15 7 方法对城市燃气管道风险管理An Approach to Risk Management of City Gas Pipeline
城镇燃气管道安全隐患与风险管控

城镇燃气管道安全隐患与风险管控当前我国燃气虽然得到了大范围的使用,但是仍然存在一定的安全风险。
燃气相关管理部门应当建立一个科学系统的燃气管道管理机制,对一些燃气安全事故进行归类整理,构建一套完善的风险评估体系。
从根本上提高燃气管道的安全性,降低管道的安全风险,确保燃气管道安全可靠。
标签:城镇燃气管道;安全隐患;风险管控引言随着我国社会的不断发展,燃气管道已经逐渐从城市蔓延到城镇,由于城镇燃气管道的安全保障不足,因此城镇燃气管道面临着众多的安全风险问题。
在另一方面,与长输管道相比,城镇燃气管道的结构相对较为复杂,安全问题受到的客观影响因素相对较多,保障城镇燃气管道的安全难度相对较大,同时,与长输管道相比,如果城镇燃气管道出现安全风险问题,则造成的后果将更为严重,因此,保障城镇燃气管道的安全十分关键。
从我国城镇燃气管道的安全现状出发,对安全评估方法进行简单介绍,在此基础上对面临的安全隐患进行深入分析,最后提出适用于我国城镇燃气管道安全隐患管控的具体方法,为保障我国燃气管道的安全奠定基础。
1当前我国城镇燃气管道管理现状1.1城镇燃气管道设计不合理性当前燃气已经在我国城镇普遍使用,燃气管道的铺设也已经遍及乡镇每个地区。
然而在铺设管道时,由于城镇总体规划、专项规划的缺失、或覆盖范围不能满足当前国家“气代煤”政策的需求,使燃气管道设计缺乏合理性,经常会与其他用途的管道发生冲突,带来了严重的管道安全风险。
例如,在铺设燃气管道时,与热力、自来水、电缆距离小于安全间距、频繁交叉等。
随着燃气使用量的不断增长,燃气负荷也在不断地增加,燃气的使用压力就会大大降低。
这时就需要继续增设燃气管线,但是由于最初铺设燃气管道时缺乏合理的设计,继续增设管线就会牺牲安全间距。
该问题出现的根本原因是因为相关设计人员,在设计时缺乏短期、中期、长期相关规划等支持性文件,导致管道设计、施工缺乏合理性,会与后期的其他工程发生冲突。
1.2城镇燃气管道施工质量较差燃气管道安全运行,是居民户、工商用户安全用气的重要保证,所以在施工中一定要确保其质量,才能保证使用的安全性。
城镇燃气行业中的安全管理及风险

3 风险评价在城镇燃气安全管理的应用城市燃气用户不断增加,且需求量也在大大增加,城市中燃气设备也变得多了起来。
但是相对而言,各燃气管网、用气安全受到了影响。
特别是燃气具有有毒、容易爆炸等特点,这让我们需要特别重视供气的安全性。
所有的这些事件都需要付出惨痛的代价,而且问题也十分普遍,所以燃气运营在每一个环节中,均和安全有关。
燃气管理部门的最重要任务是确保燃气在使用中的安全性,让安全的燃气可以利国利民。
因此,燃气管理部门一定要加强安全的管理,消除隐患。
通过加强对公司日常管理的监督,做好用户的宣传教育,能更好确保燃气在供气时的安全。
QRA-量化风险评价(Quantitative Risk Assessment),其内涵便是在特定的设施设备作业过程中,对可能潜在的安全风险实施量化分析,初步明确设施设备运行当中潜在的安全风险。
借助QRA-量化风险评价模式,可以提前对设施设备活动过程中潜在的风险进行把控,提升风险管理工作效率。
QRA-量化风险评价最早是在二十世纪四十年代所提出的,在1974年美国核电站安全管理工作当中,运用了QRA-量化风险评价模型,该评估方法得到了广泛的运用及发展。
当前,在一些工业发达的国家,如日本、美国等,几乎所有大型工程项目的规划、建设,均在项目开展前做好定量风险评价工作。
国外对方面的研究比较多,而且一直在运用。
但我们国家对这一风险控制方法研究、运用少,还在起步阶段。
3.1 量化风险评价内容3.1.1 系统明确为了确保量化风险评价工作标准性、严谨性,必须要提前对量化风险评价系统进行明确,确保改系统满足燃气安全管理要求。
结合燃气安全管理要求,明确安全风险量化内容,明确安全风险评价设备装置、评价范围、安全风险界定标准等各项内容。
3.1.2 识别危险源危险源识别是量化风险评价最为重要的内容,也是量化风险评价的基础,只有对风险源进行识别,才有可能明确潜在安1 城镇燃气行业介绍2015年以来,我国城镇燃气行业在管理网络上的年龄规模等,这是一个很大的进步,经营质量管理,技术创新,人才建设等,这是很大的进步。
如何做好城市燃气管道环境风险评估及风险管理工作

随着我国高效能源的利用与开发,燃气的使用变得越来越广泛 , 我 国各城市燃气 管道工程建设速度也在不断加快 。但在使用过程中会对燃 气管道造成破坏 ,可能导致燃气泄漏 ,并发生爆炸或燃烧事故 ,为此, 要想切实维护好城市燃气管道 ,相关部门应 当对城 市燃气管道进行环境 风险评估 ,并且依据最终的评估结果开展科学有效的风险管理 。
1 . 2 源 项 分 析
源项分 析是 指将 工程项 目划 分为几 个环 节 ,并对 各个 环节可 能 存在 的危 险来 源进 行识别 ,从而 判断 出危 险的具体 类型 ,进一 步 了 解事 故 发生 的几率 ,最终采 取相 应的风 险转 移措施 。燃气 管道 工程 中的源 项分析 的 目的是通 过评 估来正确 识别 与认知 风险 因素 ,筛选 出最 大可 信事 故及 源项 。就 城市燃 气管 道工 程建设 而言 ,主要考 虑 的 风险 因素包括 易 燃、易爆 、有毒 物质 失控 时的泄漏 以及 系统技 术 故 障等 ) 。此 外 ,当发生 燃气 管道事 故时 ,由于 燃气 泄漏 速度与 管 道压 力成 正 比,但与 事故发 生 时间成反 比 ,因此能够 依据 虚拟情 况 计算 出燃气泄 漏量 。 1 . 3 后果计算 当发 生严 重的 城市燃 气管 道事故 时 ,容 易对 周边 的居 民、建筑 及其 它事 物造 成很 大的损伤 及破 坏 ,其 中爆炸 及火 灾是环 境风 险较 为常 见 的两种类 型 ,所 以需 要对 发生爆 炸及 火灾的结 果进 行科 学的 评估 与 计算 。爆炸 与火 灾时 触及到 的灾 害范 围及火 焰范 围 由于存 在一 定 的差异 ,计算这 些数 据 时应 当依 据其 自身的 系数计 算损 害的 程度 及爆炸 的范 围。
一
1 . 1 风险识别
城市燃气管道工程咨询服务风险防范措施

城市燃气管道工程咨询服务风险防范措施下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!城市燃气管道工程咨询服务风险防范措施在如今社会中变得尤为重要。
对城市燃气管道泄漏风险控制方法的探讨

对城市燃气管道泄漏风险控制方法的探讨摘要:城镇燃气管网建设是社会基础设施建设中的一个重要组成部分,确保燃气管网系统的密闭性,对燃气管网的可能泄漏点进行科学合理地检测、定位,并及时采取有效的处理措施,对燃气管网进行风险评估,确定重点监控管道,结合压力管理与在线检测技术对燃气泄漏风险进行有效控制,将对保障国家及人民生命和财产安全,保证燃气管网的安全运行起到积极的推动作用。
关键词:燃气管道风险评估;压力管理;在线检测;泄漏风险控制1燃气管道泄漏风险控制的意义随着我国燃气行业的快速发展,从2000到2020年,天然气的需求量将由250×108m3/a增长至2000×108m3/a,天然气在一次能源中的比例由2.5%增至12%。
用气需求的增大和管道的大量敷设,带来的是庞大的安全维护工作,然而我国的燃气行业安全管理领域处于起步阶段,存在较大不足,尤其是燃气运营安全管理。
国外的燃气运营安全管理已形成了完善的体系。
以英国为例,从1812年开始正式使用人工煤气,1967年开始进行天然气转换,用了10年时间完成了全部的天然气转换工作。
作为一个有200年燃气应用历史的国家,英国燃气行业有着先进的安全管理技术和完善的安全管理体系。
在健全法律法规和强化企业员工安全意识的同时,通过不断的风险评估与检测,采取即时汇总信息措施将安全风险降至最低。
在我国,燃气泄漏的主要检测手段还停留在日常巡检上,其弊是耗费大量人力物力且无法及时判断准确的泄漏点,存在安全隐患,对于日常数据的收集、分析过程也显得过于冗长和繁琐。
伴随燃气行业迅速发展所带来的大量数据和信息,是目前安全管理体系无法应对的,因此亟待建立由粗放型管理向集约型管理转变的相应机制和管理手段及应用技术。
燃气管道泄漏风险控制系统借鉴了英国燃气行业的风险评估方法,并将其与压力管理和在线检测技术相结合,实现了与SCADA系统的有效连接。
2燃气管道泄漏风险控制系统2.1系统建立以燃气管道的风险评估为基础,建立完整的燃气管道风险档案,确定重点监控管道,例如高压力、旧管道等。
城市管道燃气的安全管理

城市管道燃气的安全管理随着城市化进程加快,城市燃气管道已成为城市居民生活中不可或缺的部分,对于城市居民来说,管道燃气的安全管理事关居民的安全和生命健康。
如何做好城市管道燃气的安全管理成为当前亟待解决的问题。
