人教A版高中数学必修四河北省容城学教案角的概念的推广任意角
人教A版高中数学必修四学教案集三角函数角的概念的推广,

第四章三角函数第一教时教材:角的概念的推广目的:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
过程:一、提出课题:“三角函数”回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。
相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。
二、角的概念的推广1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”2.讲解:“旋转”形成角(P4)突出“旋转”注意:“顶点”“始边”“终边”“始边”往往合于x轴正半轴3.“正角”与“负角”——这是由旋转的方向所决定的。
记法:角α或α∠可以简记成α4.由于用“旋转”定义角之后,角的范围大大地扩大了。
5.1︒角有正负之分如:α=210︒β=-150︒γ=-660︒2︒角可以任意大实例:体操动作:旋转2周(360︒×2=720︒)3周(360︒×3=1080︒)3︒还有零角一条射线,没有旋转三、关于“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)例如:30︒390︒-330︒是第Ⅰ象限角300︒-60︒是第Ⅳ象限角585︒1180︒是第Ⅲ象限角-2000︒是第Ⅱ象限角等四、关于终边相同的角1.观察:390︒,-330︒角,它们的终边都与30︒角的终边相同2.终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和 390︒=30︒+360︒ )1(=k-330︒=30︒-360︒ )1(-=k 30︒=30︒+0×360︒ )0(=k1470︒=30︒+4×360︒ )4(=k-1770︒=30︒-5×360︒ )5(-=k3.所有与α终边相同的角连同α在内可以构成一个集合{}Z k k S ∈⋅+==,360| αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和4.例一 (P5 略)五、小结: 1︒ 角的概念的推广用“旋转”定义角 角的范围的扩大2︒“象限角”与“终边相同的角”六、作业: P7 练习1、2、3、4习题1.4 1。
最新高教版数学教案——角的概念的推广:任意角的概念

角的概念的推广:任意角的概念.教学目标:1.使学生理解任意角的概念,掌握角的加减运算及其几何意义.2.学会在平面内建立适当的坐标系来讨论任意角的方法。
3.培养学生观察、思考研究问题的能力.4.向学生渗透数形结合的思想.教学重点:任意角的概念。
教学难点:正、负角的定义及角的运算.教具和教学手段:三角板、教学方法:启发点拨、讲练结合.教学过程:一、引入新课在初中我们已经接触过角,同学们想想你日常生活中所接触的哪些图形是角?再联想一下角的定义是什么?它有几部分组成?谁能在黑板上画出一个角.教师结合同学的回答及作图给予补充和总结:角可以看成是由一定点引两条射线所构成的图形,或看作射线绕其端点旋转而成的图形,当时不考虑旋转方向,不论从旋转到还是从旋转到,它们旋转的绝对量都是一样的,而且旋转的绝对量不超过一个周角,但在我们生活中往往还会遇到其他的角,例如在体操中有“转体”720°(即转体2周),转体3周这样的动作名称,又如用钳子拧螺丝,可以顺时针方向拧,也可以逆时针方向拧,这就是说角度可以不限于0°~360°范围,而且还可以有两种方向的角,由此,我们应该对角的概念加以推广.(板书课题:角的概念的推广.)二、新课(一)角的概念在平面内,一条射线绕着它的端点旋转有两个相反的转向:顺时针方向和逆时针方向.习惯上,我们把按逆时针方向旋转而成的角叫做正角;按顺时针方向旋转而成的角叫做负角.当射线没有旋转时,我们也把它看成一个角,叫做零角。
在引入以上这些角之后,对于角的表示方法与初中有哪些不同呢?请大家注意.角的画法:用带箭头的弧来表示角的旋转的方向和旋转的绝对量.角的边:旋转前的射线叫做角的始边;旋转终止时的射线叫做角的终边.记法:射线绕端点旋转到位置所成的角记作∠;射线绕点旋转到位置所成的角记作∠(如图2)(∠与∠是不同的角)教师请两位同学板演450°和—630°,其余同学在练习本上画(教师巡视,纠正).(二)角的计算在初中平面几何中我们对于角的计算,就是把角的绝对旋转量相加或相减,但现在考虑了旋转的方向,引入了正、负角之后,角的加减法怎样运算呢?用图形怎样表示呢?让我们以90°-30°为例来说明这件事(教师可先让同学思考,尝试后,最后教师纠正或板演).∠=∠+∠=90°+(-30°)=60°在完成以上作图(图3)后,教师引导同学总结下列步骤:1.射线作90°旋转到位置,形成∠=90°,2.射线再作-30°旋转到位置,形成∠=-30°,3.∠即为所求,有∠=90°+(-30°)=60°.教师强调:任意两角的加减法都看成代数和,按如上步骤完成作图,此法对多个角的和也适用,即有各角和的旋转量等于各角旋转量的和.为及时巩固以上内容,教师可布置以下练习,若时间不够,可只让同学口述作图步骤:(1)30°+45°;(2)90°+(-60°);(3)60°-180°;(4)-60°+270°三、例题讲解例1写出与下列各角终边相同的角的集合,在坐标轴上画出其图形.(1)45°; (2)135°; (3)240°; (4)330°.此题不难,可让学生说解题思路,教师板演(1)、(2)(略)例2画出终边在坐标轴轴上的角及其对应的角度.四、课文小结1.(本节是概念课,教师应帮助引导学生系统归纳本节的有关概念,理清脉络,可画出本节的知识结构图)知识结构图:2.与角始边、终边相同的角的集合为:{|=+·360°,},强调以下几点:(1)是任意整数; (2)是任意角(包括正角,负角,零角);(3)与·360°之间用“+”号连接,—·360°应看成+(—)·360°;(4)终边相同的角不一定相等,有无数多个,它们相差360°的整数倍.3.关于象限角的概念,可对几下概念引导学生加以辩别:(1)“0°~90°间的角”,“第一象限的角”,“锐角”,“小于90°的角”.(2)“第一或第二象限的角”和“终边在轴上方的角”.五、课外作业1.问答题:锐角是第一象限的角吗?第一象限的角是否一定为锐角?再分别就直角、钝角来回答这两个问题.2.作图题:已知角的顶点与直角坐标系的原点重合,始边与轴的正半轴重合,作出下列各角,并指出它们是哪个象限的角.(1)420°; (2)-75°; (3)855°; (4)-510°.六、板书设计七、课后小记:1.个别同学对“与角始边终边相同的角的集合”写不准确,或不规范2.少数同学对于负角的变形有困难.。
人教A版高中数学必修四河北省容城学教案任意角的三角函数(1)

