江苏省镇江市2013届高三高考适应性测试数学卷6
2013年江苏省高考数学试卷及答案

2013年普通高等学校统一考试试题(江苏卷)数学试卷及参考答案2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数)42sin(3π+=x y 的最小正周期为 .2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 .3.双曲线191622=-y x 的两条渐近线的方程为 . 4.集合}1,0,1{-共有 个子集.5.右图是一个算法的流程图,则输出的n 的值是 . 6.抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员 第一次第二次 第三次 第四次 第五次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为 .8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界)。
若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .yx Oy =2x —1y =—12 xABC1ADE F1B1C2013年普通高等学校统一考试试题(江苏卷)数学试卷及参考答案y x lB FOcb a 10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 .11.已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .13.在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点, 若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为 . 14.在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的 最大正整数n 的值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;xyy =xy =x 2—4 xP (5,5)Q (﹣5, ﹣5)2013年普通高等学校统一考试试题(江苏卷)数学试卷及参考答案(2)设)1,0(=c ,若c b a =+,求βα,的值.16.(本小题满分14分)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证: (1)平面//EFG 平面ABC ;(2)SA BC ⊥.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l . 设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线, 求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐 标a 的取值范围.A B CSG F E xy A lO2013年普通高等学校统一考试试题(江苏卷)数学试卷及参考答案18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。
镇江市2013届高三高考适应性测试数学卷5

江苏省镇江市2013届高三高考适应性测试数学卷5一.填空题(每题5分,共70分) 1. 复数(2)i i +的虚部是2.如{}23,2a a a ∈-,则实数a 的值等于3. 若函数1(),10()44,01xx x f x x ⎧-≤<⎪=⎨⎪≤≤⎩,则4(log 3)f =4.等比数列}{n a 中,n S 表示前n 顶和,324321,21a S a S =+=+,则公比q 为 5.在集合{}1,2,3中先后随机地取两个数,若把这两个数按照取的先后顺序组成一个二位数,则“个位数与十位数不相同”的概率是 .6.设,αβ为互不重合的平面,m ,n 为互不重合的直线,给出下列四个命题: ①若,,m n m n αα⊥⊂⊥则;②若,,m n m αα⊂⊂∥,n β∥β,则α∥β; ③若,,,,m n n m n αβαβαβ⊥=⊂⊥⊥ 则;④若,,//,//m m n n ααββ⊥⊥则, 其中所有正确命题的序号是 . 7.已知0>xy ,则|21||21|xy y x +++的最小值为 8.. 已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则给出如下四个判断:正确的有①()()76f f > ②()()96f f > ③()()97f f > ④()()107f f >9.已知角A 、B 、C 是ABC 的内角,,,a b c 分别是其对边长,向量2(23sin ,cos),22A A m = ,(cos ,2)2A n =- ,m n ⊥ ,且2,a =3cos 3B =则b =10.直线1x y a b +=通过点(cos ,sin )M αα,则2211a b+的取值范围为 11.已知()sin()(0),()()363f x x f f πππωω=+>=,且()f x 在区间(,)63ππ有最小值,无最大值,则ω=__________.12. 在区间[],1t t +上满足不等式3311x x -+≥的解有且只有一个,则实数t ∈13. 