2021年高中数学 第一章 集合与函数概念 第1节 集合(3)教案 新人教A版必修1

合集下载

高中数学第一章集合与函数概念2 1函数的概念3教案新人教版必修1

高中数学第一章集合与函数概念2 1函数的概念3教案新人教版必修1

函数的概念(一)教学目标1.知识与技能(1)理解函数的概念;体会随着数学的发展,函数的概念不断被精炼、深化、丰富.(2)初步了解函数的定义域、值域、对应法则的含义.2.过程与方法(1)回顾初中阶段函数的定义,通过实例深化函数的定义.(2)通过实例感知函数的定义域、值域,对应法则是构成函数的三要素,将抽象的概念通过实例具体化.3.情感、态度与价值观在函数概念深化的过程中,体会数学形成和发展的一般规律;由函数所揭示的因果关系,培养学生的辨证思想.(二)教学重点与难点重点:理解函数的概念;难点:理解函数符号y = f (x)的含义.(三)教学方法回顾旧知,通过分析探究实例,深化函数的概念;体会函数符号的含义. 在自我探索、合作交流中理解函数的概念;尝试自学辅导法.(四)教学过程h = 130t– 5t2.示例2:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空沿问题. 下图中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.示例 3 国际上常用恩格尔系数②反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高,下表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.“八五”计划以来我国城镇居民恩格尔系数变化情况时间(年) 199119921993199419951996城镇居民家庭恩格尔系数(%) 53.852.950.149.949.948.6时199199199200200师生合作交流揭示三个示例中的自变量以及自变量的变化范围,自变量与因变量之间的对应关系.究规律,形成并深化函数的概念.3.函数的表达式.课后作业 1.2第一课时习案 独立完成巩固知识备选例题例1 函数y = f (x )表示( C ) A .y 等于f 与x 的乘积 B .f (x )一定是解析式 C .y 是x 的函数D .对于不同的x ,y 值也不同 例2 下列四种说法中,不正确的是( B )A .函数值域中每一个数都有定义域中的一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域只含有一个元素,则值域也只含有一个元素例3 已知f (x ) = x 2+ 4x + 5,则f (2) = 2.7 ,f (–1) = 2 .例4 已知f (x ) = x 2 (x ∈R ),表明的“对应关系”是 平方 ,它是 R → R 的函数. 例5 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如右图示,那么水瓶的形状是下图中的( B )〖解 析〗取水深2H h ,注水量V ′>2V,即水深为一半时,实际注水量大小水瓶总水量的一半,A 中V ′<2V ,C 、D 中V ′=2V,故排除A 、C 、D.。

高中数学 第一章 集合与函数概念 1.2.1 函数的概念教案 新人教A版必修1(2021年最新整理)

高中数学 第一章 集合与函数概念 1.2.1 函数的概念教案 新人教A版必修1(2021年最新整理)

高中数学第一章集合与函数概念 1.2.1 函数的概念教案新人教A版必修1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章集合与函数概念1.2.1 函数的概念教案新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章集合与函数概念 1.2.1 函数的概念教案新人教A版必修1的全部内容。

1.2.1 函数的概念1。

知识与技能(1)通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型;(2)用集合与对应的语言刻画函数;理解函数的三要素及函数符号f(x)的含义;(3)会求一些简单函数的定义域及值域。

2.过程与方法让学生通过合作探究,经历函数概念的形成过程,渗透归纳推理的数学思想,培养学生的抽象概括能力,体会数学形成和发展的一般规律,强化“形”与“数”结合并相互转化的数学思想。

3。

情感、态度与价值观(1)树立“数学源于实践,又服务于实践”的数学应用意识;(2)渗透数学思想,强化学生参与意识,培养学生严谨的学习态度;同时感受数学的抽象性和简洁美,激发学生学习数学的热情。

