三年级数学奥数讲座和差倍问题二
小学奥数三年级寒假(冬季)-和差倍问题讲义

和、差、倍问题一、和差问题【含义】已知两个数量的和与它们的差,求两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2;小数=(和-差)÷2【解题思路】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
【例1】甲乙两班共学生98 人,甲班比乙班多6 人,求两班各有多少人?【练一练】长方形的长和宽之和为18 厘米,长比宽多2 厘米,求长方形的面积?【练一练】小明2天读完一本75页的故事书,第一天比第二天少读5页,小明这两天各读书多少页?【练一练】甲乙两车原来共装苹果97 筐,从甲车取下14 筐放到乙车上,结果甲车比乙车还多 3 筐,两车原来各装苹果多少筐?【练一练】小米期末考试中语文、数学和英语的平均成绩是95分,数学比语文多得了6分,英语比语文多得了9分。
小明这三门功课各得了多少分?二、和倍问题【含义】已知两个数的与这两个数的倍数关系,要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】总和÷(倍数+1)=较小的数;总和-较小的数=较大的数;较小的数×倍数=较大的数【解题思路】简单的题目直接利用公式,复杂的题目变通后利用公式。
【例2】果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?【练一练】东西两个仓库共存粮480 吨,东库存粮数是西库存粮数的2 倍,求两库各存粮多少吨?【练一练】甲站原有车52 辆,乙站原有车32 辆,若每天从甲站开往乙站28 辆,从乙站开往甲站24 辆,几天后乙站车辆数是甲站的2 倍?【练一练】甲、乙、丙三数之和是360,又知甲为乙的3倍,丙为乙的2倍。
甲、乙、丙各是多少?【练一练】被除数和除数的和为120,商是7.被除数和除数各是多少?三、差倍问题【含义】已知两个数的差及两个数的倍数关系,要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】两个数的差÷(倍数-1)=较小的数;较小的数×倍数=较大的数【解题思路】要找出差所对应的倍数,先求出1倍数,再求出几倍数。
【秒懂奥数】3年级和倍,差倍,和差问题详解

【秒懂奥数】3年级和倍,差倍,和差问题详解挑战级数:★★1.小明和小亮玩“石头、剪刀、布”的游戏.两人用同样多的石子做记录,输一次,就给对方一颗石子.他们做了许多次游戏,每次都决出胜负,其中小明胜了3次,小亮增加了9颗石子.那么他们共做了多少次游戏?[分析与解]小亮增加了9颗石子,则小亮比小明多胜9次,小明胜了3次,那么小亮胜了3+9=12次,又因为每次都决出胜负,所以共做了3+12=15次游戏.挑战级数:★★2.用杯子往一个空瓶里倒水,如果倒进6杯水,连瓶共重680克,如果倒进9杯水,连瓶共重920克,求空瓶的重量?[分析与解]第二次多倒入3杯水,瓶子连同水的重量增加了920-680=240克,那么1杯水重240÷3=80克,则6杯水重80×6=480克,所以瓶子重680-480=200克.挑战级数:★★3.某学生到工厂搞勤工俭学,按合同规定,干满30天,工厂将付给他一套工作服和70元钱.但他工作了20天,由于学校另有安排,他便中止了合同,工厂只付给他一套工作服和20元钱.那么,这套工作服值多少元?[分析与解]这名学生少工作10天,工资少了70-20=50元,那么30天的工资应为50×(30÷10)=150元,而实际只是给他一套工作服和70元钱,所以工作服值150-70=80元.挑战级数:★★★4.甲、乙、丙3人同乘长途汽车,3人所带行李都超过免费重量,要另付行李费.甲付2角,乙付4角,丙付6角.3人行李共重150千克,如果一个人带这些行李超过的重量就要付行李费2元4角,问每人可免费带行李多少千克?