在△ABC 中,1tan ,0,()022C AH BC AB CA CB =⋅=⋅+=,H 在BC 边上,则过点B 以A 、H 为两焦点的双曲线的离心率为N MP QBA8kma km14. 已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若47a =,则m 所有可能的取值为二.解答题(请给出完整的推理和运算过程,否则不得分)15.(14分)设函数2()2(03)f x x x a x =-++≤≤的最大值为m ,最小值为n , 其中0,a a R ≠∈.(1)求m 、n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xoy 中的原点o 重合,始边与x 轴的正半轴重合,终边经过点(1,3)A m n -+.求tan()3πβ+的值.16. (14分)在直角梯形PBCD 中,,2,42D C BC CD PD π∠=∠====,A 为PD 的中点,如下左图。
江苏省镇江市2013届高考数学适应性测试卷9苏教版

江苏省镇江市2013届高三高考适应性测试数学卷9一、填空题:本大题共14小题,每小题5分,共计70分.1.i 是虚数单位,复数2332iz i +=-+的虚部是 ;2.抛物线24y x =的焦点到准线的距离是 ;3. 已知等比数列{}n a 中,各项都是正数,且2312,21,a a a 成等差数列,则87109a a a a ++= ;4.已知集合{|5}A x x =>,集合{|}B x x a =>,若命题“x A ∈”是命 题“x B ∈”的充分不必要条件,则实数a 的取值范围是 ;5.某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见下表,若从调查小组中的公务员和6.已知函数221(0)()2(0)x x f x x x ⎧+≤=⎨->⎩,则不等式()2f x x -≤的解集是 ;7.若某程序框图如所示,则该程序运作后输出的y 等于 ;8.函数()2sin()f x x ωϕ=+(其中0ω>,22ππϕ-<<)的图象如图所示,若点A 是函数()f x 的图象与x 轴的交点,点B 、D 分别是函数()f x 的图象的最高点和最低点,点C (,0)12π是点B 在x轴上的射影,则AB BD ⋅= ;9.如图,在棱长为5的正方体ABCD —A1B1C1D1中,EF 是棱AB 上的一条线段,且EF=2,Q 是A1D1的中点,点P 是棱C1D1上的动点,则四面体PQEF 的体积为_________;10.如图,是二次函数a bx x x f +-=2)(的部分图象,则函数)(ln )(x f x x g '+=的零点所在的区间是(1,)2k k -,则整数k =____________;11.设1250,,,a a a 是从-1,0,1这三个整数中取值的数列,若222212501509,(1)(1)(1)107a a a a a a +++=++++++=且,则1250,,,a a a 中数字0的个数为 .12.设a 是实数.若函数()|||1|f x x a x =+--是定义在R 上的奇函数,但不是偶函数,则函数()f x 的递增区间为 .13.已知椭圆)0(12222>>=+b a b y a x 的左焦点1F ,O 为坐标原点,点P 在椭圆上,点Q 在椭圆的右准线上,若1111112,()(0)||||F P F O PQ F O F Q F P F O λλ==+>则椭圆的离心率为 . 14.函数()f x 满足1()ln 1()f x x f x +=-,且12,x x 均大于e ,12()()1f x f x +=, 则12()f x x 的最小值为 .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.如图,在三棱柱ABC -A1B1C1中,AB =AC =2AA1, ∠BAA1=∠CAA1=60︒,D ,E 分别为AB ,A1C 中点. (1)求证:DE ∥平面BB1C1C ; (2)求证:BB1⊥平面A1BC .16. (本小题满分14分)已知a =(1+cos α,sin α),b =(1-cos ,sin ββ),(1,0)c =,(0,),(,2)απβππ∈∈,向量a与c 夹角为1θ,向量b 与c 夹角为2θ,且1θ-2θ=6π,若ABC ∆中角A 、B 、C 的对边分别为a 、b 、c ,且角A=βα-.求(Ⅰ)求角A 的大小; (Ⅱ)若ABC ∆的外接圆半径为43,试求b+c 取值范围.17.如图,海岸线θ2,=∠A MAN ,现用长为l 的栏网围成一养殖场,其中NA C MA B ∈∈,. (1)若l BC =,求养殖场面积最大值;(2)若B 、C 为定点,l BC <,在折线MBCN 内选点D ,使l DC BD =+,求四边形养殖场DBAC 的最大面积;(3)若(2)中B 、C 可选择,求四边形养殖场ACDB 面积的最大值.EABCC1B1 A1D18.(本题满分16分)给定椭圆2222:1(0)y x C a b a b +=>>,称圆心在坐标原点O ,C 的“伴随圆”. 若椭圆C的一个焦点为20)F ,其短轴上的一个端点到2F(Ⅰ)求椭圆C 及其“伴随圆”的方程;(Ⅱ)若过点(0,)(0)P m m <的直线l 与椭圆C 只有一个公共点,且l 截椭圆C 的“伴随圆”所得的弦长为m 的值;(Ⅲ)过椭圆C“伴椭圆”上一动点Q 作直线12,l l ,使得12,l l 与椭圆C 都只有一个公共点,试判断直线12,l l 的斜率之积是否为定值,并说明理由. 