重点:体会函数是描述变量之间的依赖关系的重要数学模型,理解函数的概念。

难点:函数概念及函数符号y=f(x)的理解.(1)重点的突破:以学生熟知的函数及初中函数的定义为切入点,引导学生结合具体实例,分组交流讨论,归纳概括出实例的共同特点,在此基础上,结合集合知识,利用对应的观点形成函数概念的教学,整个过程通过学生的“观察→分析→比较→归纳→概括”,最终由特殊到一般,由具体到抽象,从感性认识上升到理性认识,在培养学生抽象概括能力的同时重难点也得以突破。

高中数学 第一章第01课时集合的概念教师专用教案 新人教A版

高中数学 第一章第01课时集合的概念教师专用教案 新人教A版

第一教时集合的概念目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。

过程:一、引言:(实例)用到过的“正数的集合”、“负数的集合”如:2x-1>3⇒x>2所有大于2的实数组成的集合称为这个不等式的解集。

如:几何中,圆是到定点的距离等于定长的点的集合。

如:自然数的集合 0,1,2,3,……如:高一(5)全体同学组成的集合。

结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

指出:“集合”如点、直线、平面一样是不定义概念。

二、集合的表示: { … } 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}常用数集及其记法:1.非负整数集(即自然数集)记作:N2.正整数集N*或 N+3.整数集 Z4.有理数集Q5.实数集R集合的三要素: 1。

元素的确定性; 2。

元素的互异性; 3。

元素的无序性(例子略)三、关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作 a∈A ,相反,a不属于集A 记作 a∉A (或a∈A)例:见P4—5中例四、练习 P5略五、集合的表示方法:列举法与描述法1.列举法:把集合中的元素一一列举出来。

例:由方程x2-1=0的所有解组成的集合可表示为{-1,1}例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9} 2.描述法:用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例{不是直角三角形的三角形}再见P6例②数学式子描述法:例不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}或{x:x-3>2}再见P6例六、集合的分类1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合例题略3.空集不含任何元素的集合Φ七、用图形表示集合 P6略八、练习 P6小结:概念、符号、分类、表示法九、作业 P7习题1.1。

高中数学 第一章 集合与函数概念 1.2 集合间的基本关系教案 新人教A版必修1(2021年整理)

高中数学 第一章 集合与函数概念 1.2 集合间的基本关系教案 新人教A版必修1(2021年整理)

1。

2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn 图表达集合间的关系;(4)了解与空集的含义。

教学重点:子集与空集的概念;用Venn 图表达集合间的关系。

教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2) Q ;(3)—1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。

记作: 读作:A 包含于(is contained in)B ,或B 包含(c ontains )A当集合A 不包含于集合B 时,记作A B用Venn 图表示两个集合间的“包含"关系2)(A B B A⊇⊆或)(A B B A ⊇⊆或(二) 集合与集合之间的 “相等”关系;,则中的元素是一样的,因此即练习结论:任何一个集合是它本身的子集(三) 真子集的概念若集合,存在元素,则称集合A 是集合B 的真子集(proper subset ).记作:A B (或B A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:规定:空集是任何集合的子集,是任何非空集合的真子集。

(五) 结论:错误! 错误!,且,则(六) 例题(1)写出集合{a ,b }的所有的子集,并指出其中哪些是它的真子集.(2)化简集合A={x |x —3〉2},B={x |x 5},并表示A 、B 的关系;(七) 课堂练习(八) 归纳小结,强化思想两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;(九)作业布置 1、 书面作业:习题1.1 第5题A B B A ⊆⊆且B A =B A =⎩⎨⎧⊆⊆⇔=A B B A B A B A ⊆A x B x∉∈且∅A A ⊆B A ⊆C B ⊆C A ⊆≥2、 提高作业:错误! 已知集合,≥,且满足,求实数的取值范围。

高中数学 第一章 集合与函数概念 1.3.2 奇偶性教案 新人教A版必修1(2021年最新整理)

高中数学 第一章 集合与函数概念 1.3.2 奇偶性教案 新人教A版必修1(2021年最新整理)

高中数学第一章集合与函数概念 1.3.2 奇偶性教案新人教A版必修1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章集合与函数概念1.3.2 奇偶性教案新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章集合与函数概念 1.3.2 奇偶性教案新人教A版必修1的全部内容。

