2020高考文科数学(人教版)一轮复习讲义:第11讲 幂函数含答案

合集下载

2020高考人教版文科数学总复习讲义:函数课时1含答案

2020高考人教版文科数学总复习讲义:函数课时1含答案

函数及其表示1.了解构成函数的要素,会求一些简单函数的定义域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).知识梳理1.函数的概念(1)给定两个非空的数集A和B,如果按照某个对应关系f,对于A中任何一个数x,在B中都有唯一确定的数y与之对应,那么称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A,此时的x叫做自变量,集合A叫做函数的定义域,集合C={f(x)|x∈A}叫做函数的值域且C B.(2)函数有三个要素:定义域、值域和对应关系.2.函数的表示列表法:用表格的形式表示两个变量之间函数关系的方法,称为列表法.图象法:用图象把两个变量间的函数关系表示出来的方法,称为图象法.解析法:一个函数的对应关系可以用自变量的解析式表示出来,这种方法称为解析法.3.分段函数分段函数的定义:在定义域的不同部分,有不同的对应法则的函数称为分段函数.4.映射的概念如果两个非空集合A与B之间存在着对应关系f,而且对于A中的每一个元素,B 中总有唯一确定的元素y与之对应,就称这种对应是从集合A到集合B的映射.1.函数是一种特殊的映射,映射不一定是函数.从A到B的映射,A,B若不是数集,则这个映射便不是函数.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.热身练习1.考察下列图象:其中能够作为函数图象的是 A ,B ,C .抓住函数的定义进行判断.对每一个x ,都有唯一确定的y 与之对应才构成函数关系,表现在图象上为在定义域范围内与x 轴垂直的直线与图象有且只有1个交点,由此可知,A ,B ,C 都能作为函数图象,D 不能作为函数图象.2.(经典真题)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a = -2 .由f (x )=ax 3-2x 可得f (-1)=-a +2=4,所以a =-2.3.下列函数中,f (x )与g (x )表示同一函数是(D)A .f (x )=(x -1)0,g (x )=1B .f (x )=x ,g (x )=x 2C .f (x )=x 2,g (x )=(x +1)2D .f (x )=|x |,g (x )=x 2A 的定义域不同,B 的值域不同,C 的对应法则不同,只有D 的定义域、值域、对应法则都相同.4.设f (x )=⎩⎨⎧ 1-x ,x ≥0,2x ,x <0,则f [f (-2)]=(C) A .-1 B.14C.12D.32因为-2<0,所以f (-2)=2-2=14>0, 所以f (14)=1-14=1-12=12. 5.已知函数满足f (x -1)=x 2-3,则f (2)的值为(B)A .-2B .6C .1D .0(方法一)令x -1=t ,则x =t +1,所以f (t )=(t +1)2-3,所以f (2)=(2+1)2-3=6.(方法二)f (x -1)=(x -1)2+2(x -1)-2,所以f (x )=x 2+2x -2,所以f (2)=22+2×2-2=6.(方法三)令x -1=2,则x =3,所以f (2)=32-3=6.求函数的定义域(1)函数f (x )=11-x+lg(1+x )的定义域是 A .(-∞,-1) B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)(2)设函数f (x )=ln 1+x 1-x,则函数g (x )=f (x 2)+f (1x )的定义域为____________.(1)要使f (x )有意义,则⎩⎪⎨⎪⎧1-x ≠0,x +1>0, 解得x >-1且x ≠1.故函数f (x )的定义域为(-1,1)∪(1,+∞).(2)要使f (x )=ln 1+x 1-x 有意义,则1+x 1-x>0, 所以-1<x <1.则函数g (x )=f (x 2)+f (1x)的定义域为 ⎩⎨⎧ -1<x 2<1,-1<1x <1,所以x ∈(-2,-1)∪(1,2).(1)C (2)(-2,-1)∪(1,2)求定义域的基本方法:①若函数是由一些基本初等函数通过四则运算而得到的,则它的定义域是各基本函数定义域的交集;②已知函数f (x )的定义域为D ,则f [g (x )]的定义域为满足g (x )∈D 的x 的取值范围.1.(1)函数f (x )=log 2(x 2+2x -3)的定义域是(D)A .[-3,1]B .(-3,1)C .(-∞,-3]∪[1,+∞)D .(-∞,-3)∪(1,+∞)(2)(2018·重庆模拟)已知函数f (x )的定义域为[-1,2],则函数y =f (x )+f (-x )的定义域是(A)A .[-1,1]B .[-2,2]C .[-1,2]D .(-2,1](1)要使函数有意义,只需x 2+2x -3>0,即(x +3)(x -1)>0,解得x <-3或x >1.故函数的定义域为(-∞,-3)∪(1,+∞).(2)因为f (x )的定义域为[-1,2],要使函数y =f (x )+f (-x )有意义,则⎩⎪⎨⎪⎧-1≤x ≤2,-1≤-x ≤2,解得-1≤x ≤1.所以y =f (x )+f (-x )的定义域为[-1,1].求函数的解析式(1)(2016·浙江卷)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =________,b =________.(2)已知f (1x +1)=x 2+1x 2+3x,则f (x )=___________________________. (1)先利用函数解析式将f (x )-f (a )=(x -b )(x -a )2的左边表示出来,再化简右边,然后利用多项式相等的条件求解即可.因为f (x )=x 3+3x 2+1,则f (a )=a 3+3a 2+1,所以f (x )-f (a )=(x -b )(x -a )2=(x -b )(x 2-2ax +a 2)=x 3-(2a +b )x 2+(a 2+2ab )x -a 2b=x 3+3x 2-a 3-3a 2.由此可得⎩⎪⎨⎪⎧ 2a +b =-3,a 2+2ab =0,a 3+3a 2=a 2b . ①②③因为a ≠0,所以由②得a =-2b ,代入①式得b =1,a =-2.(2)令t =1x +1,则x =1t -1(t ≠1),于是 f (t )=(1t -1)2+1(1t -1)2+31t -1=1+(t -1)2+3(t -1) =t 2+t -1(t ≠1).所以f (x )=x 2+x -1(x ≠1).(1)-2 1 (2)x 2+x -1(x ≠1)求函数解析式的常用方法:(1)待定系数法:若已知函数类型(如一次函数、二次函数、反比例函数及其他所有形式已知的函数),可用待定系数法;(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.2.(1)已知f (x +1)=x +2x ,则f (x +1)= x 2+2x (x ≥0) .(2)已知函数f (x )是一次函数,且f (8)=15,f (14),f (5),f (2)成等比数列,则f (x )= 2x -1 .(1)设u =x +1≥1,则x =(u -1)2,所以f (u )=(u -1)2+2(u -1)=u 2-1,所以f (x )=x 2-1(x ≥1),所以f (x +1)=(x +1)2-1=x 2+2x (x ≥0).(2)设f (x )=ax +b (a ≠0),由f (8)=15,得8a +b =15,①又f (14),f (5),f (2)成等比数列,所以[f (5)]2=f (2)·f (14),得(5a +b )2=(14a +b )(2a +ba 2+6ab =0.因为a ≠0,所以a =-2b ,②由①②得a =2,b =-1,所以f (x )=2x -1.分段函数(2017·山东卷)设f (x )=⎩⎨⎧ x ,0<x <1,2(x -1),x ≥1.若f (a )=f (a +1),则f (1a )=( ) A .2 B .4C .6D .8先由f (a )=f (a +1)求出a ,再求f (1a).求f (a )和f (a +1)时,将a ,a +1代入分段函数的哪一个表达式中?这就必须依据分段函数的定义域对a 进行分类讨论.若0<a <1,a +1>1,由f (a )=f (a +1)得a =2(a +1-1),所以a =14, 所以f (1a)=f (4)=2×(4-1)=6. 若a ≥1,a +1>1,由f (a )=f (a +1)得2(a -1)=2(a +1-1),此方程无解.综上,f (1a)=6.C(1)分段函数是一个函数,“分段求解”是解决分段函数的基本原则. (2)在求分段函数的值时,一定要注意自变量的值所在的区间,再代入相应的解析式,自变量的值不确定时,要分类讨论.3.(2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1, x >0,则满足f (x +1)<f (2x )的x 的取值范围是(D)A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)(方法一:利用分段函数分段求解)①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ), 即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1]. ②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解. ③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ), 即1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意. 综上,不等式f (x +1)<f (2x )的解集为(-∞,0).(方法二:借助函数图象求解)因为f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1, x >0, 所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x .此时x ≤-1.当2x <0且x +1>0时,f (2x )>1,f (x +1)=1,满足f (x +1)<f (2x ).此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).1.函数的定义域是研究函数的基础依据,对函数性质的讨论,都必须在定义域上进行,求函数的定义域,主要掌握以下两种类型:(1)由解析式给出的函数,根据其定义域求出使函数有意义的自变量的取值范围.其主要依据是:①分式的分母不为0;②偶次方根的被开方数不小于0;③对数的真数大于0;④指数函数和对数函数的底数大于0且不等于1.(2)复合函数f [g (x )]的定义域:若f (x )的定义域为D ,则满足g (x )∈D 的x 的集合是f [g (x )]的定义域.2.求函数的解析式主要掌握如下两种方法:(1)给出函数的特征,求函数的解析式,可用待定系数法,如函数是二次函数,可设函数为f (x )=ax 2+bx +c (a ≠0),其中a ,b ,c 是待定系数,根据题设条件,列出方程组,解出a ,b ,c 即可.(2)换元法求解析式,已知f [h (x )]=g (x ),求f (x )的问题,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元求解.但用换元法时,要注意新元的范围.3.分段函数问题要分段求解.如求分段函数f (x 0)时,首先要判断x 0属于定义域的哪个子集,然后代入相应的关系,当不能确定时,要注意分类讨论.。