19. 设首项为1a 的正项数列{}n a 的前n 项和为n S ,q 为非零常数,已知对任意正整数,n m ,mn m m n S S q S +=+总成立.(Ⅰ)求证:数列{}n a 是等比数列;(Ⅱ)若不等的正整数,,m k h 成等差数列,试比较mhm h a a ⋅与2kk a的大小;(Ⅲ)若不等的正整数,,m k h 成等比数列,试比较11m h m ha a⋅与2k ka的大小.20. 已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x≥,且 1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. 求函数()f x 的表达式; 求函数()g x 的单调区间;(3)研究函数()g x 在区间()0,1上的零点个数。
江苏省镇江市高考数学适应性测试卷10苏教版

江苏省镇江市2013届高三高考适应性测试数学卷10一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.已知集合{|5}A x x =>,集合{|}B x x a =>,若命题“x A ∈”是命题“x B ∈”的充分 不必要条件,则实数a 的取值范围是 ▲ . 答案: 5a <2.复数1z i =-(i 是虚数单位),则22z z -= ▲ . 答案:12i -+3.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中,使用多媒体 进行教学次数在[]15,30内的人数为 ▲ . 答案:100解析:所抽取的20人中在[]15,30内的人数10人,故可得200名教师中使用多媒体进行教学次数在[]15,30内的人数为1020020⨯=100人。
4.如图是一个算法的流程图,则最后输出的W 的值为 ▲ . 答案:14解析:本题考查算法流程图。
0,11,23,36,4s t s t s t s t ==→==→==→==10s →= 所以输出14w s t =+=。
5.已知n s 是等差数列{n a }的前n 项和,若2s ≥4,4s ≤16,则5a 的最大值是 ▲ . 答案:96.用半径为210cm ,面积为π2100cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 ▲ .(第3题图)(第4题)答案:331000cm π7.若在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程22221x y m n+=表示焦点在x 轴上的椭圆的概率为 ▲ .答案:2解析:本题考查线性规划和几何概型。
由题意知15,24,m n m n ≤≤⎧⎪≤≤⎨⎪>⎩画可行域如图阴影部分。
2013年江苏高考数学模拟试卷六

2013年江苏高考数学模拟试卷(六)第1卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分.1. 若复数z 满足i i z +=-1)1((是虚数单位),则其共轭复数z = .2.“m <1”是“函数f (x )=x 2+2x +m 有零点”的 条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一).3.在△ABC 中,AB =2,AC =3,→AB ·→BC =1,则BC = .4.一种有奖活动,规则如下:参加者同时掷两个正方体骰子一次, 如果向上的两个面上的数字相同,则可获得奖励,其余情况不奖励.那么,一个参加者获奖的概率为 . 5.为了在下面的程序运行之后得到输出25=y ,则键盘输入x 的值应该为 .6.如图,直线与圆122=+y x 分别在第一和第二象限内交于21,P P 两点,若点1P 的横坐标为35,∠21OP P =3π,则点2P 的横坐标为 . 7.已知不等式组⎩⎪⎨⎪⎧x ≤1,x +y +2≥0,kx -y ≥0.表示的平面区域为Ω,其中k ≥0,则当Ω的面积取得最小值时的k 的值为 . 8.若关于x 的方程2-|x |-x 2+a =0有两个不相等的实数解,则实数a 的取值范围是 .9.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为:1,该长方体的最大体积是___ _____.10.直线)20(<<±=m m x 和kx y =把圆422=+y x 分成四个部分,则22(1)k m +的最小值为 .11.已知双曲线12222=-by a x ()0,1>>b a 的焦距为c 2,离心率为e ,若点(-1,0)和(1,0)到直线1=-b y a x 的距离之和为S ≥c 54,则e 的取值范围是 . Read xIf x <0 Theny =(x +1)(x +1)Elsey =(x-1)(x -1) End If Print y End12.已知定义在R 上的函数⎩⎨⎧∉-∈=]1,0[3]1,0[1)(x x x x f ,则1)]([=x f f 成立的整数x 的取值的集合为 . 13.定义在[2,4]上的函数x x x x f ln 3221)(2++-=的值域为 . 14.在如右图所示的数表中,第i 行第j 列的数记为a i ,j ,且满足a 1,j =2j -1,a i ,1=i ,a i +1,j +1=a i ,j +a i +1,j (i ,j ∈N *);又记第3行的数3,5,8,13,22,39,…. 则第3行第n 个数为 .二、解答题:本大题共6小题,共90分.15.(本小题满分14分)如图,在四棱锥S -ABCD 中,底面ABCD 是正方形,四个侧面都是等边三角形,AC 与BD 交于点O ,E 为侧棱SC 上的一点.(1)求证:平面BDE ⊥平面SAC ; (2)若SA //平面BDE ,求:SE EC 的值。