1.3.2 奇偶性1。

知识与技能(1)能从数和形两个角度认识函数的奇偶性;(2)能判断一些简单函数的奇偶性。

2。

过程与方法经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力.3.情感、态度与价值观(1)培养学生观察、归纳、抽象的能力,同时渗透数形结合的数学思想;(2)通过对函数奇偶性的研究,培养学生对数学美的体验、乐于求索的精神,形成科学、严谨的研究态度.重点:函数奇偶性的概念和几何意义。

难点:奇偶性概念的数学化提炼过程.重难点的突破:函数的奇偶性实质就是函数图象的对称性,为了更有效地突出重点、突破难点,按照学生的认知规律,采用由特殊到一般、从具体到抽象的教学策略,先让学生观察一组图形(关于原点对称或y轴对称),从中寻找它们的共性.由于“数”与“形”有着密切的联系,为了便于从数值角度研究图象的对称性,可提示学生图形是由点组成的,找出其间的关系后,建立奇(偶)函数的概念,最后,通过例题和练习进一步加深学生对定义的理解.让学生在“观察—归纳—检验-应用”的学习过程中,掌握知识的同时培养数形结合的意识.函数奇偶性的进一步学习1。

函数的奇偶性一般有以下几种判断方法:(1)定义法:若函数的定义域不关于原点对称,则可判断函数既不是奇函数又不是偶函数;若函数的定义域关于原点对称,再判断f(—x)是否等于±f(x)或判断f(-x)±f(x)是否等于0或判断(f(x)≠0)是否等于±1。

高中数学 第一章 集合与函数概念 第3节 函数的基本性质(1)教案 新人教A版必修1

高中数学 第一章 集合与函数概念 第3节 函数的基本性质(1)教案 新人教A版必修1

第一章第三节函数的基本性质第一课时教学目标1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.重点难点教学重点:函数单调性的概念、判断及证明.教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性.教学方法教师启发讲授,学生探究学习.教学手段计算机、投影仪.教学过程创设情境,引入课题课前布置任务:(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜举办大型国际体育赛事.下图是北京市某年8月8日一天24小时内气温随时间变化的曲线图.图1引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.【设计意图】由生活情境引入新课,激发兴趣.归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中时同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数y =x +2,y =-x +2,y =x 2,y =1x的图象,并且观察自变量变化时,函数值有什么变化规律?图2预案:(1)函数y =x +2在整个定义域内y 随x 的增大而增大;函数y =-x +2在整个定义域内y 随x 的增大而减小.(2)函数y =x 2在[0,+∞)上y 随x 的增大而增大,在(-∞,0)上y 随x 的增大而减小.(3)函数y =1x在(0,+∞)上y 随x 的增大而减小,在(-∞,0)上y 随x 的增大而减小. 引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能根据自己的理解说说什么是增函数、减函数?预案:如果函数f (x )在某个区间上随自变量x 的增大,y 也越来越大,我们说函数f (x )在该区间上为增函数;如果函数f (x )在某个区间上随自变量x 的增大,y 越来越小,我们说函数f (x )在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观.描述性的认识.【设计意图】 从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.探究规律,理性认识问题1:下图是函数y =x +2x(x >0)的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?图3学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.【设计意图】 使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明f (x )=x 2在[0,+∞)为增函数?预案:(1)在给定区间内取两个数,例如1和2,因为12<22,所以f (x )=x 2在[0,+∞)为增函数.(2)仿(1),取很多组验证均满足,所以f (x )=x 2在[0,+∞)为增函数.(3)任取x 1,x 2∈[0,+∞),且x 1<x 2,因为x 21-x 22=(x 1+x 2)(x 1-x 2)<0,即x 21<x 22,所以f (x )=x 2在[0,+∞)为增函数.对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x 1,x 2.【设计意图】 把对单调性的认识由感性上升到理性的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好了铺垫.3.抽象思维,形成概念问题:你能用准确的数学符号语言表述出增函数的定义吗?师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念判断题:①已知f (x )=1x,因为f (-1)<f (2),所以函数f (x )是增函数. ②若函数f (x )满足f (2)<f (3),则函数f (x )在区间[2,3]上为增函数.③若函数f (x )在区间(1,2]和(2,3)上均为增函数,则函数f (x )在区间(1,3)上为增函数.④因为函数f (x )=1x 在区间(-∞,0)和(0,+∞)上都是减函数,所以f (x )=1x在(-∞,0)∪(0,+∞)上是减函数.通过判断题,强调三点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在A ∪B 上是增(或减)函数.思考:如何说明一个函数在某个区间上不是单调函数?【设计意图】 让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.掌握证法,适当延展【例】 证明函数f (x )=x +2x在(2,+∞)上是增函数. 1.分析解决问题针对学生可能出现的问题,组织学生讨论、交流.证明:任取x 1,x 2∈(2,+∞),且x 1<x 2, 设元f (x 1)-f (x 2)=(x 1+2x 1)-(x 2+2x 2)求差 =(x 1-x 2)+(2x 1-2x 2) 变形=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)(1-2x 1x 2)=(x 1-x 2)x 1x 2-2x 1x 2, ∵2<x 1<x 2, 断号∴x 1-x 2<0,x 1x 2>2,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )=x +2x在(2,+∞)上是增函数.定论 2.归纳解题步骤引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.练习:证明函数f (x )=x 在[0,+∞)上是增函数.问题:要证明函数f (x )在区间(a ,b )上是增函数,除了用定义来证,如果可以证得对任意的x 1,x 2∈(a ,b ),且x 1≠x 2有f x 2-f x 1x 2-x 1>0可以吗? 引导学生分析这种叙述与定义的等价性,让学生尝试用这种等价形式证明函数f (x )=x 在[0,+∞)上是增函数.【设计意图】 初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法和思维方法:数形结合,等价转化,类比等.2.作业书面作业:课本习题1.3 A 组第1,2,3题.课后探究:(1)证明:函数f (x )在区间(a ,b )上是增函数的充要条件是对任意的x ,x +h ∈(a ,b ),且h ≠0有f x +h -f x h>0. (2)研究函数y =x +1x(x >0)的单调性,并结合描点法画出函数的草图. 《函数的单调性》教学设计说明一、教学内容的分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其他性质提供了方法依据.对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.二、教学目标的确定根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.三、教学方法和教学手段的选择本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.四、教学过程的设计为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段,让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.(3)可对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.。