2020届高三第一轮复习讲义【11】-幂函数与双曲线函数

2020届高三第一轮复习讲义【11】-幂函数与双曲线函数

2020届高三第一轮复习讲义【11】幂函数与双曲线函数一、知识梳理: 1. 幂的有关概念(1) 正整数指数幂: ()n n a a a a n *=⋅⋅⋅∈L ?14243个; (2) 零指数幂: 0a =_____________(其中__________);(3) 负整数指数幂: pa -=_______________(其中0a ≠, p *∈¥); (4) 分数指数幂: nma =______________(其中,m n *∈¥, 且m , n 既约).2. 幂的运算性质(1) m n a a ⋅=_____________(0a >, ,m n ∈¡); (2) ()m n a =_____________(0a >, ,m n ∈¡); (3) ()m ab =_____________(0, 0a b >>, m ∈¡). 幂函数的定义 形如k y x =, k 为常数, k 为有理数的函数叫做幂函数.幂函数2y x -= 1y x -= 12y x -=13y x =图像幂函数 12y x =y x =2y x = 3y x = 图像幂函数的性质0k >时, k y x =在[0,)+∞上是增函数; 0k <时, k y x =在(0,)+∞上是减函数.10a ≠1pa m na m n a +mn a m m a b4. 函数(0)ay x a x=+>的图像与性质函数在区间(0,)+∞部分函数的图像如右图所示, 它是一条双曲线. 主要性质如下:(1) 定义域:________________;(2) 奇偶性: ______________; (3) 单调性: 在(0,)+∞中, 在区间上单调递减, 在区间上单调递增;(4) 值域与最值: 在(0,)+∞上时,函数值的取值范围是当时, 取到最小值______.5. 函数(0)ay x a x=+<的图像与性质函数在区间(0,)+∞部分函数的图像如右图所示, 它是一条双曲线. 主要性质如下:(1) 定义域: ________________;(2) 奇偶性: ______________;(3) 单调性: 在_________________________单调递增; (4) 值域与最值: _________________________________;(5) 零点二、基础检测:1. 幂函数()y f x =的图像经过点, 则(8)f =_________.2. 下列函数中, 既是偶函数又是(0,)+∞上的增函数的是答 [ ] A. 43y x =B. 32y x =C. 2y x -= D. 14y x -= 3. 下列命题中, 正确的是答 [ ]A. 当0k =时, 函数k y x =的图像是一条直线B. 幂函数的图像都经过点(0,0)和(1,1)C. 当0k <时且k y x =是奇函数时, k y x =是减函数D. 幂函数的图像不可能过第四象限4. 函数2, [1,2]y x x x=+∈的值域是______________.5. 函数21y x x =+-在定义域(1,]a 上的最小值是, 则实数a 的取值范围是_______________. 6. 函数(0)cy x c x=+≠在[2,)+∞上单调递增, 则实数c 的取值范围是________________.奇函数奇函数 (,0)-∞与(0,)+∞上分别 值域为¡, 无最值 (,0)(0,)-∞⋃+∞(,0)(0,)-∞⋃+∞)+∞)+∞x =x =三、例题精讲:【例1】将下列函数图像的标号, 填入相应函数后面的横线上.(1)32 y x =: _________; (2)43y x=: _________; (3)53y x=: _________; (4)23y x-=: _________.【例2】已知函数221()m my mx---=∈¢在区间(,0)-∞上是减函数, 求m的最大值.解: 即考虑函数22(0)m my x x+-=≠,若函数是奇函数, 由函数在(,0)-∞递减, 可知其在(0,)+∞上递减,则有220(2,1)m m m+-<⇒∈-,当1m=-时, 222m m+-=-, 是偶函数, 不合题意;若函数是偶函数, 由函数在(,0)-∞递减, 可知其在(0,)+∞上递增,则有220(,2)(1,)m m m+->⇒∈-∞-⋃+∞,当3m=-时, 224m m+-=, 是偶函数, 符合题意;综上所述, m的最大负整数值为3-.【例3】已知函数23y x-=.(1)画出它的图像;(2)判断它的奇偶性;(3)写出它的单调区间.解:(1)(2) ()f x是偶函数;(3)23y x-=在(),0-∞是增函数,()0,+∞是减函数.A BC D【例4】已知幂函数()()21322p p Z f x x p -++=∈在()0,+∞上是增函数,且在定义域上是偶函数,求p的值,并写出相应的函数.解:因为()()21322p p f x xp Z -++=∈在()0,+∞是增函数,所以213022p p -++>, 即2230p p --<,解得13p -<<,所以p =0、1、2. 当p =0时,32y x =不是偶函数,故p =0舍去; 当p =1时,2y x =是偶函数,故p =1符合题意; 当p =2时,32y x =不是偶函数,故p =2舍去. 综上p =1,()2y f x x ==. 【例5】已知()()22k k x k Z f x -++=∈满足()()23f f <.(1)求k 的值;(2)是否存在正数m ,使()()()[]121,1,2g x mf x m x x =-+-∈-的值域为174,8⎡⎤-⎢⎥⎣⎦? 若存在,求出m 的范围;若不存在,说明理由.解:(1)由()21924k f x x⎛⎫--+ ⎪⎝⎭=且()()23f f <,知()f x 在()0,+∞上单调递增,故220k k -++>,12k -<<因此1k =或0;(2)()2f x x =,()()[]2222141121,1,224m m g x mx m x m x x m m -+⎛⎫=-+-=--+∈- ⎪⎝⎭, 对称轴为112x m =-,则1122m-≥,得12m ≤-,与0m >矛盾,所以m 不存在. 【例6】设01a b c d <<<<<,正数,,,m n k r 满足:01a b c dm n k r <===<,则,,,,1m n k r 之间的大小关系为________________。

