无锡市滨湖区九年级数学期末试卷
无锡滨湖区河埒中学初三数学九年级上册期末复习题及答案

无锡滨湖区河埒中学初三数学九年级上册期末复习题及答案一、选择题1.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-B .3C .3-D .3 2.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( ) A .5 B .4C .3D .23.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm4.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离B .相切C .相交D .无法判断5.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°6.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90 B .90,90 C .88,95 D .90,95 7.在Rt △ABC 中,AB =6,BC =8,则这个三角形的内切圆的半径是( )A .5B .2C .5或2D .27-18.下列方程有两个相等的实数根是( )A.x2﹣x+3=0 B.x2﹣3x+2=0 C.x2﹣2x+1=0 D.x2﹣4=09.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1 D.m<110.如图,P、Q是⊙O的直径AB上的两点,P在OA上,Q在OB上,PC⊥AB交⊙O于C,QD⊥AB交⊙O于D,弦CD交AB于点E,若AB=20,PC=OQ=6,则OE的长为()A.1 B.1.5 C.2 D.2.511.如图,AB为⊙O的直径,点C、D在⊙O上,∠BAC=50°,则∠ADC为()A.40°B.50°C.80°D.100°12.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名读听写小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86 B.87 C.88 D.8913.下列对于二次函数y=﹣x2+x图象的描述中,正确的是()A.开口向上B.对称轴是y轴C.有最低点D.在对称轴右侧的部分从左往右是下降的14.若关于x的一元二次方程x2﹣2x+a﹣1=0没有实数根,则a的取值范围是()A.a<2 B.a>2 C.a<﹣2 D.a>﹣2∠,交BC于点E,15.如图,AB为O的直径,C为O上一点,弦AD平分BACAB=,56AD=,则AE的长为()A .2.5B .2.8C .3D .3.2二、填空题16.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.17.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________. 18.如图,AB 、CD 、EF 所在的圆的半径分别为r 1、r 2、r 3,则r 1、r 2、r 3的大小关系是____.(用“<”连接)19.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.20.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).21.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.22.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________. 23.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .24.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线ky x=的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.25.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.26.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.27.已知 x 1、x 2 是关于 x 的方程 x 2+4x -5=0的两个根,则x 1 + x 2=_____.28.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.x…﹣1012…y…0343…29.如图,将二次函数y=12(x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.30.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S乙,且22S S甲乙,则队员身高比较整齐的球队是_____.三、解答题31.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a=,b=,c=.(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.32.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率:(1)两辆车中恰有一辆车向左转;(2)两辆车行驶方向相同.33.从﹣1,﹣3,2,4四个数字中任取一个,作为点的横坐标,不放回,再从中取一个数作为点的纵坐标,组成一个点的坐标.请用画树状图或列表的方法列出所有可能的结果,并求该点在第二象限的概率. 34.如图,AB 为O 的直径,PD 切O 于点C ,交AB 的延长线于点D ,且2D A ∠=∠.(1)求D ∠的度数. (2)若O 的半径为2,求BD 的长.35.如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.四、压轴题36.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.37.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由. ②若线段AD EC =,求ab的值. 38.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长. 39.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).40.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】根据题干可以明确得到p,q 是方程2330x x --=的两根,再利用韦达定理即可求解. 【详解】解:由题可知p,q 是方程2330x x --=的两根, ∴p+q=3, 故选B. 【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.2.D解析:D 【解析】 【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x 的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解. 【详解】 解:根据题意得, a-1=1,2+m=2, 解得,a=2,m=0, ∴a-m=2. 故选:D. 【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.3.B解析:B 【解析】 【分析】由CD ⊥AB ,可得DM=4.设半径OD=Rcm ,则可求得OM 的长,连接OD ,在直角三角形DMO 中,由勾股定理可求得OD 的长,继而求得答案. 【详解】解:连接OD ,设⊙O 半径OD 为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.4.A解析:A【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..5.D解析:D【解析】【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.6.B解析:B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90.故选B.7.D解析:D【解析】【分析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2210AC AB BC=+= ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB BC AB OF BC OE AC OD ,∴1111686810 2222r r r ,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC, OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2227 AC BC AB ,∵=++ABC AOC BOC AOB S S S S ,∴11112222AB AC AB OF BC OD AC OE ,∴11116276827 2222r r r ,∴r=71.故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.8.C解析:C【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C.【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.9.D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 10.C解析:C【解析】【分析】 因为OCP 和ODQ 为直角三角形,根据勾股定理可得OP 、DQ 、PQ 的长度,又因为CP //DQ ,两直线平行内错角相等,∠PCE=∠EDQ ,且∠CPE=∠DQE=90°,可证CPE ∽DQE ,可得CP DQ =PE EQ,设PE=x ,则EQ=14-x ,解得x 的取值,OE= OP-PE ,则OE 的长度可得.【详解】解:∵在⊙O 中,直径AB=20,即半径OC=OD=10,其中CP ⊥AB ,QD ⊥AB , ∴OCP 和ODQ 为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP ⊥AB ,QD ⊥AB ,垂直于用一直线的两直线相互平行,∴CP //DQ ,且C 、D 连线交AB 于点E ,∴∠PCE=∠EDQ ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°, ∴CPE ∽DQE ,故CP DQ =PE EQ, 设PE=x ,则EQ=14-x , ∴68=x 14-x,解得x=6, ∴OE=OP-PE=8-6=2,故选:C .【点睛】 本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE 与DQE 相似,并得出线段的比例关系.解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC ,如图,∵AB 为⊙O 的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A .考点:圆周角定理.12.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.13.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣x 2+x =﹣(x 12-)2+14, ∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.14.B解析:B【解析】【分析】根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论.【详解】∵1a =,2b =-,1c a =-,由题意可知:()()22424110b ac a =-=--⨯⨯-<⊿,∴a >2,故选:B .【点睛】本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根. 15.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD 的长,再利用ABD BED ,得出DE DB DB AD =,从而求出DE 的长,最后利用AE AD DE =-即可得出答案.【详解】连接BD,CD∵AB 为O 的直径90ADB ∴∠=︒22226511BD AB AD ∴=-=-∵弦AD 平分BAC ∠11CD BD ∴==CBD DAB ∴∠=∠ADB BDE ∠=∠ABD BED ∴DE DB DB AD∴= 11511= 解得115DE = 115 2.85AE AD DE ∴=-=-= 故选:B .【点睛】 本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题16.【解析】【详解】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,解析:【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径5121322r+-==,17.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=-3,x1x2=-5,则 x1+x2-x1x2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.18.r3 <r2 <r1【解析】【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出、、所在的圆心及半径∴r3 <r2 <r1故答案为:r解析:r3<r2<r1【解析】【分析】利用尺规作图分别做出AB、CD、EF所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出AB、CD、EF所在的圆心及半径∴r 3 <r 2 <r 1故答案为:r 3 <r 2 <r 1【点睛】本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.19.【解析】【分析】在OA 上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB 时,CP 最小,由相似求出的最小值即可.【详解】解:如图,在OA 上取使,∵,∴,在△和△QOC 中,, 455【解析】【分析】在OA 上取'C 使'OC OC =,得'OPC OQC ≅,则CQ=C'P ,根据点到直线的距离垂线段最短可知当'PC ⊥AB 时,CP 最小,由相似求出C'P 的最小值即可.【详解】解:如图,在OA 上取'C 使'OC OC =,∵90AOC POQ ∠=∠=︒,∴'POC QOC ∠=∠,在△'POC 和△QOC 中,''OP OQ POC QOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△'POC ≌△QOC (SAS ),∴'PC QC =∴当'PC 最小时,QC 最小,过'C 点作''C P ⊥AB ,∵直线l :28y x =+与坐标轴分别交于A ,B 两点,∴A 坐标为:(0,8);B 点(-4,0),∵'4OC OC OB ===, ∴22228445AB OA OB ++=''4AC OA OC =-=. ∵'''OB C P sin BAO AB AC ∠==, ''445C P =, ∴4''55C P = ∴线段CQ 455 455【点睛】 本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.20.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab<0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确;∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.21.