一、加强管道燃气的安全监控管道燃气的安全监控是保障城市燃气安全的重要措施之一,通过建立完善的监测系统,可以及时发现管道燃气泄漏、管道破损、压力变化等安全隐患,进行及时修理和处理。
加强城市燃气管道的监控,需要建立全面、科学、规范的监测系统,采用现代化技术手段对管道的运行情况进行实时监控,对管道燃气流量、压强、温度、湿度等参数进行检测和分析,通过预警系统及时发现管道安全隐患并进行处理。
二、加强管道燃气的运输管理管道燃气的安全运输是城市燃气安全的重点之一,管道运输过程中的安全隐患众多,需通过强化运输管理,控制管道燃气的运输过程,消除潜在的安全隐患。
加强管道燃气的运输管理,需严格遵守相关法律法规和制度要求,加强运输安全管理,确保管道燃气的安全运输,以保障居民生命财产安全。
三、加强管道燃气的维护管理管道燃气的维护管理是管道燃气安全保障的重要措施之一,要加强对管道燃气的维护管理,及时对管道进行检修、清洗、更换等,严格管道燃气设施的标准化管理。
加强管道燃气的维护管理,要制定完善的管道维护计划,并按计划进行维护,及时清理管道积存的沉淀物、垃圾等,并检查管道连接是否紧密,设备是否正常运转。
四、加强居民用气安全教育加强居民用气安全教育,提高居民的安全意识,是保障居民生命财产安全的必要措施。
加强居民用气安全教育,可通过多种渠道,如宣传广告、社区公告、安全提示等方式向居民宣传管道燃气使用的注意事项,加强居民安全知识的普及和宣传,避免居民因使用不当造成安全隐患。
五、加强燃气安全事故应急响应加强燃气安全事故应急响应,是保障城市居民生命财产安全的关键措施,应对燃气事故的能力直接影响着城市燃气的安全水平。
加强燃气安全事故应急响应工作,需要制定完善的应急预案,建立健全的应急机制,组织专业人员进行专业应急响应训练,提高应急响应的效率和准确性,及时控制和消除事故隐患。
城镇燃气管道全面检验中风险预评估方法的研究与应用

城镇燃气管道全面检验中风险预评估方法的研究与应用
随着城镇燃气供应的不断扩大和管网的不断增长,燃气管道的安全问题也日益引起人们的关注。
为了保障城市燃气管道的安全运行,必须确保管道的完整性和健康状况。
针对这一问题,燃气公司开展了全面检验工作,以检测管道的可靠性和验收管道的准确性。
然而,在全面检验的过程中,评估风险是非常重要的一步。
1.综合评估法
综合评估法是一种比较常用的方法,该方法考虑了很多因素,如管道的年限、管道的材质、接头的类型、地貌地形、人员密集程度等。
综合考虑这些因素,可以得到一个较为准确的风险预测结果。
2.熵权法
熵权法是一种基于信息熵的权重确定方法,该方法考虑因素的不确定性和关联性,以及因素的相对重要性。
通过计算每个因素的权重值,可以得到一个综合的风险评估结果。
3.层次分析法
层次分析法是一种将问题分解为多个层次,从而得出一个总体结论的方法。
该方法可以对因素进行排序,确定每个因素的重要性,并对各个因素进行加权平均,从而得到一个综合的风险评估结果。
模糊综合评判法是一种不确定性问题的评估方法,该方法可以解决不同专业领域的评估问题。
该方法将事物抽象为模糊集,通过模糊数学理论,将不确定性问题进行处理,从而得到一个较为准确的评价结果。
总之,城镇燃气管道全面检验中的风险预评估是非常重要的。
在选择评估方法时,应根据具体情况选择,并进行合理的分析和评估,以确保管道的安全运行。
城市燃气管道的安全管理

城市燃气管道的安全管理第一篇:城市燃气管道的安全管理城市燃气管道的安全管理摘要:燃气管道的安全管理对于人类社会的发展有着严重的影响,进而根据城市燃气安全管理的基本原则提出了城市燃气的安全管理措施。
力争为降低城市的突发性燃气泄露、爆炸等危险,实现城市天然气管道安全的运行目标提供保障。
关键词:燃气管道;安全管理近几年,随着城市燃气普及速度的加快,越来越多的人亲身体会到了城市燃气的便利,与此同时,城市燃气安全管理问题也日渐凸显,并受到了社会各界人士的广泛关注。
一、城市燃气不安全因素分析城市燃气管道的安全运行是一个庞大而复杂的系统工程,安全管理问题存在于城市燃气输送过程的每一个环节中,从上游采气环节、输送环节到用户使用燃气环节等都可能有安全管理风险。
(1)上游采气环节。
上游采气环节受地质环境的影响很大,例如汶川地震中,致使中石油在西南地区的油田部分气井关闭,城市燃气的日产量大大减少。
(2)燃气输送环节。
在我国当前所使用的城市燃气输送方式主要有管道燃气、液化燃气等,在这些输送方式中,管道输气方式相较于其他的方式虽然安全性较高,却并不意味着没有安全隐患,而是这种管道输气方式也同样存在着发生重大事故的的风险因素。
根据调查,发现由于管道的腐蚀、焊接等原因可能会引起管道输气发生事故。
(3)燃气接收站环节。
燃气接收站主要负责各城市燃气的接收、调压、输送等工作内容,这个环节也同样存在着安全风险,主要的安全风险是设备是否安全使用、安全管理、工作人员是否按章作业等。
(4)用户使用环节。
用户包括有工业用户和居民用户,虽然工业用户使用燃气量大,但是因其安全措施等都比较齐全,一般很少发生安全事故;反观居民用户,虽然燃气用量不是很大,但是由于他们对燃气的不正确使用,反而容易发生安全事故。
二、城市燃气安全管理的基本原则(1)符合相关规定原则。
当前,政府正日益淡化对对社会主义市场经济的过度干预,而在行政管理方面却逐步加强监督。
在生产经济方面,燃气企业在输送城市燃气各个环节都要遵循相关的法律法规及行业标准等要求,要清楚的明白具体的条款规定,把惯常做法与行业标准区分开来,此项原则即为燃气企业要遵循并严格执行各类相关要求和行业标准等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AN APPROACH TO RISK MANAGEMENT OFCITY GAS PIPELINEK.-S.PARK*,J.-H.LEE and Y.-D.JOInstitute of Gas Safety R&D,Korea Gas Safety Corporation,Gyeonggi-do,Republic of Korea A computer program has been developed with which we can assess and manage riskfor city gas pipeline in Korea.Risk factor of a facility was expressed in terms of con-sequence and frequency,and then the risk was correlated to cost.The consequence of incidents was analyzed in the case of small-scale leak,large-scale release and rupture of gas pipeline,and then correlated to cost.The consequences were evaluated in terms of fatalities, burning,damage to building and gas release.In each case,frequency was estimated in terms of major causes of consequences:excavating by third-party work,corrosion,welding defects and ground movement.Keywords:risk of city gas facility;consequence;frequency;risk correlated to cost.INTRODUCTIONAs the cities expanded and people became aware of clean energy,the consumption of gas in cities increased dra-matically from the1980s in Korea.In order to meet the increased demand,the gas pipeline network carried larger quantities of gas at higher pressures,which implies that city gas facilities,including the gas pipelines,have to be operated more carefully than ever.Operation conditions such as pressure and temperature change little for the city gas pipeline,while the design con-ditions and environmental conditions under which the pipe-lines are buried greatly