幂函数指数函数对数函数复习课教学设计
幂函数指数函数对数函数复习课教学设计

3)当 时,
当 时,
4)在定义域上单调
3)当 时,
当 时,
4)在定义域上单调
二、典型例题
题型一比较下列各数的大小
1、 ,
2、 , ,
3、 , ,
题型二利用函数单调性求字母取值范围
1、已知 ,求实数 的取值范围
2、已知 ,则实数 的取值范围
题型三求下列函数的值域
1、 ,
2、
三、课堂小结:
《幂函数指数函数对数函数复习课》教学设计
教学内容分析
基本初等函数(指数函数、对数函数、幂函数)是高中数学的基础,是刻画现实世界变化规律的重要模型。根据我所任教的学生的实际情况,本节课是学生在已掌握了指数函数、对数函数、幂函数的图像与性质的基础上,运用所学函数知识来解决一些实际问题,培养学生数学应用意识。
教学目标
(一)知识目标
1.掌握指数函数、对数函数、幂函数的概念、图象和性质,并应用性质解决简单问题。
2.通过指数函数、对数函数、幂函数的图象和性质,渗透数形结合、分类讨论、等价转化等思想。
(二)能力目标
1.培养学生观察分析、抽象概括能力和归纳总结能力。
2.培养学生数形结合、辩证思维和动手实践的能力。
3.培养学生应用函数思想方法解决实际问题的能力。
(三)价值目标
1.培养学生积极学习、刻苦钻研的学习毅力等良好的意志品质。
2.培养学生观察分析、抽象概括能力、数形结合、归纳总结能力和实践与探索能力。
3.学会理论联系实际,学以致用,在解决实际问题的过程中,逐步理解、认识函数思想方法,了解数学的应用。
教学重点:指数函数、对数函数、幂函数的图象和性质。
当 时,在 上,函数单调;
当 时,在 上,函数单调;
必修一第三章指数函数与对数函数复习教案

必修一第三章指数函数与对数函数复习教案一、教学目标1.了解指数函数和对数函数的定义及性质;2.掌握指数函数和对数函数的图像和性质;3.熟练运用指数函数和对数函数解决实际问题。
二、教学重点1.指数函数的定义与性质;2.对数函数的定义与性质;3.指数函数和对数函数的图像和性质。
三、教学内容1.指数函数1.指数函数的定义:$y=a^x$,其中a>0且a≠1,x是任意实数。
2.指数函数图像:-当0<a<1时,函数图像呈递减趋势,经过点(0,1);-当a>1时,函数图像呈递增趋势,经过点(0,1);3.指数函数的性质:-函数图像经过点(0,1);-当x=0时,y=1;-指数函数在0<a<1时,取值范围为(0,+∞),在a>1时,取值范围为(0,+∞);-函数图像在经过点(0,1)时,若a>1,则过(1,a);若0<a<1,则过(a,1);-当x→+∞时,y→+∞;当x→-∞时,y→0。
2.对数函数1. 对数函数的定义:$y=log_{a}{x}$,其中 a > 0 且a≠1,x > 0。
2.对数函数图像:-当0<a<1时,函数图像呈递减趋势,过点(1,0);-当a>1时,函数图像呈递增趋势,过点(1,0)。
3.对数函数的性质:-函数图像过点(1,0);-对数函数取值范围为(-∞,+∞);-函数图像在过点(1,0)时,若a>1,则过点(a,1);若0<a<1,则过点(1/a,1);-当x→+∞时,y→+∞;当x→0+时,y→-∞。
四、教学方法1.教师讲解结合示例引入指数函数和对数函数的定义及性质;2.布置题目,让学生互相讨论,并与学生一起解答问题;3.利用电子白板展示指数函数和对数函数的图像,让学生观察特点。
五、教学过程1.引入指数函数和对数函数的定义及性质,与学生一起讨论和提问;2.利用示例分别介绍指数函数和对数函数的图像和性质,解释每个关键点的含义;3.设计问题让学生自主思考并与同学讨论解决;4.利用电子白板展示指数函数和对数函数的图像,与学生进行互动讨论。
幂函数、指数函数和对数函数·对数及其运算法则·教案

教案:幂函数、指数函数和对数函数·对数及其运算法则第一章:幂函数1.1 幂函数的定义与性质定义:幂函数是一种形式的函数,可以表示为f(x) = x^a,其中a 是实数。
性质:幂函数的图像是一条曲线,随着a 的不同取值,曲线的形状也会发生变化。
当a > 1 时,函数在x > 0 的区间上是增函数;当0 < a < 1 时,函数在x > 0 的区间上是减函数;当a = 0 时,函数是常数函数;当a < 0 时,函数在x >0 的区间上是增函数。
1.2 幂函数的图像与性质图像:通过绘制不同a 值的幂函数图像,观察曲线的形状和变化趋势。
性质:当a > 0 时,函数在x = 0 时无定义,但在x > 0 的区间上有定义;当a < 0 时,函数在x = 0 时无定义,但在x < 0 的区间上有定义;当a 为正整数时,函数在x > 0 的区间上是增函数;当a 为负整数时,函数在x < 0 的区间上是增函数。