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB=90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6 【解析】 【分析】结合等腰三角形的性质,根据勾股定理求解即可. 【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.22.50(1﹣x )2=32. 【解析】 由题意可得, 50(1−x)²=32, 故答案为50(1−x)²=32.解析:50(1﹣x )2=32. 【解析】 由题意可得, 50(1−x)²=32, 故答案为50(1−x)²=32.23.. 【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长. 试题解析:∵∠C=∠E=90°,∠BAC=∠DAE ∴△AB解析:10 3.【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=83∴103AD=考点: 1.相似三角形的判定与性质;2.勾股定理.24.24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),解析:24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在kyx=的图象上,∴k=6;即12yx=,2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数12yx=的函数值相等,又x=3时,1243y==,∴点Q的坐标为(2025,4),即n=4,∴mn=6424.⨯=故答案为24.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.25.60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:12610602r l rlππππ⋅⋅==⋅⨯=(cm2).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.26.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:. 【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】 【分析】直接根据平行线分线段成比例定理即可得. 【详解】123////l l l ,AB DEBC EF∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =, 故答案为:203.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.27.-4 【解析】 【分析】根据根与系数的关系即可求解. 【详解】∵x1、x2 是关于 x 的方程 x2+4x 5=0的两个根,∴x1 x2=-=-4, 故答案为:-4. 【点睛】 此题主要考解析:-4 【解析】 【分析】根据根与系数的关系即可求解. 【详解】∵x1、x2是关于 x 的方程 x2+4x-5=0的两个根,∴x1+ x2=-41=-4,故答案为:-4.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1+ x2=-ba.28.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x=0+22=1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.29.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y =12(x ﹣2)2+5.故答案为y =0.5(x ﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA ′是解题的关键.30.乙 【解析】 【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】 解:∵, ∴队员身解析:乙 【解析】 【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】解:∵22S S 甲乙,∴队员身高比较整齐的球队是乙, 故答案为:乙. 【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量三、解答题31.解:(1)a =135,b =134.5,c =1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.【解析】 【分析】(1)根据表中数据和中位数的定义、平均数和方差公式进行计算可求出表中数据; (2)从不同角度评价,标准不同,会得到不同的结果. 【详解】解:(1)由表可知,一班135出现次数最多,为5次,故众数为135;由于表中数据为从小到大依次排列,所以处于中间位置的数为134和135,中位数为1341352+=134.5; 根据方差公式:s 2=()()()()()2222211321351341355135135213613513713510⎡⎤-+-+-+-+-⎣⎦=1.6,∴a =135,b =134.5,c =1.6;(2)①从众数看,一班一分钟跳绳135的人数最多,二班一分钟跳绳134的人数最多;所以一班的成绩好于二班;②从中位数看,一班一分钟跳绳135以上的人数比二班多;③从方差看,S 2一<S 2二;一班成绩波动小,比较稳定;④从最好成绩看,二班速度最快的选手比一班多一人;⑤一班和二班的平均成绩相同,说明他们的水平相当. 【点睛】此题是一道实际问题,不仅考查了统计平均数、中位数、众数和方差的定义,更考查了同学们应用知识解决问题的发散思维能力. 32.(1)49;(2)13【解析】 【分析】此题可以采用列表法求解.可以得到一共有9种情况,两辆车中恰有一辆车向左转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可. 【详解】 解:列表得:相同有3种情况(1)P (两辆车中恰有一辆车向左转)=49;(2)P (两辆车行驶方向相同)=3193=. 【点睛】列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.解题时注意看清题目的要求,要按要求解题.概率=所求情况数与总情况数之比. 33.表见解析,13【解析】 【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得. 【详解】 解:列表如下:∴该点在第二象限的概率为412=13. 【点睛】本题主要考查了列表法或树状图法求概率,熟练的用列表法或树状图法列出所有的情况数是解题的关键.34.(1)45D ∠=︒;(2)2BD =. 【解析】 【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A ,求出∠D=∠COD ,根据切线性质求出∠OCD=90°,即可求出答案; (2)由题意O 的半径为2,求出OC=CD=2,根据勾股定理求出BD 即可.【详解】解:(1)∵OA=OC , ∴∠A=∠ACO ,∴∠COD=∠A+∠ACO=2∠A , ∵∠D=2∠A , ∴∠D=∠COD , ∵PD 切⊙O 于C ,∴∠OCD=90°, ∴∠D=∠COD=45°; (2)∵∠D=∠COD ,O 的半径为2,∴OC=OB=CD=2,在Rt △OCD 中,由勾股定理得:22+22=(2+BD )2, 解得:222BD =-. 【点睛】本题考查切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,熟练掌握切线的性质,勾股定理,等腰三角形性质,三角形的外角性质是解题关键.35.(1)265y x x =-+-;(2)1258S =,点P 坐标为515,24⎛⎫⎪⎝⎭;(3)点M 的坐标为7837,2323⎛⎫-⎪⎝⎭, 6055,2323⎛⎫- ⎪⎝⎭【解析】 【分析】(1)利用B (5,0)用待定系数法求抛物线解析式; (2)作PQ ∥y 轴交BC 于Q ,根据12PBC S PQ OB ∆=⋅求解即可; (3)作∠CAN=∠NAM 1=∠ACB ,则∠A M 1B=3∠ACB, 则∆ NAM 1∽∆ A C M 1,通过相似的性质来求点M 1的坐标;作AD ⊥BC 于D,作M 1关于AD 的对称点M 2, 则∠A M 2C=3∠ACB,根据对称点坐标特点可求M 2的坐标. 【详解】(1)把()5,0B 代入265y ax x =+-得253050a +-= 1a =-.∴265y x x =-+-;(2)作PQ ∥y 轴交BC 于Q ,设点()2,65P x x x -+-,则∵()5,0B∴OB=5, ∵Q 在BC 上,∴Q 的坐标为(x ,x-5),∴PQ=2(65)(5)x x x -+---=25x x -+, ∴12PBC S PQ OB ∆=⋅ =21(5)52x x -+⨯ =252522x x -+∴当52x =时,S 有最大值,最大值为1258S =,∴点P 坐标为515,24⎛⎫⎪⎝⎭. (3)如图1,作∠CAN=∠NAM 1=∠ACB ,则∠A M 1B=3∠ACB,∵∠CAN=∠NAM 1, ∴AN=CN,∵265y x x =-+-=-(x-1)(x-5),∴A 的坐标为(1,0),C 的坐标为(0,-5), 设N 的坐标为(a,a-5),则∴2222(1)(5)(55)a a a a -+-=+-+, ∴a=136, ∴N 的坐标为(136,176-), ∴AN 2=221317(1)()66-+-=16918,AC 2=26, ∴22169113182636AN AC =⨯=, ∵∠NAM 1=∠ACB ,∠N M 1A=∠C M 1A , ∴∆ NAM 1∽∆ A C M 1,∴11AMAN AC CM =, ∴21211336AM CM =, 设M 1的坐标为(b,b-5),则∴222236[(1)(5)]13[(55)]b b b b -+-=+-+,∴b 1= 7823,b 2=6(不合题意,舍去), ∴M 1的坐标为7837(,)2323-, 如图2,作AD ⊥BC 于D,作M 1关于AD 的对称点M 2, 则∠A M 2C=3∠ACB,易知∆ADB 是等腰直角三角形,可得点D 的坐标是(3,-2),∴M 2 横坐标= 7860232323⨯-=, M 2 纵坐标= 37552(2)()2323⨯---=-, ∴M 2 的坐标是6055(,)2323-, 综上所述,点M 的坐标是7837(,)2323-或6055(,)2323-. 【点睛】 本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题.四、压轴题36.(1)22+2)63103t ≤或103165-≤-3)325m ≤-或0m ≥ 【解析】【分析】。
江苏省无锡市滨湖区2019-2020学年度第一学期九年级数学期末试卷(无答案)

2019年秋学期期末调研考试试题 2020.1初三数学本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号...........涂.黑.) 1.下列方程中,是一元二次方程的是 ( ▲ )A .2x +y =1B .x 2+3xy =6C .x +1x=4 D .x 2=3x -22.下列方程中,有两个不相等实数根的是 ( ▲ )A .x 2-x -1=0B .x 2+x +1=0C .x 2+1=0D .x 2+2x +1=03.若两个相似多边形的面积之比为4∶9,则这两个多边形的周长之比为 ( ▲ )A .2∶ 3B .2∶3C .4∶9D .16∶814.9名同学参加朗诵比赛,他们预赛成绩各不相同,现取前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还要知道这9名同学成绩的 ( ▲ ) A .平均数 B .极差 C .中位数 D .众数5.二次函数y =x 2-6x 图像的顶点坐标为 ( ▲ ) A .(3,0) B .(-3,-9) C .(3,-9) D .(0,-6)6.如图,若四边形ABCD 内接于⊙O ,且∠A =40°,则∠C 的度数是 ( ▲ ) A .110° B .120° C .135° D .140°7. 如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为 ( ▲ ) A .3cm B .5cm C .6cm D .8cm8.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为 ( ▲ )A .30°B .45°C .30°或150°D .45°或135° 9. 如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF 2,则BD 的长是 ( ▲ ) A .2B .3C .218D .24710.已知二次函数y =-(x -1) 2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为 ( ▲ ) A .12B .32C .2D . 52二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........) 11.一元二次方程x 2-4=0的解为 ▲ .12.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球 ▲ 只.13.某一时刻,一棵树高15m ,影长为18m .此时,高为50 m 的旗杆的影长为 ▲ m . 14.一个圆锥的底面半径为6cm ,圆锥的高8cm ,则该圆锥的侧面积是 ▲ cm 2. 15.在□ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35, 则EFBF的值为 ▲ .(第15题)FEDA(第6题)D ABOCA EDB C F (第9题)(第7题)ABO16.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=-1,那么方程a (x +m +2)2+b =0的解 ▲ .17.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为 ▲ .18. 如图,在边长为4的菱形ABCD 中,∠A =60°,若M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在的直线翻折得到△A ′MN ,连接A ′C ,则A ′C 的最小值为 ▲ .三、解答题(本大题共10小题,共84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)解方程:(1)x 2-2x -1=0; (2)(2x -1)2=4(2x -1).20.(本题满分8分)已知关于x 的方程x 2-(m -1)x +2m =0,若方程的一个根为-4,求方程的另一个根及m的值.ACD MNA′(第18题)(第17题)ABC21.(本题满分6分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点及点O 都在格点上(每个小方格的顶点叫做格点).(1)以点O 为位似中心,在网格区域内画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 位似(A ′、B ′、C ′分别为A 、B 、C 的对称点),且位似比为2﹕1; (2)△A ′B ′C ′的面积为 ▲ 个平方单位;(3)若网格中有一格点D ′(异与点C ′),且△A ′B ′D ′的面积等于△A ′B ′C ′的面积,请在图中标出所有..符合条件的点D ′. (如果这样的点D ′不止一个,请用D 1′、D 2′、…、D n ′标出)22.(本题满分8分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲的成绩的众数是 ▲ 环,乙的成绩的中位数是 ▲ 环; (2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会 ▲ .