influence the safety of the pipeline. Until now,a semi-quantitative approach has been applied to assess pipeline risks,depending on the engineer’s empi-rical decision,or the so-called index-based assessment (IBA).The scoring pipeline checklist(SPC)is one of the IBA methods and has been applied to most of city gas pipe-lines in Korea.The Office of Pipeline Safety(OPS)in the USA developed the‘Risk Management Program Standard’in1997and recommend that pipeline companies should use this standard(Courtney et al.,1977).The standard defines the procedure of hazard identification,risk management and risk and environment monitoring according to the prop-erties of the pipeline,and12companies agreed to assess risk by applying the standard.In this work,the risk for the city gas company facility is expressed in terms of loss.Possible incidents of gas release are elucidated by event tree analysis(ETA).The conse-quences of gas release are estimated in terms of material loss andfire damage.The frequency of incidents is esti-mated in terms of major causes of consequence:excavating by third-party work,corrosion,welding defects and ground movement.CONSEQUENCE ANALYSISRisk-based inspection of API581suggested four kinds of hole size,1/4inch(6.4mm),1inch(25.4mm)and 4inch(101.6mm),and rupture(API,2000).In this work, Fearnehough’s suggestion was selected and is listed in Table1,considering easier accessibility to historical data (Jones and Fearnehough,1986).Then consequences and frequency of the suggested scenario were estimated.ETA was conducted to define events developed with time,as shown in Figure1(Stephens,2000).Without ignition,only material loss is considered.On the other hand,if there is an ignition source,a vertical jetflame is assumed,implying consequences of fatality,injury and building damage.In each case,thefinancial loss was esti-mated in terms of material loss by gas release,supply inter-ruption,facility recovery(maintenance),injury,fatalities, and building damage.Figure1illustrates events of city gas incidents with rela-tive probabilities provided by the European Gas Pipeline Incident Data Group(EGIG)(EGIG,1993).Since gas is lighter than air,the released gas seldom forms clouds to cause aflashfire or unconfined vapor cloud explosion (UVCE).Gas Release Rate AnalysisIn applying release model,steady state is assumed,con-sidering progressed friction resistance offluid.The release*Correspondence to:Dr K.-S.Park,Institute of Gas Safety R&D,Korea Gas Safety Corporation,332-1,Daeya-dong,Shiheung-shi,Gyeonggi-do, 429-712,Republic of Korea.E-mail:kspark@kgs.or.kr4460957–5820/04/$30.00+0.00#2004Institution of Chemical EngineersTrans IChemE,Part B,November2004 Process Safety and Environmental Protection,82(B6):446–452rate of gas is dependent on gas pressure and friction resistance,and can be expressed by equation (1),assuming isentropic expansion (Jo,2001):Q p ¼p 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÀr 0P 0d 52f F L Ág þ1P eP 0 (g þ1)=g À1"#v u u t (1)wheref F ¼14½1:14À2log (1=d ) 2(2)Since most city gas pipelines operate at pressures lower than 1kg cm 22,subsonic gas release could be assumed and the rate is given by equation (3):Q h ¼C D A C ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffigr e P e2g þ1 (g þ1)=(g À1)s (3)whereC ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2À1 g þ12 (g þ1)=(g À1)P a P e 2=g Â1ÀP a P e(g À1)=g "#v u u uu u u u t (4)If the gas released through pinhole,C D is taken 0.85for subsonic release (API,2000).Fire AnalysisThe fire of gas released from pipeline can be defined as jet flame.In this work,the jet flame is treated as a point source radiator.Although the radiated heat is also a func-tion of water,carbon dioxide and soot (Lees,1996),the thermal load was estimated by the method of Hymes (1983)for simple calculation.The heat