2013苏州、无锡、常州、镇江四市高三二模数学试卷及答案

苏、锡、常、镇四市2013届高三教学情况调查(二)2013.5一、填空题:本大题共14小题,每小题5分,共70分。
不需要写出解答过程,请把答案直接填在答题卡相应位置上;1、 已知i 是虚数单位,复数31i z i+=+对应的点在第 象限。
2、 设全集U R =,集合{}13A x|x =-≤≤,集合{}1B x |x =>,则UA CB = 。
3、 已知数列{}n a 的通项公式为21n a n =-,则数据1a ,2a ,3a ,4a ,5a 的方差为 。
4、 “3x >”是“5x >”的条件。
(请在“充要”、“充分不必要”、“必要不充分”、“既不充分也不必要”中选择一个合适的填空)。
5、 若双曲线()2210y x a a -=>的一个焦点到一条渐近线的距离等,则此双曲线方程为 。
6、 根据右图所示的流程图,输出的结果T 为 。
7、 在1和9之间插入三个正数,使这五个数成等比数列,则插入的三个数的和为 。
8、 在不等式组031y x x y x ⎧⎪≤⎪<≤⎨⎪⎪>⎩,所表示的平面区域内的所有格点(横、纵坐标均为整数的点称为格点)中任取3个点,则该3点恰能作为一个三角形的三个顶点的概率为 。
9、 在矩形ABCD 中,对角线AC 与相邻两边所成的角为α,β,则有221cos αcos β+=。
类比到空间中的一个正确命题是:在长方体1111ABCD A BC D -中,对角线1AC 与相邻三个面所成的角为α,β,γ,则有 。
10、 已知圆C :()()()2210x a y a a -+-=>与直线3y x =相交于P 、Q 两点,若90PCQ ︒∠=,则实数a = 。
11、 分别在曲线x y e =与直线1y ex =-上各取一点M 与N ,则MN 的最小值为 。
12、 已知向量a ,b 满足a = ,1b = ,且对一切实数x ,a xb a b +≥+ 恒成立,则a 与b 的夹角大小为 。
江苏省镇江市2012~2013学年上学期高三期末数学试卷及评分标准(word版)2013.1.25

镇江市2013届高三数学一模试卷及评分标准2013. 1.25注意事项: 1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分160分,考试时间120分钟.2.答题前,请您务必将自己的姓名、考试号用0.5毫米黑色字迹的签字笔填写在试卷的指定位置.3.答题时,必须用书写黑色字迹的0.5毫米签字笔写在试卷的指定位置,在其它位置作答一律无效.4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚.一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合M ={1 ,2,3, 4,5},N ={2,4,6,8,10},则M ∩N = ▲ .2.已知向量(12,2)a x =- ,()2,1b - =,若a b ⊥,则实数x = ▲ .3.直线1:240l x y +-=与 2:(2)10l mx m y +--=平行,则实数m = ▲ .4.方程lg(2)1x x +=有 ▲ 个不同的实数根.5. 已知0ω>,函数3sin()4y x πωπ=+的周期比振幅小1,则ω= ▲ .6. 在△ABC 中,sin :sin :sin 2:3:4A B C =,则cos C = ▲ .7. 在等比数列{}n a 中,n S 为其前n 项和,已知5423a S =+,6523a S =+,则此数列的公比q 为 ▲ . 8. 观察下列等式: 31×2×12=1-122, 31×2×12+42×3×122=1-13×22, 31×2×12+42×3×122+53×4×123=1-14×23,…,由以上等式推测到一个一般的结论:对于n ∈N *, 31×2×12+42×3×122+…+n +2n (n +1)×12n = ▲ . 9. 圆心在抛物线22x y =上,并且和抛物线的准线及y 轴都相切的圆的标准方程 为 ▲ .10. 在菱形ABCD 中,AB =23B π∠=,3BC BE =,3DA DF = ,则EF AC ⋅=▲ .11.设双曲线22221x y a b-=的左、右焦点分别为12,F F ,点P 在双曲线的右支上,且124PF PF =,则此双曲线离心率的最大值为 ▲ .12. 从直线3480x y ++=上一点P 向圆22:2210C x y x y +--+=引切线,PA PB ,,A B 为切点,则四边形PACB 的周长最小值为 ▲ .13. 每年的1月1日是元旦节,7月1日是建党节,而2013年的春节是2月10日,因为2sin11sin71sin[( ▲ )30]sin2013sin210+= ,新年将注定不平凡,请在括号内填写一个由月份和日期构成的正整数,使得等式成立,也正好组成我国另外一个重要节日.14. 