(填“变大”、“变小”或“不变”)OB CA23.(本题满分8分)“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为▲;(2)请利用树状图或列表法求两人被分配到同一个项目组的概率.24.(本题满分8分)如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.B (1)求证:∠ABC=∠ABO;O (2)若AB=10,AC=1,求⊙O的半径.A C lG FCDEBA25.(本题满分8分)如图,在□ABCD 中,点E 是边AD 上一点,延长CE 到点F ,使∠FBC =∠DCE ,且FB 与AD 相交于点G . (1)求证:∠D =∠F ;(2)用直尺和圆规在边AD 上作出一点P ,使△BPC ∽△CDP ,并加以证明.(作图要求:保留痕迹,不写作法.)26.(本题满分10分)某商店购进一批成本为每件30元的商品.经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图像如图所示. (1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,试利用函数图像确定销售单价最多为多少元?y/件O3045x/元7010027.(本题满分10分)如图,已知二次函数y =ax 2+4ax +c (a ≠0)的图像交x 轴于A 、B 两点(A 在B 的左侧),交y 轴于点C .一次函数y =-12x +b 的图像经过点A ,与y 轴交于点D (0,-3),与这个二次函数的图像的另一个交点为E ,且AD ∶DE =3∶2. (1)求这个二次函数的表达式;(2)若点M 为x 轴上一点,求MD +55MA 的最小值.28.(本题满分10分)如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作⊙O 交AC 于点F ,连接DF 、PF .(1)求证:△DPF 为等腰直角三角形; (2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将△EFP 沿PF 翻折,得到△QFP ,当点Q 恰好落在BC 上时,求t 的值.(备用图1)D B C A(备用图2)D BCABACE PDFO。
江苏省无锡市滨湖区2023-2024学年九年级上学期期末数学试卷

江苏省无锡市滨湖区2023-2024学年九年级上学期期末数学试卷一、单选题1.一元二次方程2x x =的根是( )A .0x =B .1x =C .0x =或1x =D .0x =或=1x - 2.若方程(x ﹣4)2=a 有实数解,则a 的取值范围是( )A .a≤0B .a≥0C .a >0D .a <03.若直线l 与半径为6的⊙O 相交,则圆心O 到直线l 的距离d 为( )A .d <6B .d =6C .d >6D .d≤64.在学校举办的学习强国演讲比赛中,李华根据九位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( ) A .平均数 B .众数 C .方差 D .中位数 5.若要得到函数2(1)2y x =++的图象,只需将函数2y x =的图象( )A .先向右平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向上平移2个单位长度C .先向左平移1个单位长度,再向下平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度6.抛物线 ()2213y x =---与y 轴的交点纵坐标为( )A . 3-B . 4-C . 5-D . 1- 7.用半径为5的半圆围成一个圆锥的侧面,则该圆锥的底面半径等于( )A .3B .5C .32D .528.若等腰△ABC 内接于⊙O ,AB =AC ,∠BOC =100°,则△ABC 底角的度数为( ) A .65° B .25° C .65°或25° D .65°或30° 9.如图,△ABC 中,AE 交BC 于点D ,∠C =∠E ,AD =4,BC =8,BD :DC =5:3,则DE的长等于A .203B .154C .163D .17410.如图,直线y =12x+1与x 轴、y 轴分别相交于A 、B 两点,P 是该直线上的任一点,过点D(3,0)向以P 为圆心,12AB 为半径的⊙P 作两条切线,切点分别为E 、F ,则四边形PEDF 面积的最小值为( )AB C .D二、填空题11.若3是方程x 2﹣2x+c =0的一个根,则c 的值为.12.若35a b =,则a b b +=. 13.抛物线y =x 2﹣2x ﹣5的顶点坐标是.14.如图,交警统计了某个时段在一个路口来往车辆的车速(单位:千米/时)情况,则该时段内来往车辆的平均速度是千米/时.15.如图,⊙O 的半径是3,点A 、B 、C 在⊙O 上,若∠ACB =40°,则弧AB 的长为.16.半径相等的圆内接正三角形与正方形的边长之比为.17.如图,圆内接四边形ABCD 的边AB 过圆心O ,过点C 的切线与边AD 所在直线垂直于点M ,若∠ABC =65°,则∠ACD =°.18.记抛物线C 1:y =(x ﹣2)2+3的顶点为A ,抛物线C 2:y =ax 2+1(a <0)顶点是点B ,且与x 轴的正半轴交于点 C .当△ABC 是直角三角形时,抛物线C 2的解析式为.三、解答题19.(1)01()2--; (2)解方程:x 2﹣4x+1=0.20.如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的小正方形,点A 、B 、C 都是格点(每个小方格的顶点叫格点),其中A(5,6),B(3,6),C(2,7).(1)已知△ABC 与△DEF(点D 、E 、F 都是格点)成位似图形,则位似中心M 的坐标是_____;(2)△ABC 外接圆半径是_____;(3)请在网格图中画一个格点△A 1B 1C 1,使△A 1B 1C 1∽△DEF ,且相似比为1:2.21.近年来网约车十分流行,初三某班学生对“美团”和“滴滴”两家网约车公司各10名司机月收入进行了一项抽样调查,司机月收入(单位:千元)如图所示:根据以上信息,整理分析数据如下:(1)完成表格填空:①__________②__________③__________(2)若从两家公司中选择一家做网约车司机,你会选哪家公司,并说明理由.22.甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)23.如图,已知AB∥CD,AC与BD相交于点E,∠ABE=∠ACB.(1)求证:△ABE∽△ACB;(2)如果AB=6,AE=4,求CD的长.24.如图1,已知四边形ABCD内接于⊙O,AC为⊙O的直径,AD=DB,AC与BD交于点E,且AE=BC.(1)求证:AB=CB;(2)如图2,△ABC绕点C逆时针旋转35°得到△FGC,点A经过的路径为弧AF,若AC=4,求图中阴影部分的面积.25.已知在四边形ABCD中,P是CD边上一点,且△ADP∽△PCB.分别在图①和图②中用直尺和圆规作出所有满足条件的点P.(保留作图痕迹,不写作法)(1)如图①,四边形ABCD是矩形;(2)如图②,在四边形ABCD中,∠D=∠C=45°.26.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由27.如图,在矩形ABCD中,已知AB=6,BC=8,动点P从点D出发,沿DA的方向运动到点A,每秒1个单位,同时点Q从点B出发,沿BD的方向运动到点D,每秒5个单位.当某一个点到达终点时,整个运动就停止.设运动时间为t(秒).(1)填空:当t=_____时,PQ∥AB;(2)设△PCQ的面积为S,求S关于t的函数表达式;(3)当直线CQ与以点P为圆心,PQ为半径的圆相切时,求t的值.28.如图,直线y=12x+2分别与x轴、y轴交于C、D两点,二次函数y=﹣x2+bx+c的图象经过点D,与直线相交于点E,且CD:DE=4:3.(1)求点E的坐标和二次函数表达式;(2)过点D的直线交x轴于点M.①当DM与x轴的夹角等于2∠DCO时,请直接写出点M的坐标;②当DM⊥CD时,过抛物线上一动点P(不与点D、E重合),作DM的平行线交直线CD于点Q,若以D、M、P、Q为顶点的四边形是平行四边形,求点P的横坐标.。
无锡9年级期末试卷数学

无锡9年级期末试卷数学专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > 0,b < 0,则a × b 的结果为()A. 正数B. 负数C. 零D. 无法确定2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 下列函数中,哪个是增函数?()A. y = -2x + 3B. y = 3x 2C. y = x^2D. y = -x^24. 若平行四边形的对角线互相垂直,则这个平行四边形是()A. 矩形B. 菱形C. 正方形D. 无法确定5. 下列哪个图形不是中心对称图形?()A. 线段B. 角C. 圆D. 正方形二、判断题(每题1分,共5分)6. 若 a > b,则 a c > b c。
()7. 任何有理数都可以表示为分数的形式。
()8. 一次函数 y = kx + b 的图像是一条直线。
()9. 若 a、b 互为相反数,则 a + b = 0。
()10. 若 a、b 互为倒数,则 ab = 1。
()三、填空题(每题1分,共5分)11. 若 a = 3,b = -2,则 |a + b| = _______。
12. 若 x^2 5x + 6 = 0,则 x 的一个解为 _______。
13. 一次函数 y = 2x 3 的 y 轴截距为 _______。
14. 若平行四边形的对角线互相平分,则这个平行四边形的形状为 _______。
15. 若等腰三角形的底边长为 8,腰长为 10,则这个等腰三角形的高为 _______。
四、简答题(每题2分,共10分)16. 简述有理数的定义。
17. 什么是函数的单调性?18. 什么是平行四边形的对角线?19. 什么是等腰三角形的底角?20. 什么是中心对称图形?五、应用题(每题2分,共10分)21. 已知 a = 2,b = -3,求 a + b 的值。
22. 解方程 x^2 4x + 3 = 0。
江苏省无锡市滨湖区2022年数学九年级第一学期期末考试试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,嘉淇一家驾车从A地出发,沿着北偏东60︒的方向行驶,到达B地后沿着南偏东50︒的方向行驶来到C地,且C地恰好位于A地正东方向上,则下列说法正确的是()A.B地在C地的北偏西40︒方向上B.A地在B地的南偏西30方向上C.3cos2BAC∠=D.50∠=°ACB2.下列事件中,属于必然事件的是()A.明天的最高气温将达35℃B.任意购买一张动车票,座位刚好挨着窗口C.掷两次质地均匀的骰子,其中有一次正面朝上D.对顶角相等3.用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120°和240°,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是()A.12B.13C.23D.344.如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数().A .50°B .60°C .100°D .120°5.三角形的两边长分别为3和2,第三边的长是方程2560x x -+=的一个根,则这个三角形的周长是( ) A .10B .8或7C .7D .86.一次函数(0)y ax b a =+≠与二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( ).A .B .C .D .7.如图,⊙O 的直径长10,弦AB=8,M 是弦AB 上的动点,则OM 的长的取值范围是( )A .3≤OM≤5B .4≤OM≤5C .3<OM <5D .4<OM <58.在如图所示的网格纸中,有A 、B 两个格点,试取格点C ,使得△ABC 是等腰三角形,则这样的格点C 的个数是( )A .4B .6C .8D .109.在Rt △ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tan B 的值是( ) A .13B .3C 2D .210.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .6二、填空题(每小题3分,共24分)11.若二次函数2y ax bx =+的图象开口向下,则a _____0(填“=”或“>”或“<”).12.正方形ABCD 的边长为4,圆C 半径为1,E 为圆C 上一点,连接DE ,将DE 绕D 顺时针旋转90°到DE’,F 在CD 上,且CF=3,连接FE’,当点E 在圆C 上运动,FE’长的最大值为____.13.二次函数223y x x =--,当03x ≤≤时,y 的最大值和最小值的和是_______.14.如图,点A 在反比例函数(0)ky x x=<的图象上,过点A 作AB ⊥x 轴,AC ⊥y 轴,垂足分别为点,B C ,若1.5AB =,4AC =,则k 的值为____.15.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.16.关于x 的方程x 2﹣3x ﹣m =0的两实数根为x 1,x 2,且21121222x x x x x -+=,则m 的值为_____.17.已 知二次函数 y =ax 2-bx +2(a ≠0) 图象的顶点在第二象限,且过点(1,0),则a 的取值范围是 _________;若a +b 的值为非零整数,则 b 的值为 _________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C ,D 分别落在边BC 下方的点C′,D′处,且点C′,D′,B 在同一条直线上,折痕与边AD 交于点F ,D′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为___(用含t 的代数式表示).三、解答题(共66分)19.(10分)如图,△ABC中,AC=BC,CD⊥AB于点D,四边形DBCE是平行四边形.求证:四边形ADCE是矩形.20.(6分)中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调查结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调查中.共调查了______名中学生家长;(2)将图形①、②补充完整;(3)根据抽样调查结果.请你估计我市城区80000名中学生家长中有多少名家长持反对态度?21.(6分)如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(1)把△A1B1C1绕点A1按逆时针方向旋转90°,得到△A1B1C1,在网格中画出旋转后的△A1B1C1.22.(8分)已知二次函数()21y a x k =-+的图像与y 轴交于点()0,8C -,与x 轴的一个交点坐标是()2,0A -.(1)求二次函数的解析式; (2)当x 为何值时,0y <.23.(8分)从三角形(不是等腰三角形)一个顶点引出一条射线 与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.()1如图1,在ABC ∆中,44, A CD ∠=是ABC ∆的完美分割线,且AD CD =, 则ACB ∠的度数是 ()2如图2,在ABC ∆中,CD 为角平分线,40 60A B ∠=∠=,,求证: CD 为ABC ∆的完美分割线. ()3如图2,ABC ∆中,2, 2, AC BC CD ==是ABC ∆的完美分割线,且ACD ∆是以CD 为底边的等腰三角形,求完美分割线CD 的长.24.(8分)如图,直线y=kx+b(b>0)与抛物线y=14x 2相交于点A (x 1,y 1),B(x 2,y 2)两点,与x 轴正半轴相交于点D ,于y 轴相交于点C ,设∆OCD 的面积为S ,且kS+8=0.