[分析与解]3人分开携带自己的行李,共花了2+4+6=12角钱,如果一个人携带这些行李则多花24-12=12角钱,这是因为一人携带比三人携带少了2倍的免费行李重量,所以免费的行李重量相当与12÷2=6角钱.把甲超出的行李重量看成1份,那么免费重量为3份,乙超出的行李重量为2份,丙超出的行李重量为3份.有三人行李共1+2+3+3×3=15份,为150千克,所以1份为150÷15=10千克,那么每人可带的免费行李重10×3=30千克.挑战级数:★★5.两组学生参加义务劳动,甲组学生人数是乙组的3倍,而乙组的学生人数比甲组的3倍少40人,求参加义务劳动的学生共有多少人?[分析与解]甲组人数是3倍乙组人数,即3倍乙组人数9倍甲组的人数少40×3=120人,那么8倍甲组的人数等于120人,所以甲组有120÷8=15人,则乙组有15÷3=5人,那么参加义务劳动的学生共有15+5=20人.挑战级数:★★6.某工厂接到制造6000个A种零件和2000个B种零件的订货单.该厂共有210名工人,每人制造5个A种零件和制造3个B种零件所用时间相等.现把全厂工人分成甲、乙两组分别制造A,B两种零件,并同时投入生产,那么当甲、乙两组各分配多少人时,完成订货单所用时间最少?[分析与解]如果生产同样多的A、B两种零件,生产A种零件的人数为3份,生产B 种零件的人数为5份.现在A种零件是B种零件的3倍,所以生产A种零件的人数为9份,生产B 种零件的人数为5份.共有210名工人,那么生产A组零件的甲组应为210÷(9+5)×9=135人,则生产B组零件的乙组应为210-135=75人.此时A、B零件按订单同时完成,所用时间最少.挑战级数:★★7.仓库存有一批钢材,由两个汽车队负责运往工地.已知甲队单独运要20天,乙队每天可运20吨.现在由甲、乙两队同时运输,干了6天之后,甲队汽车坏了一辆,每天少运4吨,结果又运6天才全部运完.那么这批钢材共有多少吨?[分析与解]我们可以把甲队坏的车换到乙队,让甲队的效率不变,则乙队每天少运4吨,即16吨.甲队工作了6+6=12天,剩下的工作都是由乙队来完成的,那么乙队完成的工作相当与甲队20-12=8天完成的工作.乙队完成了6×20+6×16=216吨,则甲队正常的一天运216÷8=27吨,于是这批钢材共有27×20=540吨.挑战级数:★★8.李师傅某天生产了一批零件,他把它们分成了甲、乙两堆.如果从甲堆零件中拿15个放到乙堆中,则两堆零件的个数相等;如果从乙堆零件中拿15个放到甲堆中,则甲堆零件的个数是乙堆的3倍.那么,甲堆原来有零件多少个?李师傅这天共生产零件多少个?[分析与解]显然,甲堆原有的零件比乙堆多30个,而甲队原有的零件又是乙队零件的3倍少15×(3+1)=60个,所以2倍乙堆零件减去60为30.即乙堆原有零件为(60+30)÷2=45个,那么甲堆原有零件45+30=75个,李师傅这天共生产零件45+75=120个.挑战级数:★★★9.箱子里有红、白两种玻璃球,红球数是白球数的3倍多2只.每次从箱里取出7只白球、15只红球,如果经过若干次以后,箱子里剩下3只白球、53只红球,那么,箱子里原有红球数比白球数多多少只?[分析与解]设共取球x次,则取走红球15x,白球5x只.有(15x+53)=3(7x+3)+2,解得x=7.所以原有红球15x+53=158,白球7x+3=52.所以红球比白球多106只.解法二:①剩下的红球数53只减去2只是51只,它恰好是3的倍数,并且有:51-3×3=42只,这说明剩下的红球数减2后是剩下的白球数的3倍多42只;②如果每次取出的红球数都是白球数的3倍,那么每次应该取出3×7=21只;③实际每次取出的红球数比假设的少:21-15=6只;④每次少取6只,总共比假设少取42只,那么取了42÷6=7次;⑤箱子里原有红球比白球多:7×(15-7)+(53-3)=106只.挑战级数:★★★10.有红、白球若干个.若每次拿出1个红球和1个白球,则拿到没有红球时,还剩下50个白球;若每次拿走1个红球和3个白球,则拿到没有白球时,红球还剩下50个.那么这堆红球、白球共有多少个?