2020届高考数学一轮总复习第二单元函数第11讲幂函数课件理新人教A版

2020届高考数学一轮总复习第二单元函数第11讲幂函数课件理新人教A版

【例 3】若点( 2,2)在幂函数 f(x)的图象上,点(2,12)在
幂函数 g(x)的图象上,定义 h(x)=fgxx,,ffxx≤>ggxx,, 则函数
h(x)的最大值为
,单调递减区间为
.
解:设 f(x)=xα,因为点( 2,2)在 f(x)的图象上, 所以( 2)α=2,所以 α=2,所以 f(x)=x2; 又设 g(x)=xβ,因为点(2,12)在 g(x)的图象上, 所以 2β=12,所以 β=-1,所以 g(x)=x-1. 在同一坐标系中画出函数 f(x)与 g(x)的图象, 如图所示(其中粗线表示 h(x)的图象):
() A.aa<ab<ba
B.aa<ba<ab
C.ab<aa<ba
D.ab<ba<aa
解:因为 y=(21)x 在 R 上单调递减, 又21<(21)b<(21)a<1,可得 0<a<b<1. 所以指数函数 y=ax 在 R 上为减函数,所以 ab<aa. 幂函数 y=xa 在(0,+∞)上是增函数,所以 aa<ba. 综上可得 ab<aa<ba,故选 C.
x-1, x<0,

则有 h(x)=x2, 0<x≤1, x-1, x>1.
根据图象可知 h(x)的最大值等于 1,单调递增区间为(0,1], 单调递减区间为(-∞,0)和(1,+∞).
答案:1 (-∞,0)和(1,+∞)
【变式探究】
3.(2019·山东菏泽一模)设 min{m,n}
表示 m,n 二者中较小的一个,已知函数 f(x)
+∞)上为增函数知 a<c.综上得 b<a<c.故选 A.

第11讲指数函数、对数函数、幂函数

第11讲指数函数、对数函数、幂函数

所以值域为{y|0<y≤ 3 }. < 所以值域为 3 上单调递增, 又u在(-∞, ]上单调递增,在 在 2 3 上单调递减, [ ,+∞)上单调递减, 上单调递减 y=3u是增函数, 是增函数,
- x2 +3 x + 2
17 4
2
所以y = 3 3 上单调递减. 在[ ,+∞)上单调递减 上单调递减
a>1 图象 0<a<1
12
· 高中新课标总复习(第1轮)· 文科数学 · 湖南 · 人教版 高中新课标总复习(
立足教育 开创未来
a>1 定义域 值域 {x|x>0} {y|y∈R} ∈
0<a<1
当x=1时,y=0,即过定点 即过定点(1,0) 时 即过定点 当x>1时, 时 性质
12 13
当0<x<1时 时
立足教育 开创未来
解析(1)定义域为 )定义域为R.
2+x+6,则y=( 1 )u. 令u=-2x 则
1 )2+ 49 , 8 1 49 4 8 所以值域为{y|y≥ ( )}. 所以值域为 2 1
又u=-2x2+x+6=-2(x-
2
1 u4 y=( ) 是减函数, 是减函数, 2 1 6+ x-2 x2 1 所以 y = ( ) 在[ ,+∞)上为增函 ) 2 4 1 ]上为减函数 上为减函数. 数;在(-∞, 上为减函数 4
又u在[ ,+∞)上单调递减,在(在 )上单调递减, 1 4 ∞, ]上单调递增, 上单调递增,
20
· 高中新课标总复习(第1轮)· 文科数学 · 湖南 · 人教版 高中新课标总复习(

【精品】高中数学必修一_幂函数及图象变换 讲义_知识讲解+巩固练习(含答案)_基础

【精品】高中数学必修一_幂函数及图象变换  讲义_知识讲解+巩固练习(含答案)_基础

幂函数及图象变换【学习目标】1.通过实例,了解幂函数的概念;结合幂函数的图象,了解它们的变化情况. 2.掌握幂函数的图象和性质,并能熟练运用图象和性质去解题。

3.掌握初等函数图象变换的常用方法. 【要点梳理】 要点一、幂函数概念形如()y x R αα=∈的函数,叫做幂函数,其中α为常数. 要点诠释:幂函数必须是形如()y x R αα=∈的函数,幂函数底数为单一的自变量x ,系数为1,指数为常数.例如:()2423,1,2y x y x y x ==+=-等都不是幂函数.要点二、幂函数的图象及性质 1.作出下列函数的图象:(1)x y =;(2)21x y =;(3)2x y =;(4)1-=x y ;(5)3x y =.要点诠释:幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.2.作幂函数图象的步骤如下: (1)先作出第一象限内的图象;(2)若幂函数的定义域为(0,+∞)或[0,+∞),作图已完成; 若在(-∞,0)或(-∞,0]上也有意义,则应先判断函数的奇偶性 如果为偶函数,则根据y 轴对称作出第二象限的图象; 如果为奇函数,则根据原点对称作出第三象限的图象. 3.幂函数解析式的确定(1)借助幂函数的定义,设幂函数或确定函数中相应量的值. (2)结合幂函数的性质,分析幂函数中指数的特征.(3)如函数()a f x k x =⋅是幂函数,求()f x 的表达式,就应由定义知必有1k =,即()a f x x =. 4.幂函数值大小的比较(1)比较函数值的大小问题一般是利用函数的单调性,当不便于利用单调性时,可与0和1进行比较.常称为“搭桥”法.(2)比较幂函数值的大小,一般先构造幂函数并明确其单调性,然后由单调性判断值的大小.(3)常用的步骤是:①构造幂函数;②比较底的大小;③由单调性确定函数值的大小. 要点三、初等函数图象变换基本初等函数包含以下九种函数:正比例函数、反比例函数、一次函数、二次函数、幂函数、指数函数、对数函数.(三角函数、反三角函数待讲)由基本初等函数经过四则运算以及简单复合所得的函数叫初等函数. 如:2()f x x =的图象变换,22(1),1,y x y x =+=+222,||y x y x == (1)平移变换y =f (x )→y =f (x +a ) 图象左(0a >)、右(0a <)平移 y =f (x )→y =f (x )+b 图象上(b 0>)、下(b 0<)平移(2)对称变换y =f (x ) →y =f (-x ), 图象关于y 轴对称y =f (x ) →y =-f (x ) , 图象关于x 轴对称 y =f (x ) →y =-f (-x ) 图象关于原点对称 y =f (x )→1()y f x -= 图象关于直线y =x 对称(3)翻折变换:y =f (x ) →y =f (|x |),把y 轴右边的图象保留,然后将y 轴左边部分 关于y 轴对称.(注意:它是一个偶函数)y =f (x ) →y =|f (x )| 把x 轴上方的图象保留,x 轴下方的图象 关于x 轴对称 要点诠释:(1)函数图象是由基本初等函数的图象经过以上变换变化而来。