(1)求b 的值.(2)求证:点(y 1,y 2)在反比例函数y=16x的图像上. 25.(10分)如图1,在平面直角坐标系xOy 中,已知△ABC ,∠ABC=90°,顶点A 在第一象限,B ,C 在x 轴的正半轴上(C 在B 的右侧),BC=2,AB=23,△ADC 与△ABC 关于AC 所在的直线对称. (1)当OB=2时,求点D 的坐标;(2)若点A 和点D 在同一个反比例函数的图象上,求OB 的长;(3)如图2,将第(2)题中的四边形ABCD 向右平移,记平移后的四边形为A 1B 1C 1D 1,过点D 1的反比例函数y=kx(k≠0)的图象与BA 的延长线交于点P .问:在平移过程中,是否存在这样的k ,使得以点P ,A 1,D 为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k 的值;若不存在,请说明理由.26.(10分)某企业生产并销售某种产品,整理出该商品在第x (090x ≤≤)天的售价y 与x 函数关系如图所示,已知该商品的进价为每件30元,第x 天的销售量为()2002x -件. (1)试求出售价y 与x 之间的函数关系是; (2)请求出该商品在销售过程中的最大利润;(3)在该商品销售过程中,试求出利润不低于3600元的x 的取值范围.参考答案一、选择题(每小题3分,共30分) 1、C【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可. 【详解】解:如图所示,由题意可知,∠4=50°,∴∠5=∠4=50°,即B 地在C 地的北偏西50°方向上,故A 错误; ∵∠1=∠2=60°,∴A 地在B 地的南偏西60°方向上,故B 错误; ∵∠1=∠2=60°, ∴∠BAC=30°, ∴3cos BAC ∠=,故C 正确;∵∠6=90°−∠5=40°,即∠ACB=40°,故D错误.故选C.【点睛】本题考查的是方向角,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.2、D【解析】A、明天最高气温是随机的,故A选项错误;B、任意买一张动车票,座位刚好挨着窗口是随机的,故B选项错误;C、掷骰子两面有一次正面朝上是随机的,故C选项错误;D、对顶角一定相等,所以是真命题,故D选项正确.【详解】解:“对顶角相等”是真命题,发生的可能性为100%,故选:D.【点睛】本题的考点是随机事件.解决本题需要正确理解必然事件的概念:必然事件指在一定条件下一定发生的事件.3、B【解析】列表如下:共有9种情况,其中配成紫色的有3种,所以恰能配成紫色的概率=.93故选B.4、B【分析】根据等边三角形的性质和圆周角定理的推论解答即可.【详解】解:∵△ABC是正三角形,∴∠A=60°,∴∠BDC=∠A=60°.故选:B.【点睛】本题考查了等边三角形的性质和圆周角定理的推论,属于基础题型,熟练掌握上述基本知识是解题的关键.5、B【分析】因式分解法解方程求得x 的值,再根据三角形的三边关系判断能否构成三角形,最后求出周长即可. 【详解】解:∵2560x x -+=, ∴(x -2)(x -3)=0, ∴x -2=0或x -3=0, 解得:x =2或x =3,当x =2时,三角形的三边2+2>3,可以构成三角形,周长为3+2+2=7; 当x =3时,三角形的三边满足3+2>3,可以构成三角形,周长为3+2+3=8, 故选:B . 【点睛】本题主要考查解一元二次方程的能力和三角形三边的关系,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 6、C【分析】逐一分析四个选项,根据二次函数图象的开口方向以及对称轴与y 轴的位置关系,即可得出a 、b 的正负性,由此即可得出一次函数图象经过的象限,即可得出结论. 【详解】A. ∵二次函数图象开口向下,对称轴在y 轴左侧, ∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误; B. ∵二次函数图象开口向上,对称轴在y 轴右侧, ∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,故本选项错误; C. ∵二次函数图象开口向下,对称轴在y 轴左侧, ∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项正确; D. ∵二次函数图象开口向下,对称轴在y 轴左侧, ∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误. 故选C . 【点睛】本题主要考查二次函数图象与一次函数图象的综合,掌握二次函数与一次函数系数与图象的关系,是解题的关键. 7、A【详解】解:O 的直径为10,半径为5,当OM AB ⊥时,OM 最小,根据勾股定理可得3OM =,OM 与OA 重合时,OM 最大,此时5OM =,所以线段的OM 的长的取值范围为35OM ≤≤, 故选A . 【点睛】本题考查垂径定理,掌握定理内容正确计算是本题的解题关键. 8、C【分析】分AB 是腰长时,根据网格结构,找出一个小正方形与A 、B 顶点相对的顶点,连接即可得到等腰三角形,AB 是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB 垂直平分线上的格点都可以作为点C ,然后相加即可得解. 【详解】解:如图,分情况讨论:①AB 为等腰△ABC 的底边时,符合条件的C 点有4个; ②AB 为等腰△ABC 其中的一条腰时,符合条件的C 点有4个. 故选C . 【点睛】本题考查等腰三角形的判定,解题的关键是掌握等腰三角形的判定,分情况讨论解决. 9、D【分析】先求出AC ,再根据正切的定义求解即可. 【详解】设BC=x ,则AB=3x , 由勾股定理得,AC=2x , tanB=AC BC =22xx=22 故选D .考点:1.锐角三角函数的定义;2.勾股定理. 10、B【解析】先解关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩ ,再根据其解集是x ≤a ,得a 小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a 的值,再求和即可.【详解】解:由不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩,解得:5x a x ⎧⎨<⎩ ∵解集是x ≤a ,∴a<5;由关于的分式方程24111y a y y y---=-- 得得2y-a+y-4=y-1 32a y +∴= 又∵非负整数解,∴a ≥-3,且a=-3,a=-1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选:B.【点睛】本题综合考查了含参一元一次不等式,含参分式方程的问题,需要考虑的因素较多,属于易错题.二、填空题(每小题3分,共24分)11、<【解析】由二次函数2y ax bx =+图象的开口向下,可得0a <.【详解】解:∵二次函数2y ax bx =+的图象开口向下, ∴0a <.故答案是:<.【点睛】考查了二次函数图象与系数的关系.二次项系数a决定抛物线的开口方向和大小.当0a >时,抛物线向上开口;当0a <时,抛物线向下开口;a 还可以决定开口大小,a 越大开口就越小.121【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F 作FP ⊥AB 于P,延长DP 到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴DP=2241+=17,∴FE’=171+,故答案是:171+【点睛】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P 的位置是解题关键.13、4-【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【详解】抛物线的对称轴是x =1,则当x =1时,y =1−2−3=−1,是最小值;当x =3时,y =9−6−3=0是最大值.y 的最大值和最小值的和是-1故答案为:-1.【点睛】本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.14、6-【分析】求出点A 坐标,即可求出k 的值.【详解】解:根据题意,设点A 的坐标为(x ,y ),∵ 1.5AB =,4AC =,AB ⊥x 轴,AC ⊥y 轴,∴点A 的横坐标为:4-;点A 的纵坐标为:1.5;∵点A 在反比例函数(0)k y x x=<的图象上, ∴4 1.56k xy ==-⨯=-;故答案为:6-.【点睛】本题考查了待定系数法求反比例函数解析式,解题的关键是熟练掌握反比例函数图象上点的坐标特征.15、115°【解析】根据∠EDC =180°﹣∠E ﹣∠DCE ,想办法求出∠E ,∠DCE 即可.【详解】由题意可知:CA =CE ,∠ACE =90°,∴∠E =∠CAE =45°,∵∠ACD =70°,∴∠DCE =20°,∴∠EDC =180°﹣∠E ﹣∠DCE =180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.16、-1.【分析】根据根与系数的关系即可求出答案.【详解】由题意可知:x 1+x 2=3,x 1x 2=﹣m ,∵21121222x x x x x -+=,∴21x ﹣3x 1+x 1+x 2=2x 1x 2,∴m+3=﹣2m ,∴m =﹣1,故答案为:﹣1【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.17、20a -<< 3CAB π∠=【分析】根据题意可得a <0,再由02b a>可以得到b >0,把(1,0)函数得a −b +2=0,导出b 和a 的关系,从而解出a 的范围,再根据a +b 的值为非零整数的限制条件,从而得到a,b 的值.【详解】依题意知a <0,02b a> ,a −b +2=0,故b >0,且b =a +2,a =b −2,a +b =a +a +2=2a +2,∴a +2>0,∴−2<a <0,∴−2<2a +2<2,∵a +b 的值为非零实数,∴a +b 的值为−1,1,∴2a +2=−1或2a +2=1,32a ∴=- 或12a =- , ∵b =a +2,12b ∴= 或32b =18、t【分析】根据翻折的性质,可得CE=C E ',再根据直角三角形30度所对的直角边等于斜边的一半判断出30EBC '∠=︒,然后求出60BGD '∠=︒,根据对顶角相等可得60FGE BGD '∠=∠=︒,根据平行线的性质得到60AFG FGE ∠=∠=︒,再求出60EFG ∠=︒,然后判断出EFG 是等边三角形,根据等边三角形的性质表示出EF ,即可解题.【详解】由翻折的性质得,CE=C E '2BE CE =2BE C E '∴=90C C '∠=∠=︒30EBC '∴∠=︒90FD C D ''∠=∠=︒60BGD '∴∠=︒60FGE BGD '∴∠=∠=︒//AD BC60AFG FGE ∴∠=∠=︒11(180)(18060)6022EFG AFG ∴∠=︒-∠=︒-︒=︒ EFG ∴△是等边三角形,t AB =32323EF t t ∴=÷= EFG ∴△的周长=233=233t t ⨯故答案为:23t .【点睛】本题考查折叠问题、等边三角形的判定与性质、含30度的直角三角形、平行线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题(共66分)19、见解析.【解析】根据等腰三角形的性质可知CD 垂直平分AB ,在根据平行四边形的性质可知EC 平行且等于AD ,由矩形的判定即可证出四边形ADCE 是矩形.【详解】证明:∵∴∵在 中,∴∴四边形是平行四边形 又 ∵∴四边形是矩形. 【点睛】本题主要考查了等腰三角形三线合一的性质、平行四边形的判定与性质,熟知矩形的判定是解题关键.20、(1)200;(2)详见解析;(3)48000【分析】(1)用无所谓的人数除以其所占的百分比即可得到调查的总数;(2)总数减去A 、B 两种态度的人数即可得到C 态度的人数;(3)用家长总数乘以持反对态度的百分比即可.【详解】解:(1)调查家长总数为:50÷25%=200人;故答案为:200.(2)持赞成态度的学生家长有200-50-120=30人,B所占的百分比为:12060% 5012030=++;C所占的百分比为:3015% 5012030=++;故统计图为:(3)持反对态度的家长有:80000×60%=48000人.【点睛】本题考查了用样本估计总体和扇形统计图的知识,解题的关键是从两种统计图中整理出有关信息.21、(1)见解析;(1)见解析.【分析】图形见详解.【详解】解:(1)如图,△A1B1C1为所作;(1)如图,△A1B1C1为所作.【点睛】本题考查了图形的平移和旋转,属于简单题,熟悉旋转和平移的概念是解题关键.22、(1)y= (x-1)2-9 ;(2)-2<x<4【分析】(1)将点A和点C的坐标代入抛物线的解析式可求得a,k的值,从而得到抛物线的解析式;(2)根据对称性求出抛物线与x轴的另一个交点B的坐标,最后依据y<1可求得x的取值范围.【详解】解:(1)∵y =a (x-1)2+k 的图像与y 轴交于点C (1,﹣8),与x 轴的一个交点坐标是A (﹣2,1). ∴809a k a k -=+⎧⎨=+⎩,解得,19a k =⎧⎨=-⎩, ∴该函数的解析式为y = (x-1)2-9;(2)令y =1,则(x-1)2-9=1,解得:122,4x x =-=,∴点B 的坐标为(4,1).∴当-2<x<4时,y <1.【点睛】本题主要考查的是抛物线与x 轴的交点、待定系数法求二次函数的解析式,掌握相关知识是解题的关键.23、(1)88°;(2)详见解析;(3【分析】(1) C D 是ABC ∆的完美分割线,且AD CD =,得∠ACD=44°,∠BCD=44°,进而即可求解;(2)由4060A B ∠=∠=,,得80ACB ∠=,由CD 平分ACB ∠,40ACD BCD ∠=∠=,得ACD ∆为等腰三角形,结合BCD BAC ∆∆,即可得到结论;(3)由 CD 是ABC ∆的完美分割线,得BCD BAC ∆∆,从而得BC BD BA BC=,设BD x =,列出方程,求出x 的值,再根据CD BD AC BC=,即可得到答. 【详解】(1) ∵ C D 是ABC ∆的完美分割线,且AD CD =,∴ABC CBD ,∠A=∠ACD=44°,∴∠A=∠BCD=44°,∴88ACB ∠=.故答案是:88°;()24060A B ∠=∠=,,80ACB ∴∠=,ABC ∆∴不是等腰三角形, CD 平分ACB ∠,1402ACD BCD ACB ∴∠=∠=∠=, 40ACD A ∴∠=∠=,ACD ∴∆为等腰三角形.40DCB A ∠=∠=,CBD ABC ∠=∠,BCD BAC ∴∆∆,CD ∴是ABC ∆的完美分割线.()3∵ACD ∆是以CD 为底边的等腰三角形,∴2AC AD ==,∵CD 是ABC ∆的完美分割线,∴BCD BAC ∆∆, BC BD BA BC∴=,设BD x =,则()22x x =+,0x ,1x ∴=,2CD BD AC BC ∴==2CD ∴== 【点睛】本题主要考查等腰三角形的性质与相似三角形的判定和性质定理,掌握相似三角形的性质定理,是解题的关键.24、(1)b=4(b>0) ;(2)见解析【分析】(1)根据直线解析式求OC 和OD 长,依据面积公式代入即可得;(2)联立方程,根据根与系数的关系即可证明.【详解】(1)∵D(0,b),C(-b k ,0) ∴由题意得OD=b,OC= -b k∴S=22b k- ∴k•(22b k-)+8=0 ∴b=4(b>0) (2)∵2144x kx =+ ∴21404x kx --=∴1216x x ⋅=- ∴()222121************y y x x x x ⋅=⋅=⋅= ∴点(y 1,y 2)在反比例函数y=16x 的图像上. 【点睛】本题考查二次函数的性质及图象与直线的关系,联立方程组并求解是解答两图象交点问题的重要途径,理解图象与方程的关系是解答此题的关键.25、(1)点D 坐标为(5,3);(2)OB=2;(2)k=123.