intensity from heat source is expressed by equation (5):I ¼h X g Q h H c 4p r 2(5)The thermal load is expressed by:L p ¼tI n(6)The fatality by thermal load is listed in Table 2,as has been suggested by Hymes (1983).The effect of thermal load to building is expressed by the following equation and listed in Table 3with empirical results (Bilo and Kinsman,1997):L b ¼(I ÀI x )t n(7)The 20min is referred to as the minimum time required for emergency measures,including time needed to shut down the block valve or put out the fire.Figure 2shows a typical model to evaluate the consequences to buildings.Most of the city gas pipelines in Korea pass along roads or walkways,keeping a distance of at least 1.5m from build-ings.The consequence area is expressed by:A conseq ¼r 2cosÀ1x rÀx ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi(r 2Àx 2)p (8)where r represents the consequence radius within which heat intensity effects are 15.7–26.2kW m 22.Table 1.Size of hole at gas pipeline according to the scenario suggested by Jones and Fearnegough (1986).Hole sizeAverage size Standard deviationSmall-scale leak 0–20mm 10mm 5.77mm Large-scale release 20–80mm 50mm 17.3mmRuptureDiameter of pipeDiameter of pipe—Table 2.Fatalities by thermal radiation from fire source.Burning 1%fatality 50%fatality 100%fatality Thermal load,(kW m 22)s 210–700106023003500Thermal intensity,kW m 224.3–10.714.626.135.8Figure 1.The ETA of city gas incidents.Table 3.The thermal intensity that causes buildings to catch fire.Pilot ignitionImmediate ignition Thermal load (I 214.7)*t 0.667¼118.6(I 225.6)*t 0.8¼167.6Thermal intensity in 20min ignition15.7kW m 2226.2kW m 22Trans IChemE,Part B,Process Safety and Environmental Protection ,2004,82(B6):446–452RISK MANAGEMENT OF CITY GAS PIPELINE447FREQUENCY ANALYSISAccording to the Department of Transportation (DOT)of the USA,the major causes of gas release from pipeline are excavation by third parties,corrosion and ground move-ment (Courtney et al.,1977).The most frequent incident of gas pipeline is excavation by third parties.Since the probability of pipeline damage by corrosion is time-dependent,its probability is estimated by manipulating data obtained by the direct current voltage gradient (DCVG)method.In case that inspection data are not suffi-cient,historical failure data analysis (HFDA)is applied for simple evaluation.The probability of damage by ground movement that may affect welds was analyzed by HFDA.Damage by Excavation by a Third PartyThe basic events were obtained by fault tree analysis (FTA)and are shown in Figure 3.The top event is mecha-nical damage of gas pipeline.This may occur when there is excavation around a pipeline (B 1)and protecting measures fail to work (E 2or E 3).According to Meadows and Sage (1985),the frequency of excavation in an urban area is 0.2/km .year.Seoul is a densely populated area and the fre-quency of B 1was modified based on the data from the city gas company as about 0.4days /km .year.The protecting measures may fail to work (E 2)when excavation depth exceeds the buried depth of the pipeline (B 2),and a protecting plate is not installed or fails to work (B 3).The event B 2refers to the probability of exca-vation damage to the pipeline and depends on the buried depth of the gas pipeline,as shown by equation (9)in Kief-ner et al.