2023年高考数学一轮复习讲义——二次函数与幂函数

2023年高考数学一轮复习讲义——二次函数与幂函数

§2.5二次函数与幂函数考试要求 1.通过具体实例,了解幂函数及其图象的变化规律.2.掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).知识梳理1.幂函数(1)幂函数的定义一般地,函数y=xα叫做幂函数,其中x是自变量,α为常数.(2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减;④当α为奇数时,y=xα为奇函数;当α为偶数时,y=xα为偶函数.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图象和性质函数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)图象(抛物线)定义域 R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a对称轴 x =-b2a顶点 坐标 ⎝⎛⎭⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝⎛⎦⎤-∞,-b 2a 上单调递减; 在⎣⎡⎭⎫-b2a ,+∞上单调递增 在⎝⎛⎦⎤-∞,-b 2a 上单调递增; 在⎣⎡⎭⎫-b2a ,+∞上单调递减思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =1212x 是幂函数.( × )(2)若幂函数y =x α是偶函数,则α为偶数.( × )(3)二次函数y =ax 2+bx +c 的图象恒在x 轴下方,则a <0且Δ<0.( √ )(4)若二次函数y =ax 2+bx +c 的两个零点确定,则二次函数的解析式确定.( × ) 教材改编题1.已知幂函数y =f (x )的图象过点(2,2),则f ⎝⎛⎭⎫14等于( ) A .-12B.12 C .±12D.22答案 B解析 设f (x )=x α, ∴2α=2,α=12,∴f (x )=12x , ∴f ⎝⎛⎭⎫14=12.2.若函数f (x )=4x 2-kx -8在[5,20]上单调,则实数k 的取值范围为________.答案 (-∞,40]∪[160,+∞) 解析 依题意知,k 8≥20或k8≤5,解得k ≥160或k ≤40.3.已知y =f (x )为二次函数,若y =f (x )在x =2处取得最小值-4,且y =f (x )的图象经过原点,则函数解析式为________. 答案 f (x )=x 2-4x解析 因为y =f (x )在x =2处取得最小值-4, 所以可设f (x )=a (x -2)2-4(a >0),又图象过原点,所以f (0)=4a -4=0,a =1, 所以f (x )=(x -2)2-4=x 2-4x .题型一 幂函数的图象与性质例1 (1)若幂函数y =x -1,y =x m 与y =x n 在第一象限内的图象如图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<m <12C .-1<m <0<n <12D .-1<n <0<m <1 答案 D解析 幂函数y =x α,当α>0时,y =x α在(0,+∞)上单调递增,且0<α<1时,图象上凸, ∴0<m <1.当α<0时,y =x α在(0,+∞)上单调递减. 不妨令x =2,由图象得2-1<2n ,则-1<n <0.综上可知,-1<n <0<m <1.(2)(2022·长沙质检)幂函数f (x )=(m 2-3m +3)x m 的图象关于y 轴对称,则实数m =________. 答案 2解析 由幂函数定义,知m 2-3m +3=1, 解得m =1或m =2,当m =1时,f (x )=x 的图象不关于y 轴对称,舍去, 当m =2时,f (x )=x 2的图象关于y 轴对称, 因此m =2. 教师备选1.若幂函数f (x )=()12255a a a x ---在(0,+∞)上单调递增,则a 等于( )A .1B .6C .2D .-1 答案 D解析 因为函数f (x )=()12255a a a x---是幂函数,所以a 2-5a -5=1,解得a =-1或a =6. 当a =-1时,f (x )=12x 在(0,+∞)上单调递增; 当a =6时,f (x )=x -3在(0,+∞)上单调递减, 所以a =-1.2.若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是( ) A.⎣⎡⎭⎫2,167 B .(0,2] C.⎝⎛⎭⎫-∞,167 D .[2,+∞)答案 A解析 因为函数f (x )=12x 在定义域[0,+∞)内为增函数,且f (x )>f (8x -16),所以⎩⎪⎨⎪⎧x ≥0,8x -16≥0,x >8x -16,即2≤x <167,所以不等式的解集为⎣⎡⎭⎫2,167. 思维升华 (1)对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 跟踪训练1 (1)(2022·宝鸡检测)已知a =432,b =233,c =1225,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b答案 A解析 由题意得b =233<234=432=a , a =432=234<4<5=1225=c , 所以b <a <c .(2)已知幂函数y =p qx (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( )A .p ,q 均为奇数,且pq >0B .q 为偶数,p 为奇数,且pq <0C .q 为奇数,p 为偶数,且pq >0D .q 为奇数,p 为偶数,且pq <0答案 D解析 因为函数y =p q x 的图象关于y 轴对称,于是函数y =p qx 为偶函数,即p 为偶数, 又函数y =p qx 的定义域为(-∞,0)∪(0,+∞),且在(0,+∞)上单调递减,则有pq <0,又因为p ,q 互质,则q 为奇数,所以只有选项D 正确. 题型二 二次函数的解析式例2 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解 方法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎨⎧ 4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为 f (x )=-4x 2+4x +7.方法二 (利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8,所以n =8, 所以f (x )=a ⎝⎛⎭⎫x -122+8. 因为f (2)=-1,所以a ⎝⎛⎭⎫2-122+8=-1, 解得a =-4,所以f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 方法三 (利用“零点式”解题)由已知f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1)(a≠0),即f(x)=ax2-ax-2a-1.又函数有最大值8,即4a(-2a-1)-(-a)24a=8.解得a=-4或a=0(舍去).故所求函数的解析式为f(x)=-4x2+4x+7.教师备选若函数f(x)=(x+a)(bx+2a)(a,b∈R)满足条件f(-x)=f(x),定义域为R,值域为(-∞,4],则函数解析式f(x)=________.答案-2x2+4解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2.∵f(-x)=f(x),∴2a+ab=0,∴f(x)=bx2+2a2.∵f(x)的定义域为R,值域为(-∞,4],∴b<0,且2a2=4,∴b=-2,∴f(x)=-2x2+4.思维升华求二次函数解析式的三个策略:(1)已知三个点的坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式;(3)已知图象与x轴的两交点的坐标,宜选用零点式.跟踪训练2(1)已知f(x)为二次函数,且f(x)=x2+f′(x)-1,则f(x)等于()A.x2-2x+1 B.x2+2x+1C.2x2-2x+1 D.2x2+2x-1答案 B解析设f(x)=ax2+bx+c(a≠0),则f ′(x )=2ax +b , 由f (x )=x 2+f ′(x )-1可得 ax 2+bx +c =x 2+2ax +(b -1), 所以⎩⎪⎨⎪⎧ a =1,b =2a ,c =b -1,解得⎩⎪⎨⎪⎧a =1,b =2,c =1,因此,f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),且图象被x 轴截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )的解析式为________. 