【解析】分析:(1)如图1中,作DE ⊥x 轴于E ,解直角三角形清楚DE ,CE 即可解决问题;(2)设OB=a ,则点A 的坐标(a ,23),由题意CE=1.DE=3,可得D (2+a ,3),点A 、D 在同一反比例函数图象上,可得23a=3(2+a ),求出a 的值即可;(2)分两种情形:①如图2中,当∠PA 1D=90°时.②如图2中,当∠PDA 1=90°时.分别构建方程解决问题即可; 详解:(1)如图1中,作DE ⊥x 轴于E .∵∠ABC=90°, ∴tan ∠ACB=3AB BC= ∴∠ACB=60°, 根据对称性可知:DC=BC=2,∠ACD=∠ACB=60°, ∴∠DCE=60°, ∴∠CDE=90°-60°=20°, ∴CE=1,3∴OE=OB+BC+CE=5,∴点D 坐标为(53(2)设OB=a ,则点A 的坐标(a ,3由题意CE=1.DE=3,可得D (2+a ,3), ∵点A 、D 在同一反比例函数图象上, ∴23a=3(2+a ),∴a=2,∴OB=2.(2)存在.理由如下:①如图2中,当∠PA 1D=90°时.∵AD ∥PA 1, ∴∠ADA 1=180°-∠PA 1D=90°, 在Rt △ADA 1中,∵∠DAA 1=20°,3 ∴AA 1=30AD cos=4, 在Rt △APA 1中,∵∠APA 1=60°, ∴PA=433, ∴PB=33, 设P (m 103),则D 1(m+73 ∵P 、A 1在同一反比例函数图象上, 1033m+7), 解得m=2,∴P (2,1033), ∴k=103.②如图2中,当∠PDA 1=90°时.∵∠PAK=∠KDA 1=90°,∠AKP=∠DKA 1, ∴△AKP ∽△DKA 1,∴1AK PK KD KA =. ∴1KA PK AK DK=, ∵∠AKD=∠PKA 1,∴△KAD ∽△KPA 1,∴∠KPA 1=∠KAD=20°,∠ADK=∠KA 1P=20°, ∴∠APD=∠ADP=20°, ∴3AA 1=6,设P (m ,3,则D 1(m+93∵P 、A 1在同一反比例函数图象上,∴33(m+9), 解得m=2,∴P (2,3),∴3点睛:本题考查反比例函数综合题、相似三角形的判定和性质、锐角三角函数、解直角三角形、待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,学会了可以参数构建方程解决问题,属于中考压轴题.26、(1)()()40050905090x x y x ⎧+≤≤⎪=⎨<≤⎪⎩;(2)6050;(3)1070x ≤≤. 【分析】(1)当1≤x ≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b ,由点的坐标利用待定系数法即可求出此时y 关于x 的函数关系式,根据图形可得出当50≤x ≤90时,y =90;(2)根据W 关于x 的函数关系式,分段考虑其最值问题.当1≤x ≤50时,结合二次函数的性质即可求出在此范围内W 的最大值;当50≤x ≤90时,根据一次函数的性质即可求出在此范围内W 的最大值,两个最大值作比较即可得出结论;(3)分当050x ≤≤时与当5090x ≤≤时利用二次函数与一次函数的性质进行得到x 的取值范围.【详解】(1)当050x ≤≤时,设y kx b =+.∵图象过(0,40),(50,90),∴405090b k b =⎧⎨+=⎩解得140k b =⎧⎨=⎩, ∴40y x =+,∴()()40050905090x x y x ⎧+≤≤⎪=⎨<≤⎪⎩,, (2)当050x ≤≤时,()()40302002w x x =+--()22218020002456050x x x =-++=--+ ∵20a =-<,∴当45x =时,max 6050w =元;当5090x ≤≤时,()()9030200212012000w x x =--=-+∵1200k =-<,∴当50x =时,max 6000w =元.∵60506000>,∴当45x =时,max 6050w =元(3)当050x ≤≤时,()22456050w x =--+令3600w =,解得:180x =,210x =,∵3600w ≥∴当1050x ≤≤时,利润不低于3600元;当5090x ≤≤时,12012000w x =-+∵3600w ≥,即120120003600x -+≥,解得70x ≤,∴此时5070≤≤x ;综上,当1070x ≤≤时,利润不低于3600元.【点睛】本题考查了一次函数的应用、二次函数的性质以及待定系数法求一次函数解析式,解题的关键是:分段找出y 关于x 的函数关系式;根据销售利润=单件利润×销售数量找出W 关于x 的函数关系式;再利用二次函数的性质解决最值问题.。
无锡滨湖区雪浪中学初三数学九年级上册期末试题及答案

无锡滨湖区雪浪中学初三数学九年级上册期末试题及答案一、选择题1.已知3sin2α=,则α∠的度数是()A.30°B.45°C.60°D.90°2.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.13.方程 x2=4的解是()A.x1=x2=2 B.x1=x2=-2 C.x1=2,x2=-2 D.x1=4,x2=-4 4.要得到函数y=2(x-1)2+3的图像,可以将函数y=2x2的图像()A.向左平移1个单位长度,再向上平移3个单位长度B.向左平移1个单位长度,再向下平移3个单位长度C.向右平移1个单位长度,再向上平移3个单位长度D.向右平移1个单位长度,再向下平移3个单位长度5.在平面直角坐标系中,如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为﹣3和1;④b2﹣4ac>0,其中正确的命题有()A.1个B.2个C.3个D.4个6.如图,在△ABC中,点D、E分别在边BA、CA的延长线上,ABAD=2,那么下列条件中能判断DE∥BC的是()A.12AEEC=B.2ECAC=C.12DEBC=D.2ACAE=7.如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在格点上,点E 在AB的延长线上,以A为圆心,AE为半径画弧,交AD的延长线于点F,且弧EF经过点C,则扇形AEF的面积为()A .58π B .58πC .54πD .5π 8.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .9.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50°10.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 1 2y5 03-4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .411.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+312.在△ABC 中,点D 、E 分别在AB ,AC 上,DE ∥BC ,AD :DB =1:2,,则:ADE ABC S S ∆∆=( ), A .19B .14C .16D .1313.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC 的度数等于( )A .50°B .49°C .48°D .47°14.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 15.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题16.已知tan (α+15°)=3,则锐角α的度数为______°. 17.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.18.如图,AB 、CD 、EF 所在的圆的半径分别为r 1、r 2、r 3,则r 1、r 2、r 3的大小关系是____.(用“<”连接)19.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.20.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.21.已知二次函数y =ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表, x 6.17 6.18 6.19 6.20 y﹣0.03﹣0.010.020.04则方程ax 2+bx+c =0的一个解的范围是_____.22.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)23.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.24.已知⊙O半径为4,点,A B在⊙O上,21390,sin13BAC B∠=∠=,则线段OC的最大值为_____.25.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.26.已知3a=4b≠0,那么ab=_____.27.如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.28.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.29.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC中,AB=AC,若△ABC是“好玩三角形”,则tanB____________。
无锡滨湖区无锡市太湖格致中学初三数学九年级上册期末模拟试题及答案

无锡滨湖区无锡市太湖格致中学初三数学九年级上册期末模拟试题及答案一、选择题1.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是()A.13B.512C.12D.13.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧BC上一点,如果∠AOB=58º,那么∠ADC的度数为()A.32º B.29º C.58º D.116º4.如图,P为平行四边形ABCD的对称中心,以P为圆心作圆,过P的任意直线与圆相交于点M,N.则线段BM,DN的大小关系是()A.BM>DN B.BM<DN C.BM=DN D.无法确定5.如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB=72°,则∠E等于()A.18°B.24°C.30°D.26°6.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°7.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.48.下列图形,是轴对称图形,但不是中心对称图形的是()A.B.C.D.9.已知⊙O的半径为1,点P到圆心的距离为d,若关于x的方程x2-2x+d=0有实数根,则点P ( )A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.在⊙O上或⊙O内部10.已知⊙O的半径为4,点P到圆心O的距离为4.5,则点P与⊙O的位置关系是()A.P在圆内B.P在圆上C.P在圆外D.无法确定11.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是()A.14B.34C.15D.3512.二次函数y=3(x+4)2﹣5的图象的顶点坐标为()A.(4,5)B.(﹣4,5)C.(4,﹣5)D.(﹣4,﹣5)13.在△ABC中,∠C=90°,tan A=13,那么sin A的值是()A .12B .13C .1010D .310 14.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( )A .35B .38C .58D .3415.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252- B .25- C .251- D .52-二、填空题16.抛物线286y x x =++的顶点坐标为______.17.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .18.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.19.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.20.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.21.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.22.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.23.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.24.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m .25.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.26.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.27.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)28.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.29.若a bb-=23,则ab的值为________.30.如图,边长为2的正方形ABCD,以AB为直径作O,CF与O相切于点E,与AD交于点F,则CDF∆的面积为__________.三、解答题31.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a=,b=,c=.(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.32.已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x轴对称的图像所对应的函数表达式;33.如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在点A处用高1.5米的测角仪测得古树顶端点H 的仰角HDE ∠为45︒,此时教学楼顶端点G 恰好在视线DH 上,再向前走7米到达点B 处,又测得教学楼顶端点G 的仰角GEF ∠为60︒,点A 、B 、C 点在同一水平线上.(1)计算古树BH 的高度;(2)计算教学楼CG 的高度.(结果精确到0.1米,参考数据:2 1.4≈,3 1.7≈).34.计算:(1)()28233+-- (2)()103127+3.14+2π-⎛⎫- ⎪⎝⎭35.如图,四边形 ABCD 为矩形. (1)如图1,E 为CD 上一定点,在AD 上找一点F ,使得矩形沿着EF 折叠后,点D 落在 BC 边上(尺规作图,保留作图痕迹);(2)如图2,在AD 和CD 边上分别找点M ,N ,使得矩形沿着MN 折叠后BC 的对应边B' C'恰好经过点D ,且满足B' C' ⊥BD(尺规作图,保留作图痕迹);(3)在(2)的条件下,若AB =2,BC =4,则CN = .四、压轴题36.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?37.如图,⊙O 的直径AB =26,P 是AB 上(不与点A ,B 重合)的任一点,点C ,D 为⊙O 上的两点.若∠APD =∠BPC ,则称∠DPC 为直径AB 的“回旋角”.(1)若∠BPC =∠DPC =60°,则∠DPC 是直径AB 的“回旋角”吗?并说明理由;(2)猜想回旋角”∠DPC 的度数与弧CD 的度数的关系,给出证明(提示:延长CP 交⊙O 于点E );(3)若直径AB 的“回旋角”为120°,且△PCD 的周长为24+133,直接写出AP 的长.38.