(1990).P ¼0:71d2(9)Corder’s (1995)study shows that the protecting plate is up to 80%effective in protecting the pipeline.Thus the prob-ability of pipeline damage is 1without the protecting plate and 0.2with the plate (Leeds,2000).Additionally,the protecting measures fail to work (E 3)in the case of illegal excavation (B 4)or failure to recognize the correct position of the pipeline (E 4).If the third-party worker is aware of the position of the pipeline,according to the City Gas Law in Korea,he /she must dig manually to protect the pipeline.Illegal excavation is where the worker neglects the guideline and digs with a mechanical excavator.The probability of pipeline damage is 0.2with position marking only,and 0.01in the presence of a pipe-line manager.The pipeline manager is a person who is in charge of safety of a certain section of pipeline and patrols it periodically,once or twice a day.The city gas pipeline must be covered by yellow or red resin tape to warn of its position,depending on the gas pressure in Korea.Additionally,pipeline operated at more than 4kg cm 22pressure must be covered by steel plate to protect it.Third-party workers fail to recognize proper position of pipeline when the warning tape is not in the right position or missing (B 5),and the position of the pipeline is not clear (E 5).The warning tape is known to be up to two-thirds as effective as the protecting plate (Corder,1995).Assuming that the rate of missing is 10%,the probability that the tape will fail to be noticed by the worker is assumed to be 0.4(¼120.9Â2/3).Figure 2.A typical illustration to estimate consequences of fire for nearby buildings.Damage to (a)humans and (b)buildings.Figure 3.The fault tree analysis of city gas incidents.Trans IChemE,Part B,Process Safety and Environmental Protection ,2004,82(B6):446–452448PARK et al.Event E 5is defined as unclear position of buried pipeline.This event occurs when the pipeline manager does not know the correct alignment of the pipeline (B 6)or when the patrol does not recognize the excavation (E 7).This case implies the following:the pipeline position is different from the drawing,leading to misreading,or changes have not updated due to inappropriate management of drawings.This event becomes negligible for a city gas company where the city gas company manages pipeline drawings very well.Event E 6occurs when the patrol fails to see the exca-vation (E 7)and the third-party worker has not reviewed the pipeline position prior to excavation work (E 8).Event E 7occurs when the pipeline manager does not patrol during excavation (B 8)or the pipeline manager fails to find out about the excavation (B 7).Event B 8is dependent on the patrol period,i.e.,frequent patrols may discover more illegal excavations.Event B 9represents the possi-bility that the patrol fails to discover illegal excavation owing to carelessness,or human error while patrolling.The possibility is assumed to be 0.01with patrol by a car.Event E 8occurs when the third-party worker fails to notify the excavation to the patrol (B 9),or does not commu-nicate with the pipeline manager prior to work beginning (E 9).This event is referred to as system error and can be negligible.Event E 9occurs when the worker has not communicated with the patrol prior to moving to the excavation site (B 11).This event occurs where the excavation worker does not know that he /she must communicate with the city gas company about the position of buried pipelines.According to the DOT statistics,about 54%of communications prior to excavation were made (Courtney et al.,1977),while this figure is 20%in Korea (Korea Gas Safety Corp.,2001).Event E 10occurs when the worker fails to find the indi-cation line-marker (B 12)or neglects it (B 13).If a worker has not communicated prior to the excavation,he /she can inquire to the city gas company.The line-mark is installed every 500m in Korea and the probability of the worker failing to recognize it is 0.4.If the line-marker is recog-nized,the probability of the workers neglecting it is 0.64(Korea Gas Safety Corp.,2001).Corrosion AnalysisThe frequency of coating defects was obtained from inspection data of the DCVG at inspected sections.Thefrequency of uninspected part is calculated by the Baysian method.Not all coating defects found by applying DCVG are susceptible repair