第二章:指数函数2.1 指数函数的定义与性质定义:指数函数是一种形式的函数,可以表示为f(x) = a^x,其中a 是正实数。
性质:指数函数的图像是一条曲线,随着x 的增大,曲线的值也会增大。
指数函数的图像经过点(0, 1),并且随着a 的增大,曲线的斜率也会增大。
2.2 指数函数的图像与性质图像:通过绘制不同a 值的指数函数图像,观察曲线的形状和变化趋势。
性质:当a > 1 时,函数在整个实数域上是增函数;当0 < a < 1 时,函数在整个实数域上是减函数;指数函数的图像具有反射性,即f(x) = a^x 和f(x) = a^(-x) 的图像关于y 轴对称。
第三章:对数函数3.1 对数函数的定义与性质定义:对数函数是一种形式的函数,可以表示为f(x) = log_a(x),其中a 是正实数。
性质:对数函数的图像是一条曲线,随着x 的增大,曲线的值也会增大。
高中数学函数复习课教案

高中数学函数复习课教案
一、知识回顾
1. 函数的概念:函数的定义、自变量、因变量、定义域、值域等
2. 函数的表示形式:映射关系、解析式、图象、表格等
3. 基本初等函数:一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等
4. 函数的运算:函数的加减乘除、复合函数、反函数等
二、重点难点解析
1. 函数的复合:给出一个函数和一个变量,求复合函数值
2. 反函数的求法:通过函数的图象求反函数
三、能力训练
1. 练习一:已知函数$f(x)=2x-1$,求$f(f(x))$的解析式。
2. 练习二:已知函数$f(x)=3x+2$,求反函数$f^{-1}(x)$的解析式。
3. 练习三:函数$y=\sqrt{x}$的图象如何与$x$轴交点构成的图形?
4. 练习四:如果$f(x)=\frac{1}{x}$,求$f(2)+f(3)$的值。
四、拓展应用
1. 通过函数的图象,求函数的性质和特点。
2. 通过函数的解析式,构建实际问题,进行解题。
五、任务布置
1. 复习函数的基本概念和运算法则。
2. 练习函数的复合运算和反函数的求法。
3. 拓展思维,思考函数在实际问题中的应用及解法。
六、板书设计
1. 函数的定义和表示形式;
2. 函数的运算规律;
3. 函数的图象和性质。
七、教学反馈
1. 对学生的表现进行评价,引导学生查漏补缺;
2. 学生提出教学反馈意见,以便教师调整教学方式。
幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案一、教学目标知识与技能:1. 理解幂函数、指数函数的定义和性质。
2. 掌握对数的定义和性质,了解对数函数的图像和应用。
3. 掌握对数的运算法则,并能应用于实际问题中。
过程与方法:1. 通过实例和图形,培养学生的观察和分析能力,提高学生对幂函数、指数函数和对数函数的理解。
2. 通过小组讨论和探究活动,培养学生的合作和沟通能力,提高学生对对数运算法则的掌握。
情感态度与价值观:1. 培养学生对数学的兴趣和好奇心,激发学生对幂函数、指数函数和对数函数的学习热情。
2. 培养学生的耐心和细心,提高学生在解决实际问题中的数学应用能力。
二、教学内容第一节:幂函数1. 幂函数的定义和性质2. 幂函数的图像和应用第二节:指数函数1. 指数函数的定义和性质2. 指数函数的图像和应用第三节:对数函数1. 对数的定义和性质2. 对数函数的图像和应用第四节:对数的运算法则1. 对数的加法和减法法则2. 对数的乘法和除法法则3. 对数的幂法则三、教学重点与难点重点:1. 幂函数、指数函数和对数函数的定义和性质。
2. 对数的运算法则。
难点:1. 对数函数的图像和应用。
2. 对数的幂法则的理解和应用。
四、教学方法与手段教学方法:1. 讲授法:讲解幂函数、指数函数和对数函数的定义和性质。
2. 案例分析法:分析实际问题中的应用,展示对数函数的图像。
3. 小组讨论法:分组讨论对数的运算法则,促进学生之间的交流和合作。
教学手段:1. 多媒体课件:展示幂函数、指数函数和对数函数的图像和实例。
2. 练习题:提供练习题,帮助学生巩固所学知识和技能。
1. 课堂参与度:观察学生在课堂中的积极参与和提问情况,评价学生的学习兴趣和主动性。
2. 练习题完成情况:检查学生完成练习题的正确率和解题思路,评价学生的理解和应用能力。
3. 小组讨论报告:评估学生在小组讨论中的表现和合作能力,以及对数运算法则的理解和应用。
幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案第一章:幂函数1.1 幂函数的定义与性质定义:幂函数是一种形式的函数,可以表示为y = x^a,其中x是变量,a是常数。