已知x ,y 为正数,则22x yx y x y+++的最大值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知:p 128x <<;:q 不等式240x mx -+≥恒成立,若p ⌝是q ⌝的必要条件,求实数m 的取值范围.16.(本小题满分14分)已知△ABC 的面积为S ,且AB AC S ⋅=.(1)求tan 2A 的值;(2)若4B π=,3CB CA -= ,求△ABC 的面积S .17.(本小题满分14分)已知0a >,函数3()(f x ax bx x =-∈R)图象上相异两点,A B 处的切线分别为12,l l , 且1l ∥2l .(1)判断函数()f x 的奇偶性;并判断,A B 是否关于原点对称; (2)若直线12,l l 都与AB 垂直,求实数b 的取值范围.18.(本小题满分16分)一位幼儿园老师给班上(3)k k ≥个小朋友分糖果.她发现糖果盒中原有糖果数为0a ,就先从别处抓2块糖加入盒中,然后把盒内糖果的12分给第一个小朋友;再从别处抓2块糖加入盒中,然后把盒内糖果的13分给第二个小朋友;…,以后她总是在分给一个小朋友后,就从别处抓2块糖放入盒中,然后把盒内糖果的11n +分给第(1,2,3,)n n k = 个小朋友.如果设分给第n 个小朋友后(未加入2块糖果前)盒内剩下的糖果数为n a . (1) 当3k =,012a =时,分别求123,,a a a ;(2) 请用1n a -表示n a ;令(1)n n b n a =+,求数列{}n b 的通项公式;(3)是否存在正整数(3)k k ≥和非负整数0a ,使得数列{}n a ()n k ≤成等差数列,如果存在,请求出所有的k 和0a ,如果不存在,请说明理由.19.(本小题满分16分)已知椭圆O 的中心在原点,长轴在x 轴上,右顶点(2,0)A 到右焦点的距离与它到右准线的距离之比为23. 不过A 点的动直线12y x m =+交椭圆O 于P ,Q 两点. (1) 求椭圆的标准方程;(2)证明P ,Q 两点的横坐标的平方和为定值;(3)过点 A,P ,Q 的动圆记为圆C ,动圆C 过不同于A 的定点,请求出该定点坐标.20.(本小题满分16分)已知函数22()1x f x x x =-+,对一切正整数n ,数列{}n a 定义如下:112a =,且1()n n a f a +=,前n 项和为n S . (1)求函数()f x 的单调区间,并求值域; (2)证明{}{}()(())x f x x x f f x x ===;(3)对一切正整数n ,证明:○1 1n n a a +<;○21n S <.数学Ⅱ(附加题)注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试卷第21题有4个小题供选做,每位考生在4个选做题中选答2题,3题或4题均答的按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试用时30分钟.2.答题前,考生务必将自己的学校、姓名、考试号填写在试卷及答题卡的规定位置. 3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.本卷考试结束后,上交答题卡.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的.....答题区域....内.作答..,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .(选修4-1 几何证明选讲) 如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点,AE =AC , DE 交AB 于点F .求证:△PDF ∽△POC . B .(选修4—2:矩阵与变换)求曲线C :1xy =在矩阵2222A ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦ 对应的变换下得到的曲线C '的方程.(第21-A 题)A BPF OE DC·C .(选修4—4:坐标系与参数方程) 求圆3cos ρθ=被直线22,14x t y t=+⎧⎨=+⎩(t 是参数)截得的弦长.D.(选修4—5:不等式选讲)设函数()f x =.(1)当5a =-时,求函数()f x 的定义域;(2)若函数()f x 的定义域为R ,试求a 的取值范围.[必做题] 第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内. 22.(本小题满分10分)斜率为1的直线与抛物线22y x =交于不同两点,A B ,求线段AB 中点M 的轨迹方程. .23.(本小题满分10分)已知函数()ln(2)f x x ax =-+在区间(0,1)上是增函数.(1)求实数a 的取值范围;(2)若数列{}n a 满足1(0,1)a ∈,1ln(2)n n n a a a +=-+,n ∈N* ,证明101n n a a +<<<.高三数学期末检测答案及评分标准2013.01一、填空题(每题5分)1.{}4,2;2. 0;3.32; 4. 2; 5. 1 ; 6.41-; 7. 3; 8. ()n n 2111⋅+-9.()121122=⎪⎭⎫⎝⎛-+±y x ; 10.12-; 11. 