[分析与解]若每次拿出1个红球和1个白球,则没有红球时,还剩下50个白球即说明白球比红球多50个;若每次拿出1个红球和3个白球,则没有白球时,还剩下50个红球,那么红球还可以拿50次,则白球比红球的3倍少3×50=150个.则红球=(150+50)÷(3-1)=100个,白球=100+50=100×3-150=150个.这堆红球、白球共有100+150=250个.挑战级数:★★★11.某人以分期付款的方式买一台电视机.买时第一个月付款750元,以后每月付150元;或前一半时间付300元,后一半时间付100元.两种付款方式的付款总数及时间都相同.这台电视机的价格是多少元?[分析与解]显然有第二种付款方式相当于每月付(300+100)÷2=200元,则等同变化后第一种付款方式较第二种付款方式的第一个月多支出了750-200=550元.但以后,每月少支出200-150=50元,所以第一种付款方式中付了550÷50=11个月的150元.那么付款的总时间为11+1=12个月,所以这台电视机的价格为200×12=2400元.解法二:设有x个月,那么第一种付钱方式所付的总钱数:750+150×(x-1)元;第二种付钱方式所付的总钱数:(300+100)×x÷2.由于电视机价格不变.所以有:750+150×(x-1)=(300+100)×x÷2解得:600+150x=200x,x=12,电视机的价格为:600+150×12=2400元.挑战级数:★★12.甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人.问甲班和丁班共多少人?[分析与解]有甲、乙、丙、丁4个班的人数之和为83+88=171人,除去乙、丙两班,剩下的即为甲、丁两班,所以甲、丁两班有171-86=85人.挑战级数:★★★13.小木、小林、小森3人去看电影.如果用小木带的钱去买3张电影票,还差5角5分;如果用小林带的钱去买3张电影票,还差6角9分;如果用3个人带去的钱去买3张电影票,就多3角.已知小森带了3角7分,那么买一张电影票要用多少钱?[分析与解]如果用小木的钱买3张票,那么差55分;如果用小林带的钱买3张票,那么差69分;如果用三个人带的钱买3张票,那么多30;小森带了37分,所以小木和小林带的钱买6张票差为55+69=114分,而买3张还差37-30=7分.所以一张电影票的价钱为(114-7)÷(6-3)=117÷3=39分.挑战级数:★★14.有3个箱子,如果两箱两箱地称它们的重量,分别是83千克、85千克和86千克.问:其中最轻的箱子重多少千克?[分析与解]这3个箱子的总重量的2倍为83+85+86=254千克,则3个箱子共重254÷2=127千克.当其中的两个箱子的重量和最大时,剩下的第三个箱子最轻,所以最轻的箱子重127-86=41千克.挑战级数:★★★15.三个连续的自然数,后面两个数的积与前面两个数的积之差是114,那么这三个数中最小的数是多少?[分析与解]如果设中间的那个数为1份,有后面两个数的积与前面两个数的积相差2份,为114.所以,中间那个数,即1份为114÷2=57,所以最小的那个数为57-1=56。
小学三年级奥数第27讲 差倍问题(二)附答案解析

第27讲差倍问题(二)一、专题简析:有些差倍问题比较复杂,不能直接利用公式进行解答,这时需要我们小朋友仔细审题,尤其注意一些隐含条件,同时借助线段图帮助理解题意,从而找到解题方法。
较复杂的差倍应用题,数量关系比较隐蔽。
先依题意画出线段图,数量关系就会比较清晰地展现出来,然后借助线段图找出两个数的差以及所对应的倍数,再利用公式进行解答。
二、精讲精练例1:有两袋玉米,大袋比小袋多56千克,如果将小袋的玉米吃掉4千克,这时大袋的玉米重量是小袋的4倍。
两袋玉米原来各重量多少千克?练习一1、有两箱玩具,第一盒比第二盒多60只。
如果从第二盒中取出3只,这时第一盒的只数是第二盒的8倍。
求两箱玩具原来各有多少只?2、一个书架上放着一些书,第二层比第一层多12本。
如果从第一层中拿走6本,这时第二层的本数是第一层的4倍。