1.2.1任意角的三角函数(1)教学目的:知识目标:1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一)。
能力目标:(1)理解并掌握任意角的三角函数的定义;(2)树立映射观点,正确理解三角函数是以实数为自变量的函数;(3)通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。
德育目标:(1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。
公式一是本小节的另一个重点。
教学难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来.教学过程:一、复习引入:初中锐角的三角函数是如何定义的?在Rt△ABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦、余弦、正切依次为,,a b a sinA cosA tanAc c b===.角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
二、讲解新课:1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P(除了原点)的坐标为(,)x y,它与原点的距离为(0)r r==>,那么(1)比值yr叫做α的正弦,记作sinα,即sinyrα=;(2)比值xr叫做α的余弦,记作cosα,即cosxrα=;(3)比值yx叫做α的正切,记作tanα,即tanyxα=;(4)比值xy叫做α的余切,记作cotα,即cotxyα=;说明:①α的始边与x轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y在α的终边上的位置的改变而改变大小;③当()2k k Zπαπ=+∈时,α的终边在y轴上,终边上任意一点的横坐标x都等于0,所以tanyxα=无意义;同理当()k k Zαπ=∈时,yx=αcot无意义;④除以上两种情况外,对于确定的值α,比值yr、xr、yx、xy分别是一个确定的实数,正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
新课标人教A版高中数学(必修4)全册教案