35; 12.224+; 13. 101; 14. 32.【说明】13. (10月1日国庆节)本题的一般结论是()()x x x x 3sin 60sin 60sin sin 400=+⋅-⋅,可以应用课本习题中结论22sin()sin()sin sin αβαβαβ+-=-证得. 14. 本题可以进一步推广为:是否存在实数k ,使得2222x y x yk x y x y x y x y+≤≤+++++当 0xy >时恒成立?二、解答题:15.解::p 128x <<,即30<<x ,……3分 p ⌝是q ⌝的必要条件,∴p 是q 的充分条件,……5分∴不等式240x mx -+≥对()3,0∈∀x 恒成立,……7分xx x x m 442+=+≤∴对()3,0∈∀x 恒成立,……10分44x x +≥ ,当且仅当2x =时,等号成立.……13分 4≤∴m .……14分 【说明】本题考查简易逻辑、命题真假判断、简单指数不等式的解法、函数的最值、基本不等式应用;考查不等式恒成立问题;考查转化思想.16.解:(1)设△ABC 的角C B A ,,所对应的边分别为c b a ,,.AB AC S ⋅= ,A bc A bc sin 21cos =∴,……2分A A sin 21cos =∴, 2tan =∴A .……4分 34t a n 1t a n 22t a n 2-=-=∴AA A .……5分(2)3CB CA -= ,即3==c ,……6分 20,2t a n π<<=A A ,……7分55cos ,552sin ==∴A A . ……9分 ()sin sin sin cos cos sin C A B A B A B∴=+=+==……11分 由正弦定理知:5sin sin sin sin =⋅=⇒=B Ccb B b Cc ,……13分35523521sin 21=⋅⋅==A bc S .……14分【说明】本题主要考查和差三角函数、倍角公式、正弦定理的应用、平面向量的运算;考查运算变形和求解能力.17.解:(1)()()()()()x f bx ax x b x a x f -=--=---=-33,……2分()x f ∴为奇函数.……3分设()()2211,,,y x B y x A 且21x x ≠,又()b ax x f -='23,……5分()x f 在两个相异点,A B 处的切线分别为12,l l ,且1l ∥2l ,∴()()()22111222330k f x ax b k f x ax b a ''==-===->,∴2221x x =又21x x ≠,∴21x x -=,……6分 又()f x 为奇函数,∴点B A ,关于原点对称.……7分(2)由(1)知()()1111,,,y x B y x A --, ∴b ax x y k AB -==2111,……8分 又()x f 在A 处的切线的斜率()b ax x f k -='=2113, 直线12,l l 都与AB 垂直,∴()()22111,31AB k k axbaxb⋅=--⋅-=-,……9分令021≥=ax t ,即方程014322=++-b bt t 有非负实根,……10分∴302≥⇒≥∆b ,又212103b t t +=> , ∴0034>⇒>b b.综上3≥b .……14分 【说明】本题考查函数性质和导数的运算与应用、一元二次方程根的分布;考查换元法考查推理论证能力.21. 解:(1)当3k =,012a =时, ()()72212001=+-+=a a a ,()()62312112=+-+=a a a ,()()62412223=+-+=a a a .……3分 (2)由题意知:()()()212112111++=++-+=---n n n n a n n a n a a ,……6分即()()n na a n a n n n n 22111+=+=+--, (1)n n b n a =+,12,n n b b n -∴-=……7分112102,22,2.n n n n b b n b b n b b ---∴-=-=--=累加得()()12220+=+=-n n n n b b n ,……9分 又00a b=,∴()01a n n b n ++=.……10分(3)由()01a n n b n ++=,得1++=n a n a n ,……12分 若存在正整数(3)k k ≥和非负整数0a ,使得数列{}n a ()n k ≤成等差数列,则1322a a a +=,……14分 即00001(1)3220243a a a a ⎛⎫+++=+⇒= ⎪⎝⎭,……15分当00=a 时, n a n =,对任意正整数(3)k k ≥,有{}n a ()n k ≤成等差数列. ……16分 [注:如果验证012,,a a a 不能成等差数列,不扣分]【说明】本题主要考查数列的定义、通项求法;考查反证法;考查递推思想;考查推理论证能力;考查阅读理解能力、建模能力、应用数学解决问题能力.本题还可以设计:如果班上有5名小朋友,每个小朋友都分到糖果,求0a 的最小值.19.解:(1)设椭圆的标准方程为()012222>>=+b a by a x .由题意得23,2==e a .……2分3=∴c , 1b =, ……2分 ∴椭圆的标准方程为1422=+y x .