considering the costs.Recent work shows that,with good protection,more than 99%of coating faults do not induce metal corrosion.Digging points for rehabilitation were selected by corrosion factor,including DC potential,soil resistance,pH of soil and other factors (Leeds,2000).Corrosion rate can be estimated by the size of the corrosion defect and the burial period,by assuming constant corrosion rate.As has been studied,the corrosion rate has Weibull distribution (Sheikh et al.,1990).The probability of a small-scale leak is estimated by distribution of defect depths,as shown in Figure 4.The probability is expressed as the shaded area,which is referred to the probability of larger depth of corrosion than the width of the pipeline.The distribution of defect depth is a function of time.The probability of a large-scale leak can be estimated by distribution of remaining strength of the defective part.The distribution function can be obtained by estimated distribution of corrosion defect depth,applying the ASME B31G code,and is illustrated in Figure 5.The distribution of defect depth shifts leftwards with time,as shown in the figure.The probability of a defect which causes a large-scale leak is expressed by the shaded area in Figure 5,assuming constant operating pressure (Kiefner and Vieth,1989).Welding Defects and Ground Movement Analysis The probability of damage to buried pipeline by ground movement could be expressed by equation (10)according to the historical approach:R i ¼R b i M i A i(10)where i represents the failure mode such as small-scale leak,large-scale release or rupture of the pipeline.Table 4lists city gas pipeline accidents resulting from groundTable 4.City gas pipeline accidents resulting from ground movement.Year Total Pipeline defects Welding defects Decomposition of welds1995512319962——219973—12Figure 4.The distribution curve of corrosion defectdepth.Figure 5.The distribution curve of remaining strength of defective part.Trans IChemE,Part B,Process Safety and Environmental Protection ,2004,82(B6):446–452RISK MANAGEMENT OF CITY GAS PIPELINE449movement.The table shows that about three accidents take place every year in Korea,which is equivalent to 3.6Â1025km21year21.Hovey and Framer(1993) reported it to be5.5Â1024km21year21.Ground move-ment affects underground pipeline to give large-scale release or rupture rather than a small-scale leak.The Euro-pean Gas Pipeline Incident Data Group(EGIG)reported the relative failure mode as10–20%for small-scale leaks,35–45%for large-scale releases,and35–45%for ruptures,based on incident data between1970and1998 (EGIG,1993).In this work the failure mode factor,M i,is taken as20%for small-scale leaks,45%for large-scale releases and35%for rupture.The compensation factor is expressed in equation(11)as a function of pipeline shape,welding property and buried depth:A F¼K M(F shapeþF weld)F depth(11) According to the Thomas model,pipeline shape factor, F shape is proportional to the length and diameter of the pipe-line,and is reciprocally proportional to square of pipeline thickness:F shape¼Ldt2(12)The welding factor can be expressed as:F weld¼50Â1:75N C DtþN LL3:14t(13)Effect of ground movement on pipeline damage becomes larger near surface.The factor of buried depth is summa-rized in Table5.ESTIMATION OF LOSS Conventionally,the risk of a facility can be expressed by consequence and frequency and can be correlated in terms of cost as:Risk($=year)¼consequence($=event)Âfrequency(event=year)(14) Loss($=year)¼risk Total¼X1S¼1C SÂF S(15)The total risk is expressed by the summation of each risk estimated by each scenario.In this study,the total cost of incident is expressed in equation(16).The cost of repair, gas-supply interruption and material(gas)loss refers to the case of no ignition and the cost of damage to human and building