求第一、第二层原来各有多少本书?例2:有甲、乙两桶色拉油,如果向甲桶中倒入8千克,则两桶色拉油就一样重;如果向乙桶中倒入12千克,乙桶的色拉油就是甲桶的5倍。
甲、乙两桶原来各有色拉油多少千克?练习二1、有甲、乙两桶水,如果向甲桶中倒入10千克水,两桶水就一样多;如果向乙桶中倒入4千克水,乙桶的水就是甲桶的3倍。
原来甲、乙两桶各有多少千克水?2、三(1)班同学参加英语比赛,如果男生少去1人,男、女参赛人数相等;如果女生少去1人,男生参赛人数是女生的2倍。
三(1)班参加英语比赛的男、女生各几人?例3 :甲的钱数是乙的3倍,甲买一套180元的《百科大全》,乙买一套30元的故事书后,两人余下的钱一样多。
甲原来有多少钱?练习三1、甲的钱数是乙的4倍,甲买了一只30元的书包,乙买了一枝6元的钢笔后,两人余下的钱一样多。
甲原来有多少钱?2、丹丹的钱数是小敏的5倍,丹丹买了一套115元的衣服,小敏买了一双15元的鞋子后,两人余下的钱一样多。
丹丹原来有多少钱?例4:学校里白粉笔的盒数是彩色粉笔的4倍,如果白粉笔和彩色粉笔各购进12盒,那么白粉笔的盒数是彩色粉笔的3倍。
第2周差倍问题(三年级奥数)

第二讲差倍问题知识导引:1、简单的差倍处理2、画线段图典题精讲例1、乐乐老师买来一些糖果分给田田和牛牛,牛牛分到的是田田的3倍,田田分到的比牛牛少30颗,田田和牛牛各分到多少颗糖?例2、学校买来的足球比排球多18个,足球的个数比排球的2倍少4个。
学校买来的足球和排球各多少个?例3、甲仓库存放大米500袋,乙仓库存放大米200袋,现从两个仓库里运走同样袋数的大米,结果甲仓库剩下的大米正好是乙仓库剩下大米的3倍,问从两个仓库里各运走大米多少袋?例4、阿普和丁丁做题,如果阿普再做4道就和丁丁做的一样多,如果丁丁再做6道就是阿普的3倍。
阿普和丁丁各做了多少道题?例5、两筐重量相等的苹果,从甲筐取出7千克,乙筐加上19千克,这时乙筐重量是甲筐的2倍。
原来两筐各有多少千克苹果?例6、苹果的个数是梨的3倍,如果苹果加上6个,梨也加上6个,此时苹果的人数是梨的个数的2倍。
问原来苹果、梨各有多少个?练练不忘练1、乐乐老师比丁丁大24岁,今年乐乐老师的年龄正好是丁丁年龄的3倍,你知道今年乐乐老师多少岁?丁丁多少岁吗?练2、三年级(1)班女生比男生多15人,女生的人数比男生的4倍少3人,则三年级(1)班有男生和女生各多少人?练3、实验小学一校区人数比实验小学二校区人数少540人。
第三校区建成后,从一、二校区各调走200人到第三校区,这时实验小学二校区人数恰好是实验小学一校区人数的4倍,那么实验小学一校区和实验小学二校区原来各有多少人?练4、甲、乙两个数,如果甲数加上50,就等于乙数,如果乙数加上350就等于甲数的3倍,问甲、乙各是多少?练5、甲、乙两桶油重量相等,如果甲桶取走油26千克,乙桶加入油14千克,这时乙桶油的重量是甲桶油重量的3倍。
那么,两桶油原来分别是多少千克?练6、今年阿普的年龄是牛牛年龄的5倍,22年后,阿普的年龄是牛牛年龄的3倍。
今年阿普和牛牛各是多少岁?。
第27讲 巧解差倍(下)

课前检测
1、 乐乐、可可两人原有一样多的钱,乐乐拿出15元给可可 后,可可的钱是乐乐里的4倍,乐乐与可可两人原来各有多 少元钱?
解: (1)找差值(可可现在比乐乐多): 15+15=30(元)
(2)倍数差: 4-1=3(倍) (3)乐乐现有钱: 30÷3=10 (元) (4)两人原有钱数: 10+15=25(元)
答: 2年后,妈妈的年龄是女儿年龄的4倍。
课前检测 5、已知除数比被除数少50,商是6,被除数与除数各是多少?
【思路导航】 被除数 = 商× 除数
大数 倍数
小数
①找差值(被除数比除数多): 50
②求倍数差:
6-1= 5(倍)
③求1倍数(除数): 50÷5=10
④求几倍数(被除数): 10×6=60
或 8×9+5=77
即:被除数为77,商为8。
典例示范 【例1】有两袋玉米,大袋比小袋多56千克,如果将小袋的玉 米吃掉4千克,这时大袋的玉米重量是小袋的4倍。两袋玉米 原来各重量多少千克?