……4分 (2)证明:设点),(),,(2211y x Q y x P将m x y +=21带入椭圆,化简得:0)1(2222=-++m mx x ○1 ∴212122,2(1)x x m x x m +=-=-,……6分 ∴222121212()24x x x x x x +=+-=, ∴P ,Q 两点的横坐标的平方和为定值4.……7分(3)(法一)设圆的一般方程为:220x y Dx Ey F ++++=,则圆心为(,22D E --),PQ 中点M (2,m m -), PQ 的垂直平分线的方程为:m x y 232--=, ……8分圆心(2,2E D --)满足m x y 232--=,所以322E D m -=-○2,……9分 圆过定点(2,0),所以420D F++=○3,……10分 圆过1122(,),(,)P x y Q x y , 则2211112222220,0,x y Dx Ey F x y Dx Ey F ++++=++++=⎧⎨⎩ 两式相加得: 22221212121220,x x y y Dx Dx Ey Ey F ++++++++=222212121212(1)(1)()()2044x x x x D x x E y y F ++-+-+++++=,……11分12y y m += , 5220m D m E F -++=∴○4.……12分因为动直线12y x m =+与椭圆C 交与P ,Q (均不与A 点重合)所以1-≠m ,由○2○3○4解得:3(1)3335,,,42222m D E m F m -==+=-- ……13分代入圆的方程为:223(1)3335()042222m x y x m y m -++++--=, 整理得:22335333()()0422422x y x y m x y +-+-++-=,……14分所以:223350,4223330,422x y x y x y ⎧+-+-=⎪⎪⎨⎪+-=⎪⎩……15分 解得:0,1,x y =⎧⎨=⎩或2,0x y =⎧⎨=⎩(舍).所以圆过定点(0,1).……16分(法二) 设圆的一般方程为:220x y Dx Ey F ++++=,将m x y +=21代入的圆的方程: 024522=+++⎪⎭⎫⎝⎛+++F mE m x E D m x ○5.……8分 方程○1与方程○5为同解方程.22122(1)542E m mE Fm D m m ++-+=+=, ……11分 圆过定点(2,0),所以024=++F D , ……12分因为动直线m x y +=21与椭圆C 交与P ,Q (均不与A 点重合)所以1-≠m . 解得: 3(1)3335,,42222m D E m F m -==+=--,……13分 (以下相同) 【说明】本题考查圆锥曲线的基本量间关系、直线与圆锥曲线的位置关系;考查定点定值问题;考查运算求解能力和推理论证能力.20.解:(1)定义域∈x R ,()()()()()22222221211212+-+-=+---+-='x xxx x xx x x x x x f ,……1分()200<<⇒>'x x f ,()200><⇒<'x x x f 或.……2分函数()f x 的单调增区间为()2,0,单调减区间为()()∞+∞-,和20, .……3分 (法一)()00=f ,4(2)3f =,当x →∞时, ()211111f x x x =→⎛⎫-+ ⎪⎝⎭,……4分(,0]x ∈-∞时,()f x 为减函数,()[0,1)f x ∈;当[0,)x ∈+∞时, 4()[0,]3f x ∈;函数()f x 的值域为⎥⎦⎤⎢⎣⎡34,0.……5分(法二)当0=x 时,()00=f ,当0≠x 时,()22114113311()124f x x x x ==≤⎛⎫-+-+ ⎪⎝⎭,且()0f x >,4(2)3f =,∴函数()f x 的值域为⎥⎦⎤⎢⎣⎡34,0.……5分 (法三)判别式法(略)(2)设{}{}(),(())A x f x x B x f f x x ====,设0x A ∈,则000(())()f f x f x x ==,则0x B ∈,A B ∴⊆.……6分当0x ≥时, 2222(1)011()1x x x x x x x x f x x -≥⇔≤⇔≤⇔-+-+≤ 恒成立. 当且仅当0,1x =时,().f x x =……7分 令()t f x =,当且仅当1x =时,() 1.t f x ==当0x <时,由(1)(())()0f f x f t =>, ∴当0x <时,(())f f x x =无解……8分 当01x <≠时, (())()()f f x f t t f x x =<=< ,∴当01x <≠时,(())f f x x =在无解.……9分综上,除0,1x =外,方程(())f f x x =无解, .A B ∴=∴{}{}()(())x f x x x f f x x ===.……10分(3) ○1显然22122131()24n n n n n na a a a a a +==-+-+,又112a =,0n a ∴>,1211111211n n n n n nna a a a a a a +∴==≤=-+-+-,……11分所以,1.n n a a +≤ 若n n a a =+1,则1=n a 矛盾.所以 n n a a <+1.