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CM BP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数;(2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积;(4)在(3)的条件下,求AB 的长度.39.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c ,①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值.40.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为2m为负数,最大值为2n为正数.将最大值为2n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,2m=-(n-1)2+5,n=52,∴m=11 8,∵m<0,∴此种情形不合题意,所以m+n=﹣2+52=12.2.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.3.B解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.C解析:C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM,从而得出三角形全等,得出答案.详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,∵以P为圆心作圆,∴P又是圆的对称中心,∵过P的任意直线与圆相交于点M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.5.B解析:B【解析】【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E的方程,解方程即可求得答案.【详解】解:如图,连接CO,∵CE=OB=CO=OD,∴∠E=∠1,∠2=∠D∴∠D=∠2=∠E+∠1=2∠E.∴∠3=∠E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:B.【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.6.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.8.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.9.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r 的数量关系,即可判断点P和⊙O的关系..解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r 时,点在圆内.10.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P到圆心O的距离为4.5,⊙O的半径为4,∴点P在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d的距离与半径r的大小确定点与圆的位置关系.11.D解析:D【解析】【分析】根据题意即从5个球中摸出一个球,概率为3 5 .【详解】摸到红球的概率=33 235=+,故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键.12.D解析:D【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 13.C解析:C【解析】【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.【详解】tan A =BC AC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB 故选:C .【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.14.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38. 故选B .【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.15.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得1422AP =⨯= .故选A. 二、填空题16.【解析】【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为解析:()4,10--【解析】【分析】 直接利用公式法求解即可,横坐标为:2b a -,纵坐标为:244ac b a-. 【详解】解:由题目得出: 抛物线顶点的横坐标为:84221b a -=-=-⨯; 抛物线顶点的纵坐标为:22441682464104414ac b a -⨯⨯--===-⨯ 抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.17.15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.18.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.19.46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.20.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.21.【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:-1<x <3.【点睛】此题主要考查了抛物线与x 轴的交点,正确数形结合分析是解题关键.22.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 23.【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对应边的比值相等可求出x 的解析:410【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=2x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵5AB=2,∴BE=1,∴222BM BE+=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,22x=,解得:x=4 3∴22410AD DF+=410.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,24.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.25.【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠A DC=∠ABC ,即可由tan ∠ADC=tan ∠ABC=求得所求的值了.详解:∵AB 是 解析:34【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC ,即可由tan ∠ADC=tan ∠ABC=AC BC 求得所求的值了. 详解:∵AB 是O 的直径,∴∠ACB=90°,又∵AC=3,AB=5,∴4=,∴tan ∠ABC=34AC BC =,又∵∠ADC=∠ABC ,∴tan ∠ADC=34. 故答案为:34. 点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.26.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =, 故答案为:203. 【点睛】 本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.27.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm ,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm ,则底面周长=6πcm ,侧面面积=12×6π×5=15πcm 2. 故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键. 28.【解析】【分析】△ABF 和△ABE 等高,先判断出,进而算出,△ABF 和△ AFD 等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD∥BC,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF ∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.29.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.30.【解析】【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C解析:3 2【解析】【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【详解】解:∵CF与O相切于点E,与AD交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△CDF中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.三、解答题31.解:(1)a =135,b =134.5,c =1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.【解析】【分析】(1)根据表中数据和中位数的定义、平均数和方差公式进行计算可求出表中数据; (2)从不同角度评价,标准不同,会得到不同的结果.【详解】解:(1)由表可知,一班135出现次数最多,为5次,故众数为135;由于表中数据为从小到大依次排列,所以处于中间位置的数为134和135,中位数为1341352+=134.5; 根据方差公式:s 2=()()()()()2222211321351341355135135213613513713510⎡⎤-+-+-+-+-⎣⎦=1.6,∴a =135,b =134.5,c =1.6; (2)①从众数看,一班一分钟跳绳135的人数最多,二班一分钟跳绳134的人数最多;所以一班的成绩好于二班;②从中位数看,一班一分钟跳绳135以上的人数比二班多;③从方差看,S 2一<S 2二;一班成绩波动小,比较稳定;④从最好成绩看,二班速度最快的选手比一班多一人;⑤一班和二班的平均成绩相同,说明他们的水平相当.【点睛】此题是一道实际问题,不仅考查了统计平均数、中位数、众数和方差的定义,更考查了同学们应用知识解决问题的发散思维能力.32.(1)y =(x -1)2-4或y =x 2-2x -3;(2)y =-(x -1)2+4【解析】【分析】(1)由表格中的数据,得出顶点坐标,设出函数的顶点式,将(0,-3)代入顶点式即可;(2)由(1)得顶点坐标和顶点式,再根据关于x轴对称的点的横坐标相同,纵坐标互为相反数求出抛物线的顶点坐标,然后根据新抛物线与原抛物线形状相同,开口方向向下写出解析式即可.【详解】(1)根据题意,二次函数图像的顶点坐标为(1,-4),设二次函数的表达式为y=a(x-1)2-4把(0,-3)代入y=a(x-1)2-4得,a=1∴y=(x-1)2-4或y=x2-2x-3(2)解:∵y= y=(x-1)2-4,∴原函数图象的顶点坐标为(1,-4),∵描出的抛物线与抛物线y=x2-2x-3关于x轴对称,∴新抛物线顶点坐标为(1,4),∴这条抛物线的解析式为y=-(x-1)2+4,故答案为:y=-(x-1)2+4.【点睛】本题考查了本题考查了待定系数法求二次函数解析式、二次函数的图象、二次函数的性质以及二次函数图象与几何变换,根据顶点的变化确定函数的变化,根据关于x轴对称的点的坐标特征求出描出的抛物线的顶点坐标是解题的关键.33.(1)8.5米;(2)18.0米【解析】【分析】(1)先根据题意得出DE=AB=7米,AD=BE=1.5米,在Rt△DEH中,可求出HE的长度,进而可计算古树BH的高度;(2)作HJ⊥CG于G,设HJ=GJ=BC=x,在Rt△EFG中,利用特殊角的三角函数值求出x的值,进而求出GF,最后利用 CG=CF+FG即可得出答案.【详解】解:(1)由题意:四边形ABED是矩形,可得DE=AB=7米,AD=BE=1.5米,在Rt△DEH中,∵∠EDH=45°,∴HE=DE=7米.∴BH=EH+BE=8.5米.答:古树BH的高度为8.5米.(2)作HJ⊥CG于G.则△HJG是等腰直角三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.在Rt△EFG中,tan60°=73 GF xEF x+==∴7(31)2x=,∴3x≈16.45∴CG=CF+FG=1.5+16.45≈17.95≈18.0米.答:教学楼CG的高度为18.0米.【点睛】本题主要考查解直角三角形,能够数形结合,构造出直角三角形是解题的关键.34.(12;(2)6【解析】【分析】(1)将原式三项化简,合并同类二次根式后即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项利用零指数公式化简,第三项利用负指数公式化简,合并后即可得到结果;【详解】解:(1)原式=22+3-2-3=2,(2)原式=3+1+2=6【点睛】此题考查了实数的混合运算,涉及的知识有:算术平方根和立方根,绝对值的性质,0指数和负整指数幂,熟练掌握公式及法则是解本题的关键.35.(1)图见解析(2)图见解析(351 -【解析】【分析】(1)以点E为圆心,以DE长为半径画弧,交BC于点D′,连接DD′,作DD′的垂直平分线交AD于点F即可;(2)先作射线BD,然后过点D作BD的垂线与BC的延长线交于点H,作∠BHD的角平分线交CD于点N,交AD于点M,在HD上截取HC′=HC,然后在射线C′D上截取C′B′=BC,此时的M、N即为满足条件的点;(3)在(2)的条件下,根据AB=2,BC=4,即可求出CN的长.【详解】(1)如图,点F为所求;。
2019-2020学年江苏省无锡市滨湖区九年级(上)期末数学试卷 (解析版)