高中数学第一章集合与函数概念1.3函数的基本性质教案新人教A版必修1(2021学年)

高中数学第一章集合与函数概念1.3函数的基本性质教案新人教A版必修1(2021学年)

福建省福清市海口镇高中数学第一章集合与函数概念1.3 函数的基本性质教案新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省福清市海口镇高中数学第一章集合与函数概念1.3 函数的基本性质教案新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省福清市海口镇高中数学第一章集合与函数概念 1.3 函数的基本性质教案新人教A 版必修1的全部内容。

1。

3 函数的基本性质1.3。

1 单调性与最大(小)值第一课时函数的单调性三维目标定向〖知识与技能〗(1)结合具体函数,理解函数的单调性及其几何意义;(2)能利用函数图象理解和研究函数的单调性;(3)能利用定义判定一些简单函数的单调性。

〖过程与方法〗借助二次函数体验单调性概念的形成过程,领会数形结合的数学思想,学会运用概念进行判断推理,养成细心观察,严谨论证的良好思维习惯。

〖情感、态度与价值观〗渗透由具体到抽象的认识,通过合作交流,培养学生反思学习、善于思考的习惯.教学重难点〖重点〗函数单调性的概念。

〖难点〗熟练运用定义判断、证明函数的单调性。

教学过程设计一、问题情境设疑引例:画出一次函数x)(和二次函数2f=xf=的图象.(几何画板)x(x)问题:以上两个图象有什么特征?—-“上升”、“下降”上升:随着x 的增大,相应的f (x )也增大;下降:随着x 的增大,相应的f (x)减小。