答案 f (x )=x 2-4x +3解析 ∵f (2+x )=f (2-x )对任意x ∈R 恒成立, ∴f (x )图象的对称轴为直线x =2, 又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3,设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), ∵f (x )的图象过点(4,3), ∴3a =3,∴a =1,∴所求函数的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.题型三 二次函数的图象与性质 命题点1 二次函数的图象例3 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )答案 D解析 因为abc >0,二次函数f (x )=ax 2+bx +c ,那么可知, 在A 中,a <0,b <0,c <0,不符合题意; B 中,a <0,b >0,c >0,不符合题意; C 中,a >0,c <0,b >0,不符合题意,故选D. 命题点2 二次函数的单调性与最值 例4 已知函数f (x )=x 2-tx -1.(1)若f (x )在区间(-1,2)上不单调,求实数t 的取值范围; (2)若x ∈[-1,2],求f (x )的最小值g (t ). 解f (x )=x 2-tx -1=⎝⎛⎭⎫x -t 22-1-t 24. (1)依题意,-1<t2<2,解得-2<t <4,∴实数t 的取值范围是(-2,4).(2)①当t2≥2,即t ≥4时,f (x )在[-1,2]上单调递减,∴f (x )min =f (2)=3-2t . ②当-1<t2<2,即-2<t <4时,f (x )min =f ⎝⎛⎭⎫t 2=-1-t24. ③当t2≤-1,即t ≤-2时,f (x )在[-1,2]上单调递增,∴f (x )min =f (-1)=t .综上有g (t )=⎩⎪⎨⎪⎧t ,t ≤-2,-1-t24,-2<t <4,3-2t ,t ≥4.延伸探究 本例条件不变,求当x ∈[-1,2]时,f (x )的最大值G (t ). 解 f (-1)=t ,f (2)=3-2t , f (2)-f (-1)=3-3t , 当t ≥1时,f (2)-f (-1)≤0, ∴f (2)≤f (-1), ∴f (x )max =f (-1)=t ; 当t <1时,f (2)-f (-1)>0, ∴f (2)>f (-1), ∴f (x )max =f (2)=3-2t ,综上有G (t )=⎩⎪⎨⎪⎧t ,t ≥1,3-2t ,t <1.教师备选1.(多选)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论正确的是( )A .当x >3时,y <0B .4a +2b +c =0C .-1≤a ≤-23D .3a +b >0答案 AC解析 依题意知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ), ∴函数与x 轴的另一交点为(3,0), ∴当x >3时,y <0,故A 正确;当x =2时,y =4a +2b +c >0,故B 错误;∵抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),且a <0, ∴a -b +c =0,∵b =-2a ,∴a +2a +c =0, ∴3a +b <0,c =-3a ,∵2≤c ≤3,∴2≤-3a ≤3,∴-1≤a ≤-23, 故C 正确,D 错误.2.(2022·沈阳模拟)已知f (x )=ax 2-2x +1.(1)若f (x )在[0,1]上单调,求实数a 的取值范围;(2)若x ∈[0,1],求f (x )的最小值g (a ).解 (1)当a =0时,f (x )=-2x +1单调递减;当a >0时,f (x )的对称轴为x =1a ,且1a>0, ∴1a≥1,即0<a ≤1; 当a <0时,f (x )的对称轴为x =1a 且1a<0, ∴a <0符合题意.综上有,a ≤1.(2)①当a =0时,f (x )=-2x +1在[0,1]上单调递减,∴f (x )min =f (1)=-1.②当a >0时,f (x )=ax 2-2x +1的图象开口方向向上,且对称轴为x =1a. (ⅰ)当1a<1,即a >1时,f (x )=ax 2-2x +1图象的对称轴在[0,1]内, ∴f (x )在⎣⎡⎦⎤0,1a 上单调递减,在⎣⎡⎦⎤1a ,1上单调递增. ∴f (x )min =f ⎝⎛⎭⎫1a =1a -2a +1=-1a+1. (ⅱ)当1a≥1,即0<a ≤1时,f (x )在[0,1]上单调递减. ∴f (x )min =f (1)=a -1.③当a <0时,f (x )=ax 2-2x +1的图象的开口方向向下,且对称轴x =1a<0,在y 轴的左侧, ∴f (x )=ax 2-2x +1在[0,1]上单调递减.∴f (x )min =f (1)=a -1.综上所述,g (a )=⎩⎪⎨⎪⎧a -1,a ≤1,-1a +1,a >1.思维升华 二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.跟踪训练3 (1)若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均单调递增,则实数a 的取值范围是( )A.⎣⎡⎦⎤-113,-3 B .[-6,-4] C .[-3,-22]D .[-4,-3] 答案 B解析 ∵f (x )为偶函数,∴f (x )在[1,2]上单调递减,在[3,+∞)上单调递增,当x >0时,f (x )=x 2+ax +2,对称轴为x =-a 2,∴2≤-a 2≤3, 解得-6≤a ≤-4.(2)(2022·抚顺模拟)已知函数f (x )=-x 2+2x +5在区间[0,m ]上有最大值6,最小值5,则实数m 的取值范围是________.答案 [1,2]解析 由题意知,f (x )=-(x -1)2+6,则f (0)=f (2)=5=f (x )min ,f (1)=6=f (x )max ,函数f (x )的图象如图所示,则1≤m ≤2.课时精练1.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x答案 B解析 二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,设二次函数为g (x )=ax 2+bx ,可得⎩⎪⎨⎪⎧ a +b =1,a -b =5,解得a =3,b =-2,所求的二次函数为g (x )=3x 2-2x .2.(2022·延吉检测)若函数y =()222433mm m m x +--+为幂函数,且在(0,+∞)上单调递减,则实数m 的值为( )A .0B .1或2C .1D .2答案 C解析 由于函数y =()222433m m m m x +--+为幂函数,所以m 2-3m +3=1,解得m =1或m =2,当m =1时,y =x -1=1x,在(0,+∞)上单调递减,符合题意. 当m =2时,y =x 4,在(0,+∞)上单调递增,不符合题意.3.(2022·长沙模拟)已知函数f (x )=x 2-2mx -m +2的值域为[0,+∞),则实数m 的值为( )A .-2或1B .-2C .1D .1或2答案 A解析 因为f (x )=x 2-2mx -m +2=(x -m )2-m 2-m +2≥-m 2-m +2,且函数f (x )=x 2-2mx -m +2的值域为[0,+∞),所以-m 2-m +2=0,解得m =-2或m =1.4.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1.下面四个结论中正确的是( )A .b 2<4acB .2a -b =1C .a -b +c =0D .5a <b 答案 D解析 因为二次函数y =ax 2+bx +c 的图象过点A (-3,0),对称轴为直线x =-1,所以⎩⎪⎨⎪⎧-b 2a =-1,9a -3b +c =0, 解得⎩⎪⎨⎪⎧b =2a ,c =-3a ,因为二次函数的图象开口方向向下,所以a <0,对于A ,因为二次函数的图象与x 轴有两个交点,所以b 2-4ac =4a 2+12a 2=16a 2>0, 所以b 2>4ac ,故选项A 不正确;对于B ,因为b =2a ,所以2a -b =0,故选项B 不正确;对于C ,因为a -b +c =a -2a -3a =-4a >0,故选项C 不正确;对于D ,因为a <0,所以5a <2a =b ,故选项D 正确.5.(多选)(2022·宜昌质检)已知函数f (x )=x 2-2x +a 有两个零点x 1,x 2,以下结论正确的是( )A .a <1B .若x 1x 2≠0,则1x 1+1x 2=2aC .f (-1)=f (3)D .函数y =f (|x |)有四个零点答案 ABC解析 二次函数对应二次方程根的判别式Δ=(-2)2-4a =4-4a >0,a <1,故A 正确; 由根与系数的关系得,x 1+x 2=2,x 1x 2=a ,1x 1+1x 2=x 1+x 2x 1x 2=2a,故B 正确; 因为f (x )的对称轴为x =1,点(-1,f (-1)),(3,f (3))关于对称轴对称,故C 正确; 当a <0时,y =f (|x |)只有两个零点,故D 不正确.6.