2019-2020学年江苏省无锡市滨湖区九年级(上)期末数学试卷一、选择题(共10小题).1.(3分)下列方程中,是一元二次方程的是( ) A .21x y +=B .236x xy +=C .14x x+= D .232x x =-2.(3分)下列方程中,有两个不相等的实数根的是( ) A .210x x --=B .210x x ++=C .210x +=D .2210x x ++=3.(3分)若两个相似多边形的面积之比为4:9,则这两个多边形的周长之比为( ) A .2:3B .2:3C .4:9D .16:814.(3分)有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差5.(3分)二次函数26y x x =-图象的顶点坐标为( ) A .(3,0)B .(3,9)--C .(3,9)-D .(0,6)-6.(3分)如图,四边形ABCD 内接于O ,若40A ∠=︒,则(C ∠= )A .110︒B .120︒C .135︒D .140︒7.(3分)如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm8.(3分)在半径为3cm 的O 中,若弦32AB =则弦AB 所对的圆周角的度数为( ) A .30︒B .45︒C .30︒或150︒D .45︒或135︒9.(3分)如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将ADE ∆沿DE 折叠,点A 恰好落在BC 边上的点F 处,若2BF =,则BD 的长是( )A .2B .3C .218D .24710.(3分)已知二次函数2(1)5y x =--+,当m x n 且0mn <时,y 的最小值为2m ,最大值为2n ,则m n +的值为( ) A .12B .32C .2D .52二、填空题(共8小题)11.(2分)一元二次方程240x -=的解是 .12.(2分)一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球 只.13.(2分)某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为 m . 14.(2分)已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为 2cm .(结果保留)π15.(2分)在ABCD 中,ABC ∠的平分线BF 交对角线AC 于点E ,交AD 于点F .若35AB BC =,则EFBF的值为 .16.(2分)已知关于x 的方程2()0(a x m b a ++=、b 、m 为常数,0)a ≠的解是12x =,21x =-,那么方程2(2)0a x m b +++=的解 .17.(2分)如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为 .18.(2分)如图,在边长为4的菱形ABCD 中,60A ∠=︒,M 是AD 边的中点,点N 是AB 边上一动点,将AMN ∆沿MN 所在的直线翻折得到△A MN ',连接A C ',则线段A C '长度的最小值是 .三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)解方程: (1)2210x x --=; (2)2(21)4(21)x x -=-.20.(8分)已知关于x 的方程2(1)20x k x k --+=,若方程的一个根是4-,求另一个根及k 的值.21.(6分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,ABC ∆的顶点及点O 都在格点上(每个小方格的顶点叫做格点).(1)以点O 为位似中心,在网格区域内画出△A B C ''',使△A B C '''与ABC ∆位似(A '、B '、C '分别为A 、B 、C 的对应点),且位似比为2:1; (2)△A B C '''的面积为 个平方单位;(3)若网格中有一格点D '(异于点)C ',且△A B D '''的面积等于△A B C '''的面积,请在图中标出所有符合条件的点D '.(如果这样的点D '不止一个,请用1D '、2D '、⋯、n D '标出)22.(8分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是环,乙命中环数的众数是环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会.(填“变大”、“变小”或“不变”)23.(8分)“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为;(2)请利用树状图或列表法求两人被分配到同一个项目组的概率.24.(8分)如图,已知直线l切O于点A,B为O上一点,过点B作BC l⊥,垂足为点C,连接AB、OB.(1)求证:ABC ABO∠=∠;(2)若10AB=,1AC=,求O的半径.25.(8分)如图,在ABCD中,点E是边AD上一点,延长CE到点F,使FBC DCE∠=∠,且FB 与AD 相交于点G . (1)求证:D F ∠=∠;(2)用直尺和圆规在边AD 上作出一点P ,使BPC CDP ∆∆∽,并加以证明.(作图要求:保留痕迹,不写作法.)26.(10分)某商店购进一批成本为每件30元的商品.经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图象如图所示. (1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,试利用函数图象确定销售单价最多为多少元?27.(10分)如图,已知二次函数24(0)y ax ax c a =++≠的图象交x 轴于A 、B 两点(A 在B 的左侧),交y 轴于点C .一次函数12y x b =-+的图象经过点A ,与y 轴交于点(0,3)D -,与这个二次函数的图象的另一个交点为E ,且:3:2AD DE =. (1)求这个二次函数的表达式; (2)若点M 为x 轴上一点,求55MD 的最小值.28.(10分)如图,在正方形ABCD中,4AB=,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作O 交AC于点F,连接DF、PF.(1)求证:DPF∆为等腰直角三角形;(2)若点P的运动时间t秒.①当t为何值时,点E恰好为AC的一个三等分点;②将EFP∆沿PF翻折,得到QFP∆,当点Q恰好落在BC上时,求t的值.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑) 1.(3分)下列方程中,是一元二次方程的是( ) A .21x y +=B .236x xy +=C .14x x+= D .232x x =-解:A 、原方程为二元一次方程,不符合题意; B 、原方程为二元二次方程,不符合题意; C 、原方程为分式方程,不符合题意;D 、原方程为一元二次方程,符合题意,故选:D .2.(3分)下列方程中,有两个不相等的实数根的是( ) A .210x x --= B .210x x ++=C .210x +=D .2210x x ++=解:在210x x --=中,△2(1)41(1)1450=--⨯⨯-=+=>,故该方程有两个不相等的实数根,故A 符合题意;在210x x ++=中,△214111430=-⨯⨯=-=-<,故该方程无实数根,故B 不符合题意; 在210x +=中,△04110440=-⨯⨯=-=-<,故该方程无实数根,故C 不符合题意; 在2210x x ++=中,△224110=-⨯⨯=,故该方程有两个相等的实数根,故D 不符合题意; 故选:A .3.(3分)若两个相似多边形的面积之比为4:9,则这两个多边形的周长之比为( )AB .2:3C .4:9D .16:81解:两个相似多边形的面积之比为4:9, ∴两个相似多边形的对应边的比为2:3, ∴两个相似多边形的周长的比为2:3,故选:B .4.(3分)有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故选:C .5.(3分)二次函数26y x x =-图象的顶点坐标为( ) A .(3,0) B .(3,9)--C .(3,9)-D .(0,6)-解:2226699(3)9y x x x x x =-=-+-=--,∴二次函数26y x x =-图象的顶点坐标为(3,9)-.故选:C .6.(3分)如图,四边形ABCD 内接于O ,若40A ∠=︒,则(C ∠= )A .110︒B .120︒C .135︒D .140︒解:四边形ABCD 内接于O , 180C A ∴∠+∠=︒, 18040140C ∴∠=︒-︒=︒.故选:D .7.(3分)如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm解:如图所示:过点O 作OD AB ⊥于点D ,连接OA , OD AB ⊥,142AD AB cm ∴==, 设OA r =,则2OD r =-,在Rt AOD ∆中,222OA OD AD =+,即222(2)4r r =-+, 解得5r cm =.∴该输水管的半径为5cm ;故选:B .8.(3分)在半径为3cm 的O 中,若弦32AB =,则弦AB 所对的圆周角的度数为( ) A .30︒B .45︒C .30︒或150︒D .45︒或135︒解:如图所示,连接OA ,OB , 则3OA OB ==, 32B =,222OA OB AB ∴+=, 90AOB ∴∠=︒,∴劣弧AB 的度数是90︒,优弧AB 的度数是36090270︒-︒=︒, ∴弦AB 对的圆周角的度数是45︒或135︒,故选:D .9.(3分)如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将ADE ∆沿DE 折叠,点A 恰好落在BC 边上的点F 处,若2BF =,则BD 的长是( )A .2B .3C .218D .247解:ABC ∆是等边三角形,60A B C ∴∠=∠=∠=︒,5AB BC AC ===,沿DE 折叠A 落在BC 边上的点F 上, ADE FDE ∴∆≅∆,60DFE A ∴∠=∠=︒,AD DF =,AE EF =,设BD x =,5AD DF x ==-,CE y =,5AE y =-, 2BF =,5BC =, 3CF ∴=,60C ∠=︒,60DFE ∠=︒,120EFC FEC ∴∠+∠=︒,120DFB EFC ∠+∠=︒, DFB FEC ∴∠=∠, C B ∠=∠, DBF FCE ∴∆∆∽,∴BD BF DFFC CE EF ==, 即2535x x y y -==-, 解得:218x =, 即218BD =, 故选:C .10.(3分)已知二次函数2(1)5y x =--+,当m x n 且0mn <时,y 的最小值为2m ,最大值为2n ,则m n +的值为( ) A .12B .32C .2D .52解:二次函数2(1)5y x =--+的大致图象如下:.①当01m x n <<时,当x m =时,y 取最小值,即22(1)5m m =--+, 解得:2m =-.当x n =时,y 取最大值,即22(1)5n n =--+, 解得:2n =或2n =-(均不合题意,舍去);②当01m x n <时,当x m =时,y 取最小值,即22(1)5m m =--+, 解得:2m =-.当1x =时,y 取最大值,即22(11)5n =--+, 解得: 2.5n =,或x n =时,y 取最小值,1x =时,y 取最大值,22(1)5m n =--+, 2.5n =,118m ∴=, 0m <,∴此种情形不合题意,所以2 2.50.5m n +=-+=. 故选:A .二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)一元二次方程240x -=的解是 2x =± . 解:移项得24x =, 2x ∴=±.故答案:2x =±.12.(2分)一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球 10 只.解:设袋中共有小球只, 根据题意得635x =,解得10x =, 所以袋中共有小球10只. 故答案为10.13.(2分)某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为 60 m .解:设旗杆的影长为xm , 由题意得,501518x =, 解得60x =,即高为50m 的旗杆的影长为60m . 故答案为:60.14.(2分)已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为 60π 2cm .(结果保留)π 解:根据题意得,圆锥的母线226810cm =+=, ∴圆锥的底面周长212r cm ππ=, ∴圆锥的侧面积21112106022lR cm ππ==⨯⨯=. 故答案为60π.15.(2分)在ABCD 中,ABC ∠的平分线BF 交对角线AC 于点E ,交AD 于点F .若35AB BC =,则EF BF 的值为 38.解:四边形ABCD 是平行四边形, //AD BC ∴, AFB EBC ∴∠=∠,BF 是ABC ∠的角平分线, EBC ABE AFB ∴∠=∠=∠,AB AF ∴=, ∴35AB AF BC BC ==, //AD BC ,AFE CBE ∴∆∆∽, ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38.16.(2分)已知关于x 的方程2()0(a x m b a ++=、b 、m 为常数,0)a ≠的解是12x =,21x =-,那么方程2(2)0a x m b +++=的解 30x =,43x =- .解:关于x 的方程2()0a x m b ++=的解是12x =,21x =-,(a ,m ,b 均为常数,0)a ≠, ∴方程2(2)0a x m b +++=变形为2[(2)]0a x m b +++=,即此方程中22x +=或21x +=-,解得0x =或3x =-. 故答案为:30x =,43x =-.17.(2分)如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为 63π+ .解:如图,当圆形纸片运动到与A ∠的两边相切的位置时,过圆形纸片的圆心O 作两边的垂线,垂足分别为D ,E ,连接AO ,则Rt ADO ∆中,30OAD ∠=︒,1OD =,3AD =, 1322ADO S OD AD ∆∴==, 23ADO ADOE S S ∆∴==四边形, 120DOE ∠=︒,3DOE S π∴=扇形,∴纸片不能接触到的部分面积为:3(3)333ππ-=- 1633932ABC S ∆=⨯⨯= ∴纸片能接触到的最大面积为:933363ππ-+=+.故答案为63π+.18.(2分)如图,在边长为4的菱形ABCD 中,60A ∠=︒,M 是AD 边的中点,点N 是AB 边上一动点,将AMN ∆沿MN 所在的直线翻折得到△A MN ',连接A C ',则线段A C '长度的最小值是 272- .解:如图所示:在N 的运动过程中A '在以M 为圆心,MA 的长为半径的圆上, MA ∴'是定值,A C '长度取最小值时,即A '在MC 上时,过点M 作MF DC ⊥于点F ,在边长为4的菱形ABCD 中,60A ∠=︒,M 为AD 中点, 2MD ∴=,60FDM ∠=︒, 30FMD ∴∠=︒,112FD MD ∴==, cos303FM DM ∴=⨯︒=,2227MC FM CF ∴=+=,272A C MC MA ∴'=-'=-.故答案为:272-.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)解方程: (1)2210x x --=; (2)2(21)4(21)x x -=-. 解:(1)2210x x --=,2212x x ∴-+=,2(2)2x ∴-=,22x ∴=±.(2)2(21)4(21)x x -=-, (214)(21)0x x ∴---=, 52x ∴=或12x = 20.(8分)已知关于x 的方程2(1)20x k x k --+=,若方程的一个根是4-,求另一个根及k 的值.解:关于x 的方程2(1)20x k x k --+=的一个根是4-, 164(1)20k k ∴+-+=,解得2k =-,∴原方程为2340x x +-=,解得4x =-或1x =,即方程的另一根为1,k 的值为2-.21.(6分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,ABC ∆的顶点及点O 都在格点上(每个小方格的顶点叫做格点).(1)以点O 为位似中心,在网格区域内画出△A B C ''',使△A B C '''与ABC ∆位似(A '、B '、C '分别为A 、B 、C 的对应点),且位似比为2:1; (2)△A B C '''的面积为 10 个平方单位;(3)若网格中有一格点D '(异于点)C ',且△A B D '''的面积等于△A B C '''的面积,请在图中标出所有符合条件的点D '.(如果这样的点D '不止一个,请用1D '、2D '、⋯、n D '标出)解:(1)如图所示,△A B C '''即为所求;(2)△A B C '''的面积为111462424262444610222⨯-⨯⨯-⨯⨯-⨯⨯=---=;故答案为:10;(3)如图所示,所有符合条件的点D '有5个.22.(8分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲命中环数的中位数是 8 环,乙命中环数的众数是 环; (2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会 .