refers to the case of ignition.The costs described are samples and further modification is recom-mended considering environmental factors:C total¼C repairþC interrþC materialþC humanþC const(16)Table5.Samples of cost of repair.Diameter(mm)Small-scaleleakLarge-scalereleasePipelinerupture ,10025003300500 100–300300037506600 .300330042008400 Unit:US$.Figure6.Cost estimation in terms of ground movement,excavation and corrosion.Trans IChemE,Part B,Process Safety and Environmental Protection,2004,82(B6):446–452 450PARK et al.The cost of pipeline repair depends on diameter of pipeline and condition of road,and summarized in Table5.Cost of gas-supply interruption depends on time of release and repair.The cost of lost gas depends on release rate and time.Release time refers to time to recognize release,to move to the release point, and to shut down the block valve.The recognition time of small-scale leak is assumed to be2h and that of large-scale release and pipeline rupture is assumed to be10min.The time for reacting and shutting down the pipeline is assumed to be30min and5min in each case.If a remote controlled valve is installed,the reaction time is assumed to be zero.The cost of human damage was estimated by the Hoffman method,considering age distribution.The cost of heavy,medium and light injury is assumed to be50, 10and1%of the cost of fatality.The cost of building damage is estimated by the summation of construction and interior repair costs.As has been described,risk can be expressed in terms of consequence and frequency.A software program,PRAS (Pipeline Risk Assessment System),has been developed by a collaboration of the Korea Gas Safety Corp and the Kukdong City Gas to easily analyzerisk.Figure7.Risk estimation in terms of cost with and without inspection.(a)Inspection is desirable considering total cost.(b)Inspection is not desirable considering total cost.Trans IChemE,Part B,Process Safety and Environmental Protection,2004,82(B6):446–452RISK MANAGEMENT OF CITY GAS PIPELINE451Figure6shows a sample of cost estimation in a certain section of pipeline.The risk for the pipeline is expressed in terms of cost.In this section,the cost of excavation by third parties is the highest and must be reduced to satisfy the criteria of the gas company.Figure7shows a cost comparison of inspected and unin-spected pipelines.Costs are estimated with varying the number of inspections by the DCVG,flame ionization detection and gas-tight tests.Without inspection,the risk or the cost increases linearly with time.On the other hand,inspection reduces risk remarkably.In Figure7(a), risk in terms of cost of uninspected pipeline is2Â107 Korean Won km21(equivalent to ca.17,000US$km21), while that of inspected pipeline is8Â106Won km21 (ca.6700US$km21).In Figure7(b),however,inspection does not reduce the total cost considering the cost of inspection.CONCLUSIONSIn this study,an approach has been made to express the risk for a gas pipeline in terms of cost.Total cost consists of cost of repair,supply interruption,material loss and damage to humans and buildings.The PRAS program can also express the loss of a city gas facility by accident in terms of cost,which helps the city gas company optimize its resources.Although the program gives a brief idea on how to correlate risk to cost,it has to be revised further to provide more reliable results such as considering view factor in calculating thermal load.NOMENCLATUREA opening area of ruptured pipelineA conseq consequence area onfireA i consequence area onfireC const reconstruction cost of an incidentC D release coefficientC human compensation cost of an incidentC interr interruption cost of an incidentC material material(gas)cost of an incidentC repair repair cost of an incidentC total total cost of an incidentd diameter of pipelined ref reference depthf