性质:幂函数的图像是一条曲线,取决于指数a的值。
当a为正整数时,函数在x轴的正半轴上递增。
当a为负整数时,函数在x轴的正半轴上递减。
当a为分数时,函数的图像呈现出特殊的变化规律。
1.2 幂函数的图像与性质绘制幂函数的图像,观察不同指数a对图像形状的影响。
分析幂函数的单调性、奇偶性、渐近线等性质。
第二章:指数函数2.1 指数函数的定义与性质定义:指数函数是一种形式的函数,可以表示为y = a^x,其中a是底数,x是变量。
性质:指数函数的图像是一条递增的曲线,底数a大于1时,曲线向上弯曲;底数a 小于1时,曲线向下弯曲。
指数函数的渐近线是y轴。
指数函数的值域是正实数集。
2.2 指数函数的应用分析指数函数的增长速度,比较不同底数的指数函数。
应用指数函数解决实际问题,如人口增长、放射性衰变等。
第三章:对数函数3.1 对数函数的定义与性质定义:对数函数是一种形式的函数,可以表示为y = log_a(x),其中a是底数,x是变量。
性质:对数函数的图像是一条递减的曲线,底数a大于1时,曲线向下弯曲;底数a 小于1时,曲线向上弯曲。
对数函数的渐近线是x轴。
对数函数的定义域是正实数集。
3.2 对数函数的应用分析对数函数的单调性,比较不同底数的对数函数。
应用对数函数解决实际问题,如测量、数据压缩等。
第四章:对数运算法则4.1 对数的基本性质回顾对数的定义,巩固对数函数的基本性质。
学习对数的换底公式、对数的反对数等基本性质。
4.2 对数的运算法则学习对数的加法、减法、乘法、除法等运算法则。
运用对数的运算法则进行复杂对数表达式的化简和求值。
第五章:对数函数的应用5.1 对数函数在实际问题中的应用分析实际问题,识别可以用对数函数表示的关系。
应用对数函数解决实际问题,如人口增长、放射性衰变等。
幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案教学目标:1. 理解幂函数、指数函数和对数函数的定义及性质。
2. 掌握对数的定义及其运算法则。
3. 能够运用幂函数、指数函数和对数函数解决实际问题。
教学内容:第一章:幂函数1.1 幂函数的定义与性质1.2 幂函数图像的特点1.3 幂函数的应用第二章:指数函数2.1 指数函数的定义与性质2.2 指数函数图像的特点2.3 指数函数的应用第三章:对数函数3.1 对数的定义与性质3.2 对数函数图像的特点3.3 对数函数的应用第四章:对数及其运算法则4.1 对数的换底公式4.2 对数的运算法则4.3 对数函数的图像与性质第五章:实际问题中的应用5.1 利用幂函数、指数函数和对数函数解决实际问题5.2 练习题及解答教学方法:1. 采用讲授法,讲解幂函数、指数函数和对数函数的定义、性质及应用。
2. 利用数形结合法,引导学生观察函数图像,加深对函数性质的理解。
3. 通过例题和实际问题,培养学生的应用能力。
教学评估:1. 课堂提问,检查学生对幂函数、指数函数和对数函数的理解程度。
2. 布置课后作业,巩固所学知识。
3. 进行单元测试,评估学生的掌握情况。
教学资源:1. 教学PPT,展示幂函数、指数函数和对数函数的图像及性质。
2. 教材和辅导书,提供相关知识点的详细讲解和例题。
3. 网络资源,查阅实际问题中的应用案例。
教学时间安排:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:1课时幂函数、指数函数和对数函数·对数及其运算法则·教案(续)教学内容:第六章:指数与对数的互化6.1 指数与对数的关系6.2 指数与对数的互化方法6.3 指数与对数互化在实际问题中的应用第七章:对数函数的图像与性质7.1 对数函数的图像特点7.2 对数函数的性质7.3 对数函数图像与性质的应用第八章:对数函数在实际问题中的应用8.1 对数函数解决生长、衰减问题8.2 对数函数在几何问题中的应用8.3 对数函数在其他领域的应用第九章:对数方程与对数不等式9.1 对数方程的解法9.2 对数不等式的解法9.3 对数方程与对数不等式的应用第十章:总结与拓展10.1 幂函数、指数函数和对数函数的总结10.2 数学思想与方法的拓展10.3 课后习题与思考题教学方法:1. 采用讲授法,讲解指数与对数的关系、互化方法及其应用。
幂函数指数函数和对数函数单元教学设计