(多选)已知幂函数f (x )=()2231m m m m x +---,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,都满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R 且f (a )+f (b )<0,则下列结论可能成立的有( ) A .a +b >0且ab <0B .a +b <0且ab <0C .a +b <0且ab >0D .以上都可能答案 BC解析 因为f (x )=()2231mm m m x +---为幂函数,所以m 2-m -1=1,解得m =2或m =-1.依题意f (x )在(0,+∞)上单调递增,所以m =2,此时f (x )=x 3,因为f (-x )=(-x )3=-x 3=-f (x ),所以f (x )=x 3为奇函数.因为a ,b ∈R 且f (a )+f (b )<0,所以f (a )<f (-b ).因为y =f (x )为增函数,所以a <-b ,所以a +b <0.7.(2022·张家口检测)已知幂函数f (x )=mx n +k 的图象过点⎝⎛⎭⎫116,14,则m -2n +3k =________. 答案 0解析 因为f (x )是幂函数,所以m =1,k =0,又f (x )的图象过点⎝⎛⎭⎫116,14,所以⎝⎛⎭⎫116n =14,解得n =12, 所以m -2n +3k =0.8.(2022·江苏海安高级中学模拟)函数f (x )=x 2-4x +2在区间[a ,b ]上的值域为[-2,2],则b -a 的取值范围是________.答案 [2,4]解析 解方程f (x )=x 2-4x +2=2,解得x =0或x =4,解方程f (x )=x 2-4x +2=-2,解得x =2,由于函数f (x )在区间[a ,b ]上的值域为[-2,2].若函数f (x )在区间[a ,b ]上单调,则[a ,b ]=[0,2]或[a ,b ]=[2,4],此时b -a 取得最小值2;若函数f (x )在区间[a ,b ]上不单调,且当b -a 取最大值时,[a ,b ]=[0,4],所以b -a 的最大值为4.所以b -a 的取值范围是[2,4].9.已知二次函数f (x )=ax 2+(b -2)x +3,且-1,3是函数f (x )的零点.(1)求f (x )的解析式,并解不等式f (x )≤3;(2)若g (x )=f (sin x ),求函数g (x )的值域.解 (1)由题意得⎩⎪⎨⎪⎧ -1+3=-b -2a ,-1×3=3a ,解得⎩⎪⎨⎪⎧a =-1,b =4, ∴f (x )=-x 2+2x +3,∴当-x 2+2x +3≤3时,即x 2-2x ≥0,解得x ≥2或x ≤0,∴不等式的解集为(-∞,0]∪[2,+∞).(2)令t =sin x ,则g (t )=-t 2+2t +3=-(t -1)2+4,t ∈[-1,1],当t =-1时,g (t )有最小值0,当t =1时,g (t )有最大值4,故g (t )∈[0,4].所以g (x )的值域为[0,4].10.(2022·烟台模拟)已知二次函数f (x )=ax 2+bx +c ,且满足f (0)=2,f (x +1)-f (x )=2x +1.(1)求函数f (x )的解析式;(2)当x ∈[t ,t +2](t ∈R )时,求函数f (x )的最小值g (t )(用t 表示).解 (1)因为二次函数f (x )=ax 2+bx +c 满足f (0)=2,f (x +1)-f (x )=2x +1, 所以⎩⎪⎨⎪⎧c =2,a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2x +1,即⎩⎪⎨⎪⎧ c =2,2ax +b +a =2x +1, 所以⎩⎪⎨⎪⎧ c =2,2a =2,b +a =1,解得⎩⎪⎨⎪⎧ c =2,a =1,b =0,因此f (x )=x 2+2.(2)因为f (x )=x 2+2是图象的对称轴为直线x =0,且开口向上的二次函数,当t ≥0时,f (x )=x 2+2在x ∈[t ,t +2]上单调递增,则f (x )min =f (t )=t 2+2;当t +2≤0,即t ≤-2时,f (x )=x 2+2在x ∈[t ,t +2]上单调递减,则f (x )min =f (t +2)=(t +2)2+2=t 2+4t +6;当t <0<t +2,即-2<t <0时,f (x )min =f (0)=2,综上g (t )=⎩⎪⎨⎪⎧ t 2+2,t ≥0,2,-2<t <0,t 2+4t +6,t ≤-2.11.(2022·福州模拟)已知函数f (x )=2x 2-mx -3m ,则“m >2”是“f (x )<0对x ∈[1,3]恒成立”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件答案 C解析 若f (x )<0对x ∈[1,3]恒成立,则⎩⎪⎨⎪⎧f (1)=2-4m <0,f (3)=18-6m <0, 解得m >3,{m |m >3}是{m |m >2}的真子集,所以“m >2”是“f (x )<0对x ∈[1,3]恒成立”的必要不充分条件.12. 幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图象三等分,即有BM =MN =NA ,那么a -1b 等于( )A .0B .1 C.12D .2 答案 A解析 由BM =MN =NA ,点A (1,0),B (0,1),∴M ⎝⎛⎭⎫13,23,N ⎝⎛⎭⎫23,13, 将两点坐标分别代入y =x a ,y =x b ,得a =132log 3,b =231log 3, ∴a -1b =132log 3-2311log 3=0.13.(多选)关于x 的方程(x 2-2x )2-2(2x -x 2)+k =0,下列命题正确的有( )A .存在实数k ,使得方程无实根B .存在实数k ,使得方程恰有2个不同的实根C .存在实数k ,使得方程恰有3个不同的实根D .存在实数k ,使得方程恰有4个不同的实根答案 AB解析 设t =x 2-2x ,方程化为关于t 的二次方程t 2+2t +k =0.(*)当k >1时,方程(*)无实根,故原方程无实根;当k =1时,可得t =-1,则x 2-2x =-1,原方程有两个相等的实根x =1;当k <1时,方程(*)有两个实根t 1,t 2(t 1<t 2),由t 1+t 2=-2可知,t 1<-1,t 2>-1.因为t =x 2-2x =(x -1)2-1≥-1,所以x 2-2x =t 1无实根,x 2-2x =t 2有两个不同的实根.综上可知,A ,B 项正确,C ,D 项错误.14.设关于x 的方程x 2-2mx +2-m =0()m ∈R 的两个实数根分别是α,β,则α2+β2+5的最小值为________.答案 7解析 由题意有⎩⎪⎨⎪⎧α+β=2m ,αβ=2-m , 且Δ=4m 2-4(2-m )≥0,解得m ≤-2或m ≥1,α2+β2+5=(α+β)2-2αβ+5=4m 2+2m +1,令f (m )=4m 2+2m +1,而f (m )图象的对称轴为m =-14, 且m ≤-2或m ≥1,所以f (m )min =f (1)=7.15.(2022·台州模拟)已知函数f (x )=(x 2-2x -3)(x 2+ax +b )是偶函数,则f (x )的值域是________.答案 [-16,+∞)解析 因为f (x )=(x 2-2x -3)(x 2+ax +b )=(x -3)(x +1)(x 2+ax +b )是偶函数,所以有⎩⎪⎨⎪⎧ f (-3)=f (3)=0,f (1)=f (-1)=0, 代入得⎩⎪⎨⎪⎧ 9-3a +b =0,1+a +b =0, 解得⎩⎪⎨⎪⎧a =2,b =-3. 所以f (x )=(x 2-2x -3)(x 2+2x -3)=(x 2-3)2-4x 2=x 4-10x 2+9=(x 2-5)2-16≥-16.16.已知a ,b 是常数且a ≠0,f (x )=ax 2+bx 且f (2)=0,且使方程f (x )=x 有等根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n ),使得f (x )的定义域和值域分别为[m ,n ]和[2m,2n ]? 解 (1)由f (x )=ax 2+bx ,且f (2)=0,则4a +2b =0,又方程f (x )=x ,即ax 2+(b -1)x =0有等根,得b =1,从而a =-12, 所以f (x )=-12x 2+x . (2)假定存在符合条件的m ,n ,由(1)知f (x )=-12x 2+x =-12(x -1)2+12≤12, 则有2n ≤12,即n ≤14. 又f (x )图象的对称轴为直线x =1,则f (x )在[m ,n ]上单调递增,于是得⎩⎪⎨⎪⎧ m <n ≤14,f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧ m <n ≤14,-12m 2+m =2m ,-12n 2+n =2n , 解方程组得m =-2,n =0,所以存在m =-2,n =0,使函数f (x )在[-2,0]上的值域为[-4,0].。