二、核心内容整合1、函数的单调性的概念:问题:如何用数学语言描述“随着x 的增大,相应的f (x )也增大”?——学生探究。

增函数:如果对于定义域I 内某个区间D 上的任意两个自变量的值x1 , x 2,当x 1 〈 x 2时,都有f (x1) 〈 f (x 2),那么就说函数f (x )在区间D 上是增函数.学生类比得出减函数:如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1 , x2,当x1 < x2时,都有f (x 1) 〉 f (x2),那么就说函数f (x)在区间D上是减函数。

高中数学第一章集合与函数概念1.1集合1.1.3第2课时补集及集合运算的综合应用课件新人教A版必修1

高中数学第一章集合与函数概念1.1集合1.1.3第2课时补集及集合运算的综合应用课件新人教A版必修1

2.已知集合A={x|x<a},B={x|x<-1,或x> 0},若A∩(∁RB)=∅,求实数a的取值范围.
解:∵B={x|x<-1,或x>0},
∴∁RB={x|-1≤x≤0}. 因而要使A∩(∁RB)=∅,结合数轴分析(如下图), 可得a≤-1.
1.全集与补集的互相依存关系 (1)全集并非是包罗万象,含有任何元素的集合,它是对于 研究问题而言的一个相对概念,它仅含有所研究问题中涉及的 所有元素,如研究整数,Z就是全集,研究方程的实数解,R 就是全集.因此,全集因研究问题而异. (2)补集是集合之间的一种运算.求集合A的补集的前提是 A是全集U的子集,随着所选全集的不同,得到的补集也是不 同的,因此,它们是互相依存、不可分割的两个概念.
解:∁RB={x|x≤1 或 x≥2}≠∅. ∵A ∁RB,∴分 A=∅和 A≠∅两种情况讨论. (1)若 A=∅,此时有 2a-2≥a,∴a≥2; (2)若 A≠∅,则有2aa≤-1,2<a, 或22aa- -22<≥a2,, ∴a≤1. 综上所述,a≤1 或 a≥2.
解答本题的关键是利用 A ∁RB,对 A=∅与 A≠∅进行分类 讨论,转化为等价不等式(组)求解,同时要注意区域端点的问 题.
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/5/25
最新中小学教学课件
25
谢谢欣赏!
求集合补集的基本方法及处理技巧
(1)基本方法:定义法.
(2)两种处理技巧:
①当集合用列举法表示时,直接套用定义或借助 Venn图求解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高中数学第一章集合与函数概念第1节集合(3)教案新人教
A版必修1
教学分析
课本从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.
值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.
三维目标
1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.
2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.
重点难点
教学重点:交集与并集,全集与补集的概念.
教学难点:理解交集与并集的概念,以及符号之间的区别与联系.
课时安排
2课时
教学过程
第1课时
作者:尚大志
导入新课
思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.
思路2.请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗?
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};
(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.
引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.
思路3.(1)①如图1甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B 有什么关系?
图1
②观察集合A与B与集合C={1,2,3,4}之间的关系.
学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的基本运算.
(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合
C.
②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A 与B中的所有元素组成的集合C.
推进新课
新知探究
提出问题
(1)通过上述问题中集合A与B与集合C之间的关系,类比实数的加法运算,你发现了什么?
(2)用文字语言来叙述上述问题中,集合A与B与集合C之间的关系.
(3)用数学符号来叙述上述问题中,集合A与B与集合C之间的关系.
(4)试用Venn图表示A∪B=C.
(5)请给出集合的并集定义.
(6)求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?
请同学们考察下面的问题,集合A与B与集合C之间有什么关系?
①A={2,4,6,8,10},B={3,5,8,12},C={8};
②A={x|x是国兴中学xx年9月入学的高一年级女同学},B={x|x是国兴中学xx年9月入学的高一年级男同学},C={x|x是国兴中学xx年9月入学的高一年级同学}.