【思路导航】
①找差值(现在大袋比小袋多): 56+4=60(千克) ②倍数差: 4-1=3(倍) ③求1倍数(小袋现有玉米):60÷3=20 (千克) ④求小袋原有玉米: 20+4=24(千克) ⑤求大袋原有玉米: 56+24=80(千克)
50×2-10 = 90(千克)
+50千克 4份 少10千克
(2)倍数差: 4-1=3(倍) 甲
(3)乙桶现有水量: 90÷3 =30 (千克)
-50千克
1份
乙
(4)乙桶原有水量: 30+50=80(千克)
三年级奥数和倍和差问题

三碗不过岗(和倍和差问题)知识图谱三碗不过岗知识精讲一.和倍问题1.概念:条件中给出了和的关系和倍数关系,求具体每个数量大小的问题.2.解决方法(1)有时要将条件巧妙的转化成和倍问题.(2)根据题目意思,想好最基本的“1”份取多少.一般选取较少的数量画成一段,再按照题目条件中所给的数量关系画出其他量的长度.(比如:甲是乙的3倍,就应该把乙取为“1”份).(3)画线段图,找“总量”与“1”段之间的关系,设法求出“1”段代表的数量.严格按照题目的意思来画图,多思考如何把题目的条件在图中表现出来.(4)当一个量不是另一个量的整数倍,而是“几倍多几”或“几倍少几”时,可以把多的去掉,或者把少的补上,把问题变成整数倍来解决.二.和差问题:1.概念:条件中给出了和的关系和差的关系,求具体每个数量大小的问题.2.解决方法:()2=+÷较大数和差.较小数和-差;()2=÷三点剖析本讲主要培养学生的实践应用能力,其次学生的运算能力.本讲内容是在基本应用题的基础上,继续学习和差与和倍问题.从实际生活出发,让学生了解和差与和倍的基本题型,掌握和差与和倍的解题思路等内容.后续课程还会继续学习和差倍问题.课堂引入例题1、江湖人称“行者武松”的武二郎回家探望哥哥经过景阳冈,在山头前发现有家小酒家,挂了面旗子,上面写着“三碗不过岗”.武松觉得奇怪,就叫来了店小二,店小二说:“咱家的酒那可是出了名的烈,喝下三碗酒的,就没人能清醒的走过山头!”武松并不相信,他觉得自己酒量甚好,怎会被这三碗酒喝趴下.这时,一位自称好汉的“大侠”也来喝酒,言语中颇有些不服气武松.两人很快就拼上酒了,直到武松摇摇晃晃的走出酒家,“大侠”早已经趴在桌上了.店小二数了数,两人一共喝了26碗酒,武松比“大侠”要多10碗.武松的酒量真厉害!武松和这个“大侠”到底各喝了多少碗酒呀?你能算一算武松到底喝了几碗酒吗?例题2、高斯小学共有学生1500人,其中男生人数是女生的2倍.请问:男、女生各有多少人?和倍问题例题1、如图,长绳的长度是短绳的________倍,如果长绳长27米,那么短绳的长度是________米.如果两根绳子共长48米,那么短绳的长度为________米.注意审题哦~例题2、(1)高斯先生请柯小南和唐小虎去搬书,柯小南和唐小虎一共搬了100本书,其中唐小虎搬的是柯小南的3倍,那么唐小虎搬了多少本书?(2)妈妈买了一件上衣和一条裤子共用去240元,上衣的价钱是裤子的3倍,上衣和裤子各要多少元钱?(3)两数的和是432,商是7,这两个数各是多少?我们可以画线段图来表示哦~例题3、(1)有一些羊和狼,羊的只数比狼的4倍多2只,羊和狼共42只.那么狼有多少只?(2)两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是多少?“几倍多几”的问题可以先去掉多几,再计算.例题4、(1)水果店运来梨80吨,比西瓜的2倍少14吨.运来西瓜多少吨?(2)果园里梨树和苹果树共有67棵,梨树比苹果树的2倍少2棵,苹果树有多少棵?(3)甲乙两个冷藏库原来共存肉92吨.从甲库运出28吨后,乙库存肉比甲库的4倍少6吨.甲库原来存肉多少吨?乙库原来存肉多少吨?“几倍多几”是先去掉多几,那“几倍少几”是不是应该加上少几呢?例题5、(1)甲乙两个仓库原来共存粮200吨.后来从甲仓库运出30吨,给乙仓库运进10吨.这时甲仓库是乙仓库存粮的2倍,则甲仓库原来存粮________吨.(2)两数相除,商是5,余数是7,被除数、除数、商、余数的和是187,则被除数为________.随练1、猪八戒和孙悟空去摘蟠桃,孙悟空摘了12个,猪八戒摘的数量是孙悟空的3倍,回去后他们将桃子交给唐僧,唐僧将桃子平均分给孙悟空、猪八戒和沙僧三人,那么沙僧分得了多少个?随练2、两个数的和是363,用较大的数除以较小的数,得商16余6,则这两个数中较大的是多少?随练3、公园里有松树和柏树共98棵,其中松树比柏树的3倍少2棵,柏树有________棵.