2020版高考数学一轮复习教程学案第11课__指数与指数运算 Word版含解析

2020版高考数学一轮复习教程学案第11课__指数与指数运算 Word版含解析

第课指数与指数运算. 会进行根式与分数指数幂的互化.. 能利用分数指数幂的运算性质进行幂的运算.. 阅读必修第~页,理解分数指数幂的定义,思考=一定成立吗?. 将教材第页例、例做一遍,熟悉根式与分数指数幂的互化.. 选做教材第页练习第,,,题并总结根式与分数指数幂互化的注意点.基础诊断. 判断正误.() (-°)=();解析:(-°)==,故错误.() =();解析:=,故错误.() =-();解析:=,故错误.() +=π-+π-=π-().解析:+=-π+π-=-,故错误.. 化简[(-)]-(-)的值为.解析:原式=()-(-)=-=.. +-+-π+=.解析:原式=++-+=++-+=.. 化简:++(<,<).解析:原式=+++(-).因为<,<,所以原式=-+(--)+(-)=-.范例导航考向❶有理数指数幂的化简与求值例计算或化简下列各式:() +()--(-)-+(-);() -(-)-.解析:() 原式=+-×+=+-×(+)+=+--+=-.() 原式=---=---(-)=---+=-.化简(>,>)的结果为.解析:原式==+-+·+--=-=.考向❷有理数指数幂与方程的简单综合例已知,是方程-+=的两个根,且<,求下列式子的值:() ;() ÷.解析:因为,是方程的两根,而由-+=,解得=,=,且<,故=,=.() ===+. 因为=,=,所以+=,即原式=.。

高考数学第一轮复习知识点:幂函数定义与性质

高考数学第一轮复习知识点:幂函数定义与性质

高考数学第一轮复习知识点:幂函数定义与性质查字典数学网高中频道收集和整理了2021年高考数学第一轮复习知识点:幂函数定义与性质,以便高三学生更好的梳理知识,轻松备战。

把握幂函数的内部规律及本质是学好幂函数的关键所在,下面是中华考试网为大伙儿整理的幂函数公式大全,期望对宽敞朋友有所关心。

定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:当a为不同的数值时,幂函数的定义域的不同情形如下:假如a为任意实数,则函数的定义域为大于0的所有实数;假如a为负数,则x确信不能为0,只是这时函数的定义域还必须根[据q的奇偶性来确定,即假如同时q 为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;假如同时q为奇数,则函数的定义域为不等于0的所有实数。

当x为不同的数值时,幂函数的值域的不同情形如下:在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域性质:关于a的取值为非零有理数,有必要分成几种情形来讨论各自的特性:事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。

不记住那些基础知识,如何会向高层次进军?专门是语文学科涉猎的范畴专门广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时刻让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

如此,就会在有限的时刻、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

第一我们明白假如a=p/q,q和p差不多上整数,则x^(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q 是偶数,函数的定义域是[0,+)。