F Fanning friction coefficientH c heat of combustion(’50:000kJ=kg for methane)I x heat intensity at infinite time of exposure tofirel length of corrosive defectL length of pipelineL p thermal load in equation(6)M Folius factorM i likelihood depending on failure mode,0.2for small-scale leak,0.45for large-scale release,and0.35for rupturen exponent[ 1.33for equation for equation(6)]Nc number of welding along axial directionN L number of welding along longitude directionP0operating pressureP a atmospheric pressureP e gas pressure at crack of pipelineP f remaining strengthQ release rate of gasQ h heat rariation from jetflamer distance from heat source for equation(5)R i probability of failure by ground movement R bibasic probability of failuret time of exposure tofire for equations(8)and(9)t thickness of pipeline for equation(12)x distance from center of jetflame in equation(8)X g radiation rate( 0.2)Greek Symbolsg specific heat capacity(’1:036for methane)1roughness of pipeline surfacer0gas densityh effectiveness factor(’0:35)d yield minimum yield strengthREFERENCESAPI,2000,Risk Based Inspection Base Resource Document,API Publi-cation581,1st edn(American Petroleum Institute).Bilo,M.and Kinsman,P.R.,1997,Thermal radiation criteria used in pipeline risk assessment,Pipes Pipelines Int,November–December, pp17–25.Corder,I.,1995,The application of risk techniques to the design and operation of pipelines,Inst Mech Eng Conf Trans,4:113–126. Courtney,W.J.,Kalkbrenner,D.and Yie,G.,1977,Effectiveness of pro-grams for prevention of damage to pipelines by outside forces.Final Report prepared for US Department of Transportation,DOT/MTS/ OPSO-77/12.EGIG,1993,Gas pipeline incidents report1970–1992,European Gas Pipeline Incident Data Group.Hovey,D.J.and Framer,E.J.,1993,Pipeline accident,failure probability determined from historical data,Oil Gas J,12:104–107.Hymes,I.,1983,The physiological and pathological effects of thermal radiation,systems reliability directorate,Report SRD,R275,Culcheth, Warrington.Jo,Y.D.and Ahn,B.J.,2003,A simple model for the release rate of hazar-dous gas from a hole on high pressure pipeline,J Hazardous Materials, 97(1–3):31–46.Jones,D.A.and Fearnehough,G.D.,1986,Natural gas transmission by pipelines,1986,in5th International Symposium on Loss Prevention and Safety.Kiefner,J.F.and Vieth,P.H.,1989,A modified criterion for evaluation the remaining strength of corroded pipe,Technical Report for the Pipeline Corrosion Supervisory Committee of Pipeline Research Committee of American Gas Association,Project PR3-805.Kiefner,J.F.,Vieth,P.H.,Orban,J.E.and Feder,P.I.,1990,Methods for Prioritizing Pipeline Maintenance and Rehabilitation(American Gas Association).Korea Gas Safety Corp.,2001,Development of pipeline risk assessment techniques(I),Technical Report KGS2001-099,p68.Leeds,J.M.,2000,Modified analysis method helps coating fault,pipe assessment,J Pipeline Gas Ind,83(3);/ archive/archive_00-03/00-03_modified-leeds.htmLees,P.L.H.,1996,Loss Prevention in the Process Industries,2nd edn (Butterworth,London).Meadows,R.C.,and Sage,J.W.,1985,One call system can limit third party damage exposure,Pipe Line Industry,October,63(4):58,60,63. Sheikh,A.K.,Boah,J.K.and Hansen,D.A.,1990,Statistical modeling of pitting corrosion and pipeline reliability,Corrosion,46(3):190–196. Stephens,M.J.,2000,A model for sizing high consequence areas associated with natural gas pipelines,GRI Report no.GRI-00/ 0189.ACKNOWLEDGEMENTThe author gives thanks to the KISTEP(Korea Institute of Science and Technology for Evaluation and Planning)for support of this study with NRL(National Research Laboratory)Program.The manuscript was received13March2004and accepted for publi-cation after revision4October2004.Trans IChemE,Part B,Process Safety and Environmental Protection,2004,82(B6):446–452 452PARK et al.。