和差问题例题1、(1)体育室里篮球和足球共46个,并且篮球比足球多6个,那么足球有几个?(2)唐小虎和柯小南共有140个金币,唐小虎比柯小南多20个金币,那么唐小虎有多少个金币?这个,是不是也可以画线段图呢?例题2、(1)哥哥和弟弟平均年龄是12岁,其中哥哥比弟弟大2岁,那么哥哥和弟弟现在各________岁.(2)唐小虎和唐小果共有30颗巧克力.如果唐小果给唐小虎5颗,那么唐小果比唐小虎多2颗,那么原来唐小虎有________颗巧克力.没有和差关系,也没有和倍关系,怎么办呐?例题3、 (1)李老师桌子上有一大叠作业本,其中有162本不是一班的,143本不是二班的,一班和二班的共有87本,那么二班的作业本共有多少本?(2)甲乙两人共有46元钱,甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等.甲乙两人原来各有多少钱?(3)哥弟俩共有邮票39枚,如果哥哥给弟弟7枚后,就比弟弟少3枚,那么哥弟俩原来各有多少枚邮票?随练1、 体育室里篮球和足球共46个,并且篮球比足球多6个,那么足球有________个.随练2、 哥哥和弟弟现在共19岁,其中哥哥比弟弟大3岁,哥哥和弟弟现在各多少岁?随练3、 艾小莎家和柯小南家共有52个包子.如果艾小莎给柯小南5个,则艾小莎还比柯小南多2个.请问原来艾小莎有多少个包子?易错纠改例题1、 一个书架分上下两层,共放有图书34本.如果从上层取出8本图书放入下层,那么下层就比上层多2本.原来上下两层各有图书多少本?这个是和差问题,但是我们要先找到差是多少.上层给下层给了8本,下层比上册多2本,差是不是应该是?小莎,我们之前学过的移多补少,应该是“给一差二”的.那列式就应该是,这是差.剩下的用和差问题的基本方法解决就好了.拓展1、图书馆买回来60本文艺书和科普书,其中文艺书的本数是科普书的3倍,文艺书有_______本.2、文雯有铅笔和钢笔共18支,其中铅笔比钢笔多12支,那么文雯有__________支铅笔.3、某市去年一年365天内不下雨的天数比下雨的天数的3倍多5天,那么去年一年中该市有_______天下雨.4、果园里苹果树和梨树共55棵,其中梨树的棵数比苹果树的2倍少5棵,那么梨树有__________棵.5、两数之和是792,某个数的个位为0,若去掉0,与另一个数相同,两数分别为________、________.6、饲养场养鸡、鸭共250只,鸡的只数比鸭多3倍.饲养场养鸡、鸭各多少只?7、哥弟俩共有邮票39枚,如果哥哥给弟弟7枚后,就比弟弟少3枚,那么哥弟俩原来各有多少枚邮票?8、甲、乙两个冷库共存鸡蛋6250箱,先从甲库运走1100箱后,这时乙库存的鸡蛋比甲库剩下的2倍还多350箱,求甲、乙两库原来各存鸡蛋多少箱?9、分析并口述题目的做题思路及方法.师徒两人共加工105个零件,师傅加工的个数比徒弟的3倍还多5个,师傅和徒弟各加工零件多少个?。
奥数讲座-第二讲 和差、和倍问题

奥数讲座第一讲一般复合应用题第二讲和差、和倍问题第三讲差倍、年龄问题第四讲盈亏问题第五讲鸡兔同笼问题第六讲容斥原理第七讲植树问题第八讲方阵问题第九讲平均数问题第十讲行程问题(一)第十一讲行程问题(二)第十二讲数的整除第十三讲分解质因数第十四讲求因数个数第十五讲最大公因数和最小公倍数第十六讲余数问题第十七讲周期问题第十八讲尾数与平方数第十九讲奇偶分析第二十讲数列第二十一讲幻方和数阵第二十二讲一笔画第二十三讲分数应用题第二十四讲比和比例第二十五讲还原问题第二十六讲牛吃草问题第二讲和差、和倍问题2008年12月02日星期二上午 00:031、某校六年级一班有学生49人,其中男生比女生多5人,这个班男、女生各多少人?(49-5)÷2=22人 22+5=27人2、把325分成两个数,使两数的和是两数差的5倍,两数各是多少?325÷5=65 (65+5)÷2=195 325-195=1303、少先队员种柳树和杨树共148棵,柳树的棵数比杨树棵数的2倍多4棵。
求两种树各种了多少棵?(148-4)÷(1+2)=48 148-48=1004、甲、乙两数的和是32,甲数的3倍与乙数的5倍的和是122。
求甲乙两数各是多少?(122-32×3)÷(5-3)=13 32-13=195、甲、乙两打字员合打一份稿件,按分工,平均每人每小时打14页,3小时即可打完。
当两人打完稿件时,乙发现甲比自己多打了12页。
甲、乙两打字员打这份稿件时各打字多少页?(14×2×3-12)÷2=36 36+12=486、甲站有汽车192辆,乙站有汽车48辆。
