由四边形ADCF是矩形可得答案.【解答】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB,∴△AEF≌△DEB(AAS);(2)连接DF,∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形,∵△AEF≌△DEB,∴BE=FE,∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB,∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.19.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO与△CDO全等,所以有OB=OC.【解答】证明:在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),∴∠OBC=∠OCB,∴BO=CO.20.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根据“SAS”可判断△BAC≌△DAE,根据全等的性质即可得到∠C=∠E.【解答】解:∵∠BAE=∠DAC,∴∠BAE﹣∠CAE=∠DAC﹣∠CAE,即∠BAC=∠DAE,在△ABC和△ADE中,∵,∴△ABC≌△ADE(SAS),∴∠C=∠E.21.(2018•恩施州)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.【分析】连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.【解答】证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.22.(2018•哈尔滨)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF 得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE•DE=•2a•a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=AC•DE=•(2a+2a)•a=2a2=2S△ADE;在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=AE•BE=•(2a)•2a=2a2,S△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.23.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.24.(2018•咸宁)已知:∠AOB.求作:∠A'O'B',使∠A'O′B'=∠AOB(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径间弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所而的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.【分析】由基本作图得到OD=OC=O′D′=O′C′,CD=C′D′,则根据“SSS“可证明△OCD ≌△O′C′D′,然后利用全等三角形的性质可得到∠A'O'B′=∠AOB.【解答】证明:由作法得OD=OC=O′D′=O′C′,CD=C′D′,在△OCD和△O′C′D′中,∴△OCD≌△O′C′D′,∴∠COD=∠C′O′D′,即∠A'O'B′=∠AOB.25.(2018•安顺)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)连接DF,由AAS证明△AFE≌△DBE,得出AF=BD,即可得出答案;(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可;【解答】(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,理由如下:∵AF=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,∴∠CAB=90°,∵AD为中线,∴AD=BC=DC,∴平行四边形ADCF是菱形;26.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用SAS证明△ADE≌△CBE即可.【解答】证明:在△AED和△CEB中,,∴△AED≌△CEB(SAS),∴∠A=∠C(全等三角形对应角相等).27.(2018•宜宾)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【分析】由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.【解答】证明:如图,∵∠1=∠2,∴∠ACB=∠ACD.在△ABC与△ADC中,,∴△ABC≌△ADC(AAS),∴CB=CD.28.(2018•铜仁市)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【解答】证明:∵AD=BC,∴AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(SSS)∴∠A=∠B,∴AE∥BF;29.(2018•温州)如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形,推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC,∴∠A=∠BEC,∵E是AB中点,∴AE=EB,∵∠AED=∠B,∴△AED≌△EBC.(2)解:∵△AED≌△EBC,∴AD=EC,∵AD∥EC,∴四边形AECD是平行四边形,∴CD=AE,∵AB=6,∴CD=AB=3.30.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.【分析】结论:DF=AE.只要证明△CDF≌△BAE即可;【解答】解:结论:DF=AE.理由:∵AB∥CD,∴∠C=∠B,∵CE=BF,∴CF=BE,∵CD=AB,∴△CDF≌△BAE,∴DF=AE.31.(2018•苏州)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC ∥EF.【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.32.(2018•嘉兴)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.【分析】只要证明Rt△ADE≌Rt△CDF,推出∠A=∠C,推出BA=BC,又AB=AC,即可推出AB=BC=AC;【解答】证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.33.(2018•滨州)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.【解答】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.34.(2018•怀化)已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【解答】证明:(1)∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.35.(2018•娄底)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.【分析】(1)首先证明四边形ABCD是平行四边形,再利用ASA证明△AOE≌△COF;(2)结论:四边形BEDF是菱形.根据邻边相等的平行四边形是菱形即可证明;【解答】(1)证明:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF.(2)解:结论:四边形BEDF是菱形,∵△AOE≌△COF,∴AE=CF,∵AD=BC,∴DE=BF,∵DE∥BF,∴四边形BEDF是平行四边形,∵OB=OD,EF⊥BD,∴EB=ED,∴四边形BEDF是菱形.36.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【解答】证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°。