当指数n是负整数时,设a=-k,则x=1/(x ^k),明显x0,函数的定义域是(-,0)(0,+).因此能够看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就能够明白:排除了为0与负数两种可能,即关于x0,则a能够是任意实数;排除了为0这种可能,即关于x0和x0的所有实数,q不能是偶数;教师范读的是阅读教学中不可缺少的部分,我常采纳范读,让幼儿学习、仿照。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11讲 幂函数1.了解幂函数的概念.2.结合函数y =x ,y =x 2,y =x 3,y =1x ,y =x 12的图象,了解它们的变化情况.3.能解决与幂函数有关的一些简单问题.知识梳理1.幂函数的定义一般地,函数 y =x α(α为常数) 叫做幂函数,其中x 是自变量,α是常数. 2.幂函数的图象比较1.α的性质1.幂函数y =x α(α≠0,1)在第一象限的图象有以下三种形式:2.幂函数的图象一定会出现在第一象限,一定不会出现在第四象限,至于是否出现在第二、三象限,要看函数的定义域及奇偶性.幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点.热身练习1.已知幂函数f (x )=k ·x α的图象过点(12,22),则k +α= 32.由幂函数的定义得k =1,再将(12,22)代入f (x )=x α,得(12)α=22=(12)12,所以α=12,故k +α=32.2.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α的值为(A)A .1,3B .-1,1C .-1,3 D.12,1,3y =x-1的定义域为{x |x ≠0},y =12x 的定义域为{x |x ≥0},所以B ,C ,D 均可排除,选A.3.(经典真题)设x ∈R ,则“x >1”是“x 3>1”的(C) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件由于函数f (x )=x 3在R 上为增函数,所以当x >1时,x 3>1成立,反过来,当x 3>1时,x >1也成立. 因此“x >1”是“x 3>1”的充要条件.4.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数为(A)A .y =x -2B .y =x -1 C .y =x2 D .y =12xy =x-2和y =x 2是偶函数,由幂函数的图象可知,y =x-2在(0,+∞)上单调递减,选A.5.(2016·全国卷Ⅲ)已知a =432,b =233,c =1325,则(A) A .b <a <c B .a <b <c C .b <c <a D .c <a <ba =432=234,b =233,c =1325=235.因为y =23x 在第一象限内为增函数, 又5>4>3,所以c >a >b .幂函数的概念(2018·抚顺期末)幂函数f (x )=(m 2-3m -3)x m 在(0,+∞)上为增函数,则m 的值为( ) A .4 B .-1 C .2 D .-1或4因为f (x )是幂函数,且在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧m 2-3m -3=1,m >0,解得m =4.A幂函数和指数函数、对数函数一样,是一种“形式”定义,它满足如下特征:(1)以幂的底为自变量,指数为常数; (2)x α前的系数为1,x α后面不加任何项.1.当x ∈(0,+∞)时,幂函数y =(m 2-m -1)x -5m -3为减函数,则实数m 的值为(A) A .m =2 B .m =-1C .m =-1或m =2D .m ≠1±52因为幂函数x 的系数为1,y =x α在(0,+∞)上是减函数,则α<0,所以⎩⎪⎨⎪⎧m 2-m -1=1,-5m -3<0,解得m =2.比较大小(2018·保定模拟)下列选项正确的是( )A .0.20.2>0.30.2B .1-32<1-33 C .0.8-0.1>1.250.2 D .1.70.3>0.93.1选项A 中,因为函数y =x 0.2在(0,+∞)上为增函数, 又0.2<0.3,所以0.20.2<0.30.2.选项B 中,因为函数y =1-3x 在(0,+∞)上为减函数, 又2<3,所以1-32>1-33.选项C 中,0.8-1=1.25,y =1.25x 在R 上是增函数,0.1<0.2,所以1.250.1<1.250.2,即0.8-0.1<1.250.2. 选项D 中,1.70.3>1,0.93.1<1. 所以1.70.3>0.93.1.D比较指数式大小的方法:①当底数是同一个正数时,用指数函数模型比较两个值的大小; ②当指数是同一个实数时,用幂函数模型比较两个值的大小;③当底数和指数都不同时,常常借助中间量,如“0”“1”等进行比较.2.(2016·全国卷Ⅰ)若a >b >0,0<c <1,则(B) A .log a c <log b c B .log c a <log c b C .a c <b c D .c a >c b根据式子的特征,构造函数并利用其单调性进行比较.对于选项A ,log a c =lg c lg a ,log b c =lg clg b ,因为0<c <1,所以lg c <0.而a >b >0,所以lg a >lg b ,但不能确定lg a ,lg b 的正负,所以log a c 与log b c 的大小不能确定.对于选项B ,log c a =lg a lg c ,log c b =lg b lg c ,而lg a >lg b ,两边同乘一个负数1lg c ,不等号方向改变,所以log c a <log c b ,所以选项B 正确.对于选项C ,利用y =x c (0<c <1)在第一象限内是增函数,可得a c >b c ,所以选项C 错误. 对于选项D ,利用y =c x (0<c <1)在R 上为减函数,可得c a <c b ,所以选项D 错误,故选B.幂函数的图象和性质的应用若点(2,2)在幂函数f (x )的图象上,点(2,12)在幂函数g (x )的图象上,定义h (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤g (x ),g (x ),f (x )>g (x ),试求函数h (x )的最大值以及单调区间.设f (x )=x α,因为点(2,2)在f (x )的图象上,所以(2)α=2,所以α=2,所以f (x )=x 2; 又设g (x )=x β,因为点(2,12)在g (x )的图象上,所以2β=12,所以β=-1,所以g (x )=x -1.在同一坐标系中画出函数f (x )与g (x )的图象,如图所示(其中粗线表示h (x )的图象):则有h (x )=⎩⎪⎨⎪⎧x -1, x <0,x 2, 0<x ≤1,x -1, x >1.根据图象可知h (x )的最大值等于1,单调递增区间为(0,1],单调递减区间为(-∞,0)和(1,+∞).本题在两个函数f (x )与g (x )的基础上定义了一个新的函数h (x ),求解的关键是理解h (x )的意义,由定义可知h (x )是取f (x )和g (x )中的较小者.作出图象即可得到其最值和单调区间.3.点(2,2)在幂函数f (x )的图象上,点(-2,14)在幂函数g (x )的图象上,问当x 为何值时,有:(1)f (x )>g (x ); (2)f (x )=g (x ); (3)f (x )<g (x ).设f (x )=x α,则由题意得2=(2)α, 所以α=2,即f (x )=x 2.再设g (x )=x β,则由题意得14=(-2)β,所以β=-2.即g (x )=x -2.在同一坐标系中作出f (x )与g (x )的图象,如图所示.由图象可知:(1)当x >1或x <-1时,f (x )>g (x ); (2)当x =±1时,f (x )=g (x ); (3)当-1<x <1,且x ≠0时,f (x )<g (x ).1.幂函数y =x α的性质和图象,由于α的取值不同而比较复杂,因此,重点要求掌握y =x ,y =x 2,y =x 3,y =1x ,y =x 12这五种幂函数的图象和性质.2.幂函数y =x α(α为常数)的定义域是使解析式有意义的自变量x 的取值范围.当α为分数指数幂时,常常将其改写成根式形式,再根据根式有意义,得出其定义域.对幂函数的研究,关键是掌握第一象限的图象和性质,在此基础上,进而通过定义域的研究确定y 轴左侧是不是有图象,通过对奇偶性的研究,确定在y 轴左侧的图象和性质.3.幂函数y =x α在第一象限的图象特征:(1)α的正负:α>0时,图象经过点(0,0)和点(1,1),在第一象限的部分“上升”;α<0的图象不过点(0,0),经过点(1,1),在第一象限的部分“下降”.(2)曲线在第一象限的凹凸性:α>1时曲线下凹,0<α<1时曲线上凸,α<0时曲线下凹.4.幂函数的主要应用有:比较大小、解不等式、求参数的范围等,要注意以幂函数为载体和其他知识结合的综合问题的处理.。

相关文档
最新文档