活动意图说明: 点评 考察定义,只有满足函数解析式右边的系数为1,底数为自变量x ,指数为常数这三个条件,才是幂函数.如:y =3x 2,y =(2x )3,y =⎝⎛⎭⎫x 24都不是幂函数. 环节二:教师活动2知识点二 五个幂函数的图象与性质 1.在同一平面直角坐标系内函数(1)y =x ;(2)12y x =;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.2.五个幂函数的性质y =x y =x 2 y =x 3 12y x =y =x -1定义域 R R R [0,+∞) {x |x ≠0} 值域 R [0,+∞) R [0,+∞) {y |y ≠0} 奇偶性奇偶 奇非奇非偶奇 单调性增在[0,+∞) 上增, 在(-∞,0] 上减增增在(0,+∞) 上减, 在(-∞,0) 上减知识点三 一般幂函数的图象特征一般幂函数特征:(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸; (3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数;(4)幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称; (5)在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列. 学生活动学生把自己的作图结果展示并比较,讨论,校对。
教师最后可以用课件动态展示结果。
并得出正确的图像。
学生先相互讨论,如有不足老师再提醒或补充。
活动意图说明学生通过作图从熟悉的图像到陌生的图像进一步学会做图和看图,学会图像这个工具进一步研究性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《幂函数指数函数对数函数复习课》教学设计
教学内容分析
基本初等函数(指数函数、对数函数、幂函数)是高中数学的基础,是刻画现实世界变化规律的重要模型。
根据我所任教的学生的实际情况,本节课是学生在已掌握了指数函数、对数函数、幂函数的图像与性质的基础上,运用所学函数知识来解决一些实际问题,培养学生数学应用意识。
学生学习情况分析
学生通过本章学习,已经了解指数函数、对数函数等的实际背景,理解指数函数、对数函数、幂函数的概念与基本性质,了解五种幂函数,体会建立和研究一个函数的基本过程和方法,同时会用它们解决一些实际问题。
课标要求
掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质. 掌握指数函数、对数函数、幂函数性质的简单应用。
教学目标
(一)知识目标
1. 掌握指数函数、对数函数、幂函数的概念、图象和性质,并应用性质解决简单问题。
2. 通过指数函数、对数函数、幂函数的图象和性质,渗透数形结合、分类讨论、等价转化等思想。
(二)能力目标
1.培养学生观察分析、抽象概括能力和归纳总结能力。
2.培养学生数形结合、辩证思维和动手实践的能力。
3.培养学生应用函数思想方法解决实际问题的能力。
(三)价值目标
1.培养学生积极学习、刻苦钻研的学习毅力等良好的意志品质。
2.培养学生观察分析、抽象概括能力、数形结合、归纳总结能力和实践与探索能力。
3.学会理论联系实际,学以致用,在解决实际问题的过程中,逐步理解、认识函数思想方法,了解数学的应用。
教学重点:指数函数、对数函数、幂函数的图象和性质。
教学难点:指数函数、对数函数、幂函数性质的简单应用。
教学方法:启发发现法,分小组讨论展示。
教学过程:
一、基础知识梳理:
1、三类函数的定义:
幂函数
指数函数
对数函数
2、函数性质:
1)幂函数α
x y =(α为常数,R ∈α)
幂函数的定义域、值域、奇偶性要结合具体的α值来看,但无论α取何值,幂函数的图像一定过定点(1,1)
当0<α时,在),0(+∞上,函数单调 ;
当10<<α时,在),0(+∞上,函数单调 ; 当1>α时,在),0(+∞上,函数单调 ; 其它象限的单调性可以利用具体函数的奇偶性得到。
2)指数函数x a y =(1,0≠>a a )
3)对数函数x y a log =(1,0≠>a a )
二、典型例题
题型一 比较下列各数的大小
1、53
7.1=a ,5
37.0=b
2、32)21(=a ,32)51(=b ,31)2
1(=a 3、2log 31=a ,3log 2=b ,3.0)
21(=c
题型二 利用函数单调性求字母取值范围
1、已知2
121)3()1(a a -<+,求实数a 的取值范围
2、已知)3(log )1(log 2121a a ->+,则实数a 的取值范围
题型三 求下列函数的值域
1、)23(log 2
31x x y --=,]3,0[∈x
2、223)2
1(x x y --= 三、课堂小结:
知识方面
思想方法
四、作业。