(填“变大”、“变小”或“不变” )解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8; 在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9; 故答案为:8,6和9;(2)甲的平均数是:(78889)58++++÷=, 则甲的方差是:2221[(78)3(88)(98)]0.45-+-+-=,乙的平均数是:(669910)58++++÷=,则乙的方差是:2221[2(68)2(98)(108)] 2.85-+-+-=,所以甲的成绩比较稳定;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小. 故答案为:变小.23.(8分)“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A .全程马拉松;B .半程马拉松;C .迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组.(1 (2)请利用树状图或列表法求两人被分配到同一个项目组的概率. 解:(1)小明被分配到“迷你马拉松”项目组的概率为13;(2)画树状图为:共有9种等可能的结果数,其中两人被分配到同一个项目组的结果数为3,所以两人被分配到同一个项目组的概率31 93 ==.24.(8分)如图,已知直线l切O于点A,B为O上一点,过点B作BC l⊥,垂足为点C,连接AB、OB.(1)求证:ABC ABO∠=∠;(2)若10AB=,1AC=,求O的半径.【解答】(1)证明:连接OA,OB OA=,OBA OAB∴∠=∠,AC切O于A,OA AC∴⊥,BC AC⊥,//OA BC∴,OBA ABC∴∠=∠,ABC ABO∴∠=∠;(2)解:设O 的半径为R ,过O 作OD BC ⊥于D ,OD BC ⊥,BC AC ⊥,OA AC ⊥, 90ODC DCA OAC ∴∠=∠=∠=︒, ∴四边形OACD 是矩形,1OD AC ∴==,OA CD R ==,在Rt ACB ∆中,10AB =,1AC =,由勾股定理得:22(10)13BC =-=,在Rt ODB ∆中,由勾股定理得:222OB OD BD =+, 即2221(3)R R =+-, 解得:53R =, 即O 的半径是53.25.(8分)如图,在ABCD 中,点E 是边AD 上一点,延长CE 到点F ,使FBC DCE ∠=∠,且FB 与AD 相交于点G . (1)求证:D F ∠=∠;(2)用直尺和圆规在边AD 上作出一点P ,使BPC CDP ∆∆∽,并加以证明.(作图要求:保留痕迹,不写作法.)解:(1)四边形ABCD 是平行四边形, //AD BC ∴ FGE FBC ∴∠=∠FBC DCE ∠=∠,∴∠=∠FGE DCE∠=∠FEG DEC∴∠=∠.D F(2)如图所示:点P即为所求作的点.证明:作BC和BF的垂直平分线,交于点O,作FBC∆的外接圆,连接BO并延长交AD于点P,∴∠=︒PCB90AD BC//∴∠=∠=︒90CPD PCB由(1)得F D∠=∠∠=∠F BPCD BPC∴∠=∠∽.BPC CDP∴∆∆26.(10分)某商店购进一批成本为每件30元的商品.经调查发现,该商品每天的销售量y (件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,试利用函数图象确定销售单价最多为多少元?解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+, 将点(30,100)、(45,70)代入一次函数表达式得:301004570k b k b +=⎧⎨+=⎩, 解得:2160k b =-⎧⎨=⎩, 故函数的表达式为:2160y x =-+;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+, 20-<,故当55x <时,w 随x 的增大而增大,而3050x , ∴当50x =时,w 有最大值,此时,1200w =,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(30)(2160)800x x --+,解得:70x ,∴销售单价最多为70元.27.(10分)如图,已知二次函数24(0)y ax ax c a =++≠的图象交x 轴于A 、B 两点(A 在B的左侧),交y 轴于点C .一次函数12y x b =-+的图象经过点A ,与y 轴交于点(0,3)D -,与这个二次函数的图象的另一个交点为E ,且:3:2AD DE =.(1)求这个二次函数的表达式;(2)若点M 为x 轴上一点,求55MD 的最小值.解:(1)把(0,3)D -代入12y x b =-+得3b =-, ∴一次函数解析式为132y x =--, 当0y =时,1302x --=,解得6x =-,则(6,0)A -, 作EF x ⊥轴于F ,如图,//OD EF , ∴32AO AD OF DE ==, 243OF OA ∴==, E ∴点的横坐标为4,当4x =时,1352y x =--=-, E ∴点坐标为(4,5)-,把(6,0)A -,(4,5)E -代入24y ax ax c =++得3624016165a a c a a c -+=⎧⎨++=-⎩,解得143a c ⎧=-⎪⎨⎪=⎩, ∴抛物线解析式为2134y x x =--+; (2)作MH AD ⊥于H ,作D 点关于x 轴的对称点D ',如图,则(0,3)D ', 在Rt OAD ∆中,223635AD =+=, MAH DAO ∠=∠,Rt AMH Rt ADO ∴∆∆∽, ∴AM MH AD OD =335AM MH =, 55MH AM ∴=, MD MD =',55MD MA MD MH ∴+='+, 当点M 、H 、D '共线时,55MD MA MD MH D H +='+=',此时55MD MA +的值最小, D DH ADO ∠'=∠,Rt DHD Rt DOA ∴∆'∆∽,∴D H DD OA DA ''=,即6635D H '=,解得1255D H '=, 55MD MA ∴+的最小值为1255.28.(10分)如图,在正方形ABCD 中,4AB =,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作O 交AC 于点F ,连接DF 、PF .(1)求证:DPF ∆为等腰直角三角形;(2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点; ②将EFP ∆沿PF 翻折,得到QFP ∆,当点Q 恰好落在BC 上时,求t 的值.【解答】证明:(1)四边形ABCD 是正方形,AC 是对角线, 45DAC ∴∠=︒, 在O 中,DF 所对的圆周角是DAF ∠和DPF ∠, DAF DPF ∴∠=∠,45DPF∴∠=︒,又DP是O的直径,90DFP∴∠=︒,45FDP DPF∴∠=∠=︒,DFP∴∆是等腰直角三角形;(2)①当:1:2AE EC=时,//AB CD,DCE PAE∴∠=∠,CDE APE∠=∠,DCE PAE∴∆∆∽,∴DC CE PA AE=,∴42 21t=,解得,1t=;当:2:1AE EC=时,//AB CD,DCE PAE∴∠=∠,CDE APE∠=∠,DCE PAE∴∆∆∽,∴DC CE PA AE=,∴41 22t=,解得,4t=,点P从点A到B,t的最大值是422÷=,∴当4t=时不合题意,舍去;由上可得,当t为1时,点E恰好为AC的一个三等分点;②如右图所示,90DPF∠=︒,DPF OPF∠=∠,90OPF∴∠=︒,90DPA QPB∴∠+∠=︒,90DPA PDA∠+∠=︒,PDA QPB∴∠=∠,点Q 落在BC 上, 90DAP B ∴∠=∠=︒, DAP PBQ ∴∆∆∽, ∴DA DP PB PQ =, 4DA AB ==,2AP t =,90DAP ∠=︒, 2224(2)24DP t t ∴=+=+,42PB t =-, 设PQ a =,则PE a =,222DE DP a t a =-=+-, AEP CED ∆∆∽, ∴AP PE CD DE=, 即22424t a t a =+-, 解得,2242t t a t+=+, 2242t t PQ t+∴=+, ∴2242442242t t t t t+=-++, 解得,151t =--(舍去),251t =-, 即t 的值是51-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年秋学期期末考试试卷
初三数学
注意事项:①本卷满分130分.考试时间为120分钟.
②卷中除要求计算的结果取近似值外,其余各题均应给出精确结果. ③请考生直接在数学卷上答题.
一、选择题(本大题共8小题,共计24分.在每小题所给出的四个选项中,恰有
一项是符合题目要求的.请将正确选项前的字母填在题目后面的括号内) 1.如果⊙A 的半径是4cm ,⊙B 的半径是10cm ,圆心距AB =8cm ,那么这两个
圆的位置关系是 ( )
A .外离
B .外切
C .相交
D .内切 2.下面两个图形一定相似的是 ( )
A .两个矩形
B .两个等腰三角形
C .两个等腰梯形
D .有一个角是35º的两直角三角形
3.一元二次方程2x 2-7x -15=0的根的情况是 ( )
A .有两个正的实数根
B .有两个负的实数根
C .两根的符号相反
D .方程没有实数根
4.如图,⊙O 中,∠AOB =110°,点C 、D 是 AmB
⌒上任两点, 则∠C +∠D 的度数是 ( )
A .110°
B .55°
C .70°
D .不确定 5.如图,一棵大树被台风拦腰刮断,树根A 到刮断点 P 的长度是4m ,折断部分PB 与地面成40°的夹角, 那么原来树的长度是 ( )
A .4+4cos40º 米
B .4+4
sin40º 米 C .4+4sin40° 米 D .4+4cot40° 米
6.抛物线y =x 2+4x +5是由抛物线y =x 2+1经过某种平
移得到, 则这个平移可以表述为 ( )
A .向左平移1个单位
B .向左平移2个单位
C .向右平移1个单位
D .向右平移2个单位
7.甲、乙两人进行乒乓球比赛,比赛规则为5局3胜制.如果两人在每局比赛中
获胜的机会均等,且比赛开始后,甲先连胜了2局,那么最后甲获胜的概率是 ( )
(第5题) P
B
A (第4题)
班级 姓名 学号 .
……………………………………………………………装……………订……………线…………………………………………………………
A .1
B .78
C .56
D .6
7
8.已知α是锐角,且点A (1
2,a ),B (sin α+cos α,b ),C (-m 2+2m -2,c )
都在二次函数y =-x 2+x +3的图象上,那么a 、b 、c 的大小关系是 ( ) A .a <b <c B .a <c <b C .b <c <a D .c <b <a
二、填空题(本大题共12小题,每空2分,共计26分.请把答案填写在试卷相应的位置上)
9.方程x 2-3x =0
10.当x ________
11.若y =x m 2
+1-4x 是二次函数,则m =______;此时当x 时,y 随x 的增大而减小. 12.已知一个四边形的各边长分别是3cm 、4cm 、5cm 、8cm
与它相似的四边形的最长边的长是12cm 周长是_____cm .
13.如图,P A 、PB 分别切⊙O 于A 、B ,∠APB =50º,则∠AOP = º. 14.如图,AB ⊥BC 于B ,AC ⊥CD 于C ,添加一个条件:
,使△ABC ∽△ACD .
15.点B 在点A 的北偏东30°的方向上,离A 点5海里;点C 在点
A 的南偏东60°的方向上,离A 点12海里,那么
B 、
C 两点间 的距离是__________海里. 16.红星化工厂要在两年内使工厂的年利润翻一番,那么在这两年 中利润的年平均增长率是__________.
17.在一个袋子中装入大小、形状完全相同的若干个小球,要使得摸到红球的概
率是20%,请你设计一个实验方案: . 18.在Rt △ABC 中,如果∠C =90º,c =1,那么a cos B +b cos A =________. 19.如下图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),B (5,0)下列判
断:
①ac <0; ②b 2>4ac ; ③b +4a >0; ④4a -2b +c <0.
其中判断一定正确的序号是____________________.
(第13题)
D B A
(第14题)
20.如下图,在△OAB 中放置了3个圆,它们与相邻的三角形的边相切,与相邻
的圆相外切,已知最大圆与最小圆的半径分别是4、2,那么中间的圆的半径
是
三、解答题(本大题共8小题,共计80分.请在试卷的相应区域作答,解答时应
写出必要的文字说明或者演算步骤) 21.
(本大题满分8分)
(1) 解方程:(x -2)2=3(x -2); (2) 化简:3sin60º-(cos45º-1)0-tan30º·cot30º. 22.(本题满分8分)一只箱子里有红色球和白色球共5个,它们除颜色外其它都
一样.
(1) 如果箱子里有红色球3个,从箱子里任意摸出一个,不将它放回,搅匀后
再摸出一个,试用画树状图或列表的方法求两次摸出的球都是白色球的概率;
(2) 如果从箱子里任意摸一个球,摸到红色球的概率比摸到白色球的概率大
0.6,求箱子里红色球的个数.
(第19题)
B (第20题)
23.(本题满分10分)如图,在边长为1的正方形网格中,有一格点△ABC,已知
A、B、C三点的坐标分别是A(1,0)、B(2,-1)、C(3,1).
(1) 请在网格图形中画出平面直角坐标系;
(2) 以原点O为位似中心,将△ABC放大2倍,画出放大后的△A′B′C′;
(3) 写出△A′B′C′各顶点的坐标:A′_______,B′________,C′________;
(4) 写出△A′B′C′的重心坐标:___________;
(5) 求点A′到直线B′C′的距离.
C
A
B
24.(本题满分10分)如图,⊙O的直径AB=10,CD是⊙O的弦,AC与BD相交于点P.
(1) 判断△APB与△DPC是否相似?并说明理由;
(2) 设∠BPC=α,如果sinα是方程5x2-13x+6=0的根,求cosα的值;
(3) 在(2)的条件下,求弦CD的长.
25.(本题满分10分)在一大片空地上有一堵墙(线段AB ),现有铁栏杆40m ,
准备充分利用这堵墙建造一个封闭的矩形花圃.
(1) 如果墙足够长,那么应如何设计可使矩形花圃的面积最大? (2) 如果墙AB =8m ,那么又要如何设计可使矩形花圃的面积最大?
26.(本题满分10分)某工厂准备翻建新的厂门,厂门要求设计成轴对称的拱型
曲线.已知厂门的最大宽度
AB =12m ,最大高度OC =4m ,工厂的特种运输卡车的高度是3m
,宽度是5.8m .现设计了两种方案:方案一:建成抛物线形状;方案二:建成圆弧形状(如图).为确保工厂的特种卡车在通过厂门时更安全,你认为应采用哪种设计方案?请说明理由.
B A 第(1)小题 B
A 第(2)小题
(方案二) -------------------------------------------------密--------------------------------------------------封---------------------------------------线----------------------------- ( 密 封 线 内 不 准 答 题 )
27.(本题满分11分)如图,正方形OABC 的边长是1个单位长度,点M 的坐标
是(0,3
2
).动点P 从原点O 出发,沿x 轴的正方向运动,速度是每分钟3个
单位长度,直线PM 交BC 于点Q ,当直线PM 与正方形OABC 没有公共点的时候,动点P 就停止运动.
(1) 求点P 从运动开始到结束共用了多少时间?
(2) 如果直线PM 平分正方形OABC 的面积,求直线PM 的解析式;
(3) 如果正方形OABC 被直线PM 分成两部分中的较小部分的面积为1
3个平方单
位,求此时点P 运动的时间.
班级 姓名 学号 .
……………………………………………………………装……………订……………线…………………………………………………………
28.(本题满分13分)如图,抛物线y=3
8x
2-3
4x+c分别交x轴的负半轴和正半轴于
点A(x1,0)、B(x2,0),交y轴的负轴于点C,且tan∠OAC=2tan∠OBC,动
(备用图1) (备用图2)。