1.1.1 角的概念的推广-任意角教学目标知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念.过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.情感与态度目标提高学生的推理能力;2.培养学生应用意识.教学重点任意角概念的理解;区间角的集合的书写.教学难点终边相同角的集合的表示;区间角的集合的书写.教学过程一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.二、新课:1.角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例1.如图⑴⑵中的角分别属于第几象限角?正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角顶点AO例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°;⑵ 120°;⑶ 240°;⑷ 300°;⑸ 420°;⑹ 480°;答:分别为1、2、3、4、1、2象限角.3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α + k·360 °,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.注意:⑴ k∈Z⑵α是任一角;⑶终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷角α + k·720 °与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640 °;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}.例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材P2-P5; ②教材P5练习第1-5题; ③教材P.9习题1.1第1、2、3题思考题:已知α角是第三象限角,则2α,2α各是第几象限角?解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z) 故2α是第一、二象限或终边在y 轴的非负半轴上的角.正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角又k ·180°+90°<2α<k ·180°+135°(k ∈Z) .当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) ,此时,2α属于第二象限角当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) ,此时,2α属于第四象限角因此2α属于第二或第四象限角.1.1.2弧度制(一) 教学目标 知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数. 过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程 一、复习角度制:初中所学的角度制是怎样规定角的度量的?规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角 所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质:①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=r r③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. r l4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad01745.01801≈=︒π;rad n n 180π=︒.②将弧度化为角度:2360p =?;180p =?;1801()57.305718rad p¢=盎??;180()nn p =?.5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度7.弧长公式ll r ra a=??弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度.例2.把rad53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(.例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-.解: (1),672319πππ+= 而67π是第三象限的角,193p\是第三象限角.(2)315316,666p p pp -=-+\-是第二象限角.ORl.,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R,∴扇形的圆心角大小为R l rad, ∴扇形面积lRR R l S 21212=⋅=. 证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π.可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.22121:R lR S α==扇形面积公式7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别. 8.课后作业: ①阅读教材P6 –P8;②教材P9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.4-1.2.1任意角的三角函数(三) 教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式;2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。
[新课标人教教案]A版数学必修4全套教案
![[新课标人教教案]A版数学必修4全套教案](https://img.taocdn.com/s3/m/f0f2bddc4693daef5ef73d82.png)
第一章 三角函数1.1任意角和弧度制1.1.1任意角一、 教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境:“转体720︒,逆(顺)时针旋转”,角有大于360︒角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图 1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。
人教A版高中数学必修4精选优课教案1.1任意角和弧度制

《任意角》教学设计教学目标1、知识与技能目标理解任意角的概念(包括正角、负角、零角) 与象限角的概念.2、过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.3、情感与态度目标提高学生的推理能力;培养学生应用意识.教学重点任意角概念的理解;区间角的集合的书写.教学难点终边相同角的集合的表示;区间角的集合的书写.教学方法数学实验数学实验是计算机技术和数学、软件引入教学后出现的新事物。
数学实验的目的是提高学生学习数学的积极性,提高学生对数学的应用意识并培养学生用所学的数学知识和计算机技术去认识问题和解决实际问题的能力。
不同于传统的数学学习方式,它强调以学生动手为主的数学学习方式。
教学过程课前:结合学案,学生进行预习课上:一、介绍数学实验的过程二、利用多媒体展示本节课需要解决的五大问题1、对比角的两种定义,阐述各自的特点?2、为什么要对角的概念进行推广?3、如何把角的概念推广到任意角?4、在直角坐标系中,所有的角都是象限角吗?锐角与第一象限的角是什么逻辑关系?钝角与第二象限的角是什么逻辑关系?直角与轴线角是什么逻辑关系?第二象限的角一定比第一象限的角大吗?5、终边相同的角有无数个,在0°~360°范围内与已知角β终边相同的角有几个?所有与角α终边相同的角,连同角α在内所构成的集合S可以怎样表示?三、学生们分组利用计算机软件进行实验,结合昨天的预习寻求五大问题的答案四、学生们上台展示自己的研究成果五、教师点评并作总结,得到五大问题的答案六、例题讲解七、课堂练习八、小结九、布置作业课后:教学反思。
人教版高中数学必修4学案 1.1 角的概念的推广