每天从甲站开往乙站的汽车是21辆,从乙站开往甲站的是24辆。
经过几天后,甲站的汽车辆数是乙站的7倍?(192+48)÷(1+7)=30 (48-30)÷(24-21)=67、有甲、乙、丙三袋化肥。
小学三年级数学奥数 第27讲 差倍问题(二)

第27讲差倍问题(二)一、专题简析:有些差倍问题比较复杂,不能直接利用公式进行解答,这时需要我们小朋友仔细审题,尤其注意一些隐含条件,同时借助线段图帮助理解题意,从而找到解题方法。
较复杂的差倍应用题,数量关系比较隐蔽。
先依题意画出线段图,数量关系就会比较清晰地展现出来,然后借助线段图找出两个数的差以及所对应的倍数,再利用公式进行解答。
二、精讲精练例1:有两袋玉米,大袋比小袋多56千克,如果将小袋的玉米吃掉4千克,这时大袋的玉米重量是小袋的4倍。
两袋玉米原来各重量多少千克?练习一1、有两箱玩具,第一盒比第二盒多60只。
如果从第二盒中取出3只,这时第一盒的只数是第二盒的8倍。
求两箱玩具原来各有多少只?2、一个书架上放着一些书,第二层比第一层多12本。
如果从第一层中拿走6本,这时第二层的本数是第一层的4倍。
求第一、第二层原来各有多少本书?例2:有甲、乙两桶色拉油,如果向甲桶中倒入8千克,则两桶色拉油就一样重;如果向乙桶中倒入12千克,乙桶的色拉油就是甲桶的5倍。
甲、乙两桶原来各有色拉油多少千克?练习二1、有甲、乙两桶水,如果向甲桶中倒入10千克水,两桶水就一样多;如果向乙桶中倒入4千克水,乙桶的水就是甲桶的3倍。
原来甲、乙两桶各有多少千克水?2、三(1)班同学参加英语比赛,如果男生少去1人,男、女参赛人数相等;如果女生少去1人,男生参赛人数是女生的2倍。
三(1)班参加英语比赛的男、女生各几人?例3 :甲的钱数是乙的3倍,甲买一套180元的《百科大全》,乙买一套30元的故事书后,两人余下的钱一样多。
甲原来有多少钱?练习三1、甲的钱数是乙的4倍,甲买了一只30元的书包,乙买了一枝6元的钢笔后,两人余下的钱一样多。
甲原来有多少钱?2、丹丹的钱数是小敏的5倍,丹丹买了一套115元的衣服,小敏买了一双15元的鞋子后,两人余下的钱一样多。
丹丹原来有多少钱?例4:学校里白粉笔的盒数是彩色粉笔的4倍,如果白粉笔和彩色粉笔各购进12盒,那么白粉笔的盒数是彩色粉笔的3倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年级奥数讲座和差倍问题(二)
1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。
铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?
分析:和差基本问题,和1127米,差2270米,大数=(和+差)/2,小数=(和-差)/2。
解:铁路桥长=(11270+2270)/2=6770米,公路桥长=(11270-2270)/2=4500米。
2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。
分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。
解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。
3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?
分析:从甲筐取出放入乙筐,总数不变。
甲筐原来比乙筐多19千克,后来比乙筐少3千克,也即对19千克进行重分配,甲筐得到的比乙筐少3千克。
于是,问题就变成最基本的和差问题:和19千克,差3千克。
解:(19+3)/2=11千克,从甲筐取出11千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克。
4、在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?
分析:被减数=减数+差,所以,被减数和减数与差的和就各自等于被减数、减数与差的和的一半,即:
被减数=减数+差=(被减数+减数+差)/2。
因此,减数与差的和= 120/2=60。
这样就是基本的和倍问题了。
小数=和/(倍数+1)
解:减数与差的和=120/2=60,差=60/(3+1)=15。
5、已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少?