(7)类比集合的并集,请给出集合的交集定义?并分别用三种不同的语言形式来表达.
活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来表示.
讨论结果:(1)集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.
(2)所有属于集合A或属于集合B的元素组成了集合C.
(3)C={x|x∈A,或x∈B}.
(4)如图1所示.
(5)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1所示.
(6)集合之间还可以求它们的公共元素组成集合的运算,这种运算叫求集合的交集,记作A∩B,读作A交B.①A∩B=C,②A∪B=C.
(7)一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.
其含义用符号表示为:
A∩B={x|x∈A,且x∈B}.
用Venn图表示,如图2所示.
图2
应用示例
例1 A={x|x<5},B={x|x>0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?
活动:学生先思考集合中元素的特征,明确集合中的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果寻求就易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.
解:因A={x|x<5},B={x|x>0},C={x|x≥10},在数轴上表示,如图3所示,所以A∩B ={x|0<x<5},B∪C={x|x>0},A∩B∩C=∅.
图3
点评:本题主要考查集合的交集和并集.求集合的并集和交集时,①明确集合中的元素;变式训练
1.设A ={x |x =2n ,n ∈N *},B ={x |x =2n ,n ∈N },求A ∩B ,A ∪B .
解:对任意m ∈A ,则有m =2n =2·2n -1,n ∈N *,因n ∈N *,故n -1∈N ,有2n -1∈N ,
那么m ∈B ,即对任意m ∈A 有m ∈B ,所以A ⊆B .
而10∈B 但10∉A ,即A B ,那么A ∩B =A ,A ∪B =B .
2.求满足{1,2}∪B ={1,2,3}的集合B 的个数.
解:满足{1,2}∪B ={1,2,3}的集合B 一定含有元素3,B ={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B .
3.设A ={-4,2,a -1,a 2},B ={9,a -5,1-a },已知A ∩B ={9},求a .
解:因A ∩B ={9},则9∈A ,a -1=9或a 2=9.
∴a =10或a =±3.
当a =10时,a -5=5,1-a =-9;
当a =3时,a -1=2不合题意;
当a =-3时,a -1=-4不合题意.
故a =10.此时A ={-4,2,9,100},B ={9,5,-9},满足A ∩B ={9}.
4.设集合A ={x |2x +1<3},B ={x |-3<x <2},则A ∩B 等于 … ( )
A .{x |-3<x <1}
B .{x |1<x <2}
C .{x |x >-3}
D .{x |x <1} 解析:集合A ={x |2x +1<3}={x |x <1},观察或由数轴得A ∩B ={x |-3<x <1}. 答案:A
222求a 的值.
活动:明确集合A ,B 中的元素,教师和学生共同探讨满足A ∩B =B 的集合A ,B 的关系.集
合A 是方程x 2+4x =0的解组成的集合,可以发现,B ⊆A ,通过分类讨论集合B 是否为空集
来求a 的值.利用集合的表示法来认识集合A ,B 均是方程的解集,通过画Venn 图发现集合A ,B 的关系,从数轴上分析求得a 的值.
解:由题意得A ={-4,0}.∵A ∩B =B ,∴B ⊆A .∴B =∅或B ≠∅.
当B =∅时,即关于x 的方程x 2+2(a +1)x +a 2-1=0无实数解,
则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.
当B ≠∅时,若集合B 仅含有一个元素,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,
此时,B ={x |x 2=0}={0}⊆A ,即a =-1符合题意.
若集合B 含有两个元素,则这两个元素是-4,0,
即关于x 的方程x 2+2(a +1)x +a 2-1=0的解是-4,0.
则有⎩
⎪⎨⎪⎧
-4+0=-2a +1,-4×0=a 2-1. 解得a =1,则a =1符合题意.
综上所得,a =1或a ≤-1.
图4
课本本节练习,1,2,3.
【补充练习】
课堂小结
本节主要学习了:
1.集合的交集和并集.
2.通常借助于数轴或Venn图来求交集和并集.
作业
1.课外思考:对于集合的基本运算,你能得出哪些运算规律?
2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.
3.书面作业:课本习题1.1,A组,6,7,8.
设计感想
由于本节课内容比较容易接受,也是历年高考的必考内容之一,所以在教学设计上注重加强练习和拓展课本内容.设计中通过借助于数轴或Venn图写出集合运算的结果,这是突破本节教学难点的有效方法.。

相关文档
最新文档