角的始边与,那么,角的终边(端点除外)在第几象限,我们
说这个角是第几象限角,若角的终边落在坐标轴上,则称这个角为.
思考:(1)下列角分别是第几象限角?
这当中一些角有什么共同特征?
(2)具有相同终边的角彼此之间有什么关系?你能写出与 角终边相同的角的集合吗?
1角的概念的推广
授课
时间
第1周星期3第节
课型
新授课
主备课人
数学教研组
学习
目标
1.了解任意角的概念;正确理解正角、零角、负角的概念;
2.正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示.
重点难点
正确理解终边相同的角的概念学习来自过程与方法
自主学习
1.角的定义:
2.正、负的概念:按方向旋转所成的角叫正角,按方向旋转所成的角叫负角,如果一条射线,我们称它形成了一个零角.
【答】(1).(2).
4.终边相同的角:一般地,与角 终边相同的角的集合:
注意:(1) ;(2) 是任意角;(3)终边相同的角不一定相等,但相等的角终边一定相同。终边相同的角有无限多个,它们相差 的整数倍。
一、角的概念
例1.(1)钟表经过10分钟,时针和分针分别转了多少度?
(2)若将钟表拨慢10分钟,则时针和分针分别转了多少度?
达标训练
1.下列命题正确的是()
A、第一象限角一定不是负角B.小于 的角一定是锐角
C钝角一定是第二象限角D第一象限角一定是锐角
2.试求出与下列各角终边相同的最小正角和最大负角:
(1)-550°(2) (3) (4)
作业
布置
习题1-2 2,3
1.1.任意角-人教A版必修四教案

1.1 任意角-人教A版必修四教案一、教学目标1.了解角的概念、度数、弧度制。
2.学会用角度和弧度来表示任意角,并能够在不同单位之间进行转换。
3.掌握圆周角的性质和计算方法。
二、教学重点1.角的概念、度数、弧度制。
2.圆周角的定义和计算方法。
三、教学难点1.角度和弧度的相互转换。
2.圆周角和弧角的关系。
四、教学方法讲授法、示范法、探究法五、教学过程1. 角的概念及度数1.引入概念:什么是角?角有哪些特点?2.教师讲解角的度数概念及符号。
3.通过掌握正、负角的概念,进一步了解角的度数。
4.练习:求解几组角的度数。
2. 角的弧度制1.引入概念:什么是弧度制?2.讲解弧度制概念及与角度的换算公式。
3.探究:用弧度制表示任意角。
4.练习:进行角度和弧度的相互转换。
3. 圆周角的定义1.引入概念:什么是圆周角?2.讲解圆周角的定义。
3.通过练习探究:圆周角的性质。
4. 圆周角的计算方法1.讲解圆周角的计算方法。
2.讲解圆周角的补角和余角。
3.练习:利用公式计算圆周角。
5. 任意角的计算1.引入概念:什么是任意角?2.讲解任意角的概念。
3.通过练习探究:任意角的性质和计算方法。
4.练习:利用公式计算任意角。
六、教学反思本节课我采用了讲授法、示范法和探究法相结合的方式进行教学,让学生通过解题和练习的方式来掌握角度和弧度的概念,并进行相互转换和计算。
在教学过程中,学生积极参与,上课气氛活跃,但也发现部分学生对弧度概念和圆周角的理解还不够深入,下一节课需要进一步加强复习和练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 角的概念的推广-任意角
教学目标
知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念.
过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.
情感与态度目标
提高学生的推理能力;2.培养学生应用意识.
教学重点
任意角概念的理解;区间角的集合的书写.
教学难点
终边相同角的集合的表示;区间角的集合的书写.
教学过程
一、引入:
1.回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角.
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
二、新课:
1.角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:
③角的分类:
④注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.
例1.如图⑴⑵中的角分别属于第几象限角?
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形
负角:按顺时针方向旋转形成的角
边
顶
点 A
例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.
⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面 终边相同的角的表示:
所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360 ° ,
k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z ⑵ α是任一角;
⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍;
⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角.
B x
x
3
例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.
⑴-120°;⑵640 °;⑶-950°12'.
答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;
例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}.
例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:
③象限角;
④终边相同的角的表示法. 5.课后作业:
①阅读教材P2-P5; ②教材P5练习第1-5题; ③教材P.9习题1.1第1、2、3题
思考题:已知α角是第三象限角,则2α,2α
各是第几象限角? 解:α 角属于第三象限,
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形负角:按顺时针方向旋转形
∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)
因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z) 故2α是第一、二象限或终边在y 轴的非负半轴上的角.
又k ·180°+90°<2α
<k ·180°+135°(k ∈Z) .
当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α
<n ·360°+135°(n ∈Z) ,
此时,2α
属于第二象限角
当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α
<n ·360°+315°(n ∈Z) ,
此时,2α
属于第四象限角
因此2α
属于第二或第四象限角.。