分析:两个数的商是4,即大数是小数的4倍,因此,这是一个基本的差倍问题。
小数=差/(倍数-1)。
解:两个数中较小的一个=39/(4-1)=13。
6、姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟,妹妹做算术、英语两门练习共用了44分钟,那么妹妹做英语练习用了多少分钟?
分析:姐姐做自然练习的时间是一定的,比妹妹做算术和英语的时间分别差了48分和42分,说明妹妹做英语比做算术多用了48-42=6分钟,仍然是一个和差问题。
解:妹妹做英语练习用时=(44+6)/2=25分钟。
7、甲、乙、丙共有100本课外书。
甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,而且余数都是1。
那么乙有书多少本?
分析:甲的本数除以乙的本数,商5余1,说明甲是乙的5倍多1,丙的本数除以甲的本数,商5余1,说明丙是甲的5倍多1,是乙的25倍多6(5+1),因此,这是一个和倍问题。
解:乙的本数=(100-1-6)/(1+5+25)=3本。
8、小明、小红、小玲共有73块糖。
如果小玲吃掉3块,那么小红与小玲的糖就一样多;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍。
问小红有多少块糖?
分析:如果小玲吃掉3块,那么小红与小玲的糖就一样多,说明小玲比小红多3块;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍,即小明加2是小红减2后的2倍,说明小明是小红的2倍少6(2*2+2)。
因此,这是一个和倍问题。
解:小红的颗数=(73-3+6)/(1+1+2)=19块。
9、有货物108件,分成四堆存放在仓库时,第一堆件数的2倍等于第二堆件数的一半,比第三堆的件数少2,比第四堆的件数多2.问每堆各存放多少件?
分析:第一堆件数的2倍等于第二堆件数的一半,第二堆是第一堆的4倍;比第三堆的件数少2,第三堆是第一堆的2倍多2;比第四堆的件数多2,第四队是第一堆的2倍少2;和倍问题。
解:第一堆的件数=(108-2+2)/(1+4+2+2)=12件,第二堆的件数=12*4=48件,第三堆的件数=2*12+2=26件,第四堆的件数=2*12-2=22件。
10、已知△,○,□是三个不同的数,并且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那么△+○+□等于多少?
分析:由一、二可知,□是△的2倍,将它代换到三中,就是三个△加2个○等于60,而△+△+△=○+○,所以,△+△+△=○+○=60/2=30,△=10,○=15,□=20。
解:△+○+□=10+15+20=45。
11、用中国象棋的车、马、炮分别表示不同的自然数。
如果,车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?
分析:车÷马=2,车是马的2倍;炮÷车=4,炮是车的4倍,是马的8倍;炮-马=56,炮比马大56。
差倍问题。
解:马=56/(8-1)=8,炮=56+8=64,车=8*2=16,车+马+炮=8+64+16=88。
12、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?
分析:剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,说明圆珠笔比练习本贵1角4分+8角=9角4分,那么,3支圆珠笔就要比三本练习本贵94*3=282分=2元8角2分,这样,就相当于在10元中扣除2元8角2分加8角,正好可以买11本练习本,所以,每本练习本的价钱是(1000-282-80)/11=58分=5角8分。
解:圆珠笔-练习本=14+80=94分,每本练习本的价钱是(1000-94*3-80)/11=58分=5角8分,圆珠笔的售价=58+94=152分=1元5角2分。
13、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。
问:甲、乙原订每天自学的时间是多少分钟?
分析:甲每天增加自学时间半小时,乙每天减少自学时间半小时,甲比乙多自学一个小时,乙自学6天的时间仅相等于甲自学一天的时间,甲是乙的6倍,差倍问题。
解:乙每天减少半小时后的自学时间=1/(6-1)=1/5小时=12分钟,乙原计划每天自学时间=30+12=42分钟,甲原计划每天自学时间=12*6-30=42分钟。
14、一大块金帝牌巧克力可以分成若干大小一样的正方形小块。
小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。
小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。
那么他们开始吃第1小块的时间是几时几分?
分析:小明每隔20分钟吃1小块,小强每隔30分钟吃1小块,小强比小明多间隔10分钟,小明14时40分吃最后1小方块,小强18时吃最后1小方块,小强比小明晚3小时20分,说明在吃最后一块前面共有(3*60+20)/10=20个间隔,即已经吃了20块。
那么,20*20=400分钟=6小时40分钟,14时40分-6小时40分=8时。
解:18时-14时40分=3小时20分=3*60+20=200分钟,已经吃的块数=200/(30-20)=20块,小明吃20块用时20*20=400分钟=6小时40分钟,开始吃第一块的时间为14时40分-6小时40分=8时。