……12分○2(法一)21222111111111111,1,1,1n n n n n n n n n n a a a a a a a a a a -------=∴=-+∴-=-+-+ 211111111111,11111111(1)1nn n n n n n a a a a a a a ------∴===---+-- 1111(2),1111n n na n a a --∴=-≥--……14分11121111121111()1,111111111n n n n i i i i i n S a a a a a a a +=++-=+-+=-=-=-∴-----=∑∑……15分 1102n n a a +<<<111 1.1n n a S a ++=-<-∴……16分(法二)2121122111111111111n n n n n n n n a a a a a a a a -------==<-+-+-+ ……13分11111(1)n n a a --=-1111111n n a a --=--1222111n n n a a a ---=-+-+……14分12233111n n n n a a a a ----=--+-+1211111n n a a a a --==----+- ……15分1211n n a a a --=---- , n S ∴=121n a a a +++< .……16分【说明】本题以高等数学中不动点、函数迭代等理论为背景,考查函数的图象与性质、导数的运算与应用;考查函数思想;考查推理论证能力、运算能力. 其中第2问证法较多. 本题可以进一步设计证明11112n n n a a ++≤-. 如令1n nb a =,可证明对任意正整数,m n 有,m n b b 互素.理 科 附 加 题 答 案21.【选做题】A .证明:∵AE =AC ,∠CDE =∠AOC ,……2分又∠CDE =∠P +∠PFD ,∠AOC =∠P +∠OCP ,……6分从而∠PFD =∠OCP .……7分 在△PDF 与△POC 中, ∠P =∠P ,∠PFD =∠OCP , 故△PDF ∽△POC .……10分B.解:设00(,)P x y 为曲线1xy=上的任意一点,在矩阵A 变换下得到另一点00(,)P x y ''', 则有00x x y y'⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥'⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦00 ,……4分 即000000),),x x y y y x ⎧'+⎪⎪⎨⎪'-⎪⎩ ……6分 所以000000),),x x y y x y ⎧''=-⎪⎪⎨⎪''=+⎪⎩……8分 又因为点P 在曲线1xy =上,所以001x y =, 故有22002x y ''-= 即所得曲线方程222x y -=.…… 10分C . 解:将极坐标方程转化成直角坐标方程:3cos ρθ=即:223x y x +=,即2239()24x y -+=;……4分22,14,x t y t =+⎧⎨=+⎩ 即:23x y -= ,…… 6分 0d ==,…… 8分即直线经过圆心,所以直线截得的弦长为3.…… 10分D. 解:(1)由题设知:1250x x ++--≥, 如图,在同一坐标系中作出函数12y x x =++- 和5y =的图象(如图所示),知定义域为(][),23,-∞-+∞ .……5分(2)由题设知,当x R ∈时,恒有120x x a ++-+≥,即12x x a ++-≥- 由(1)123x x ++-≥,∴ 3,3a a -≤∴≥-.……10分 [必做题]22.解:设直线方程:m x y +=,()()()y x M y x B y x A ,,,,,2211将m x y +=代入22y x =,得()02222=+-+m x m x ,……2分 所以()22122122240,22,,m m x x m x x m ⎧∆=-->⎪⎪+=-⎨⎪=⎪⎩……6分∴21<m ,1,211221=+=>-=+=m x y m x x x ,……9分 线段AB 中点M 的轨迹方程为:⎪⎭⎫ ⎝⎛>=211x y .……10分23.解:(1) 函数()ln(2)f x x ax =-+在区间(0,1)上是增函数.∴()021≥+--='a xx f 在区间(0,1)上恒成立,……2分 x a -≥∴21,又()xx g -=21在区间(0,1)上是增函数 ()11=≥∴g a 即实数a 的取值范围为1≥a .……3分(2)先用数学归纳法证明10<<n a . 当1=n 时,1(0,1)a ∈成立, ……4分假设k n =时,10<<k a 成立,……5分当1+=k n 时,由(1)知1=a 时,函数()()x x x f +-=2ln 在区间(0,1)上是增函数∴()()k k k k a a a f a +-==+2ln 1 ∴()()()1102ln 0=<<=<f a f f k ,……7分即101<<+k a 成立, ∴当*∈N n 时,10<<n a 成立.……8分 下证1+<n n a a . ()101,ln 2ln10.n n n n a a a a +<<∴-=->= ……9分1+<∴n n a a . 综上101<<<+n n a a .……10分。
江苏省镇江市2013届高三高考适应性测试数学卷7

江苏省镇江市2013届高三高考适应性测试数学卷7一、填空题(每题5分,共70分)1、若关于x 的不等式2230x x a -+<的解集为(,1)m ,则实数m =2、若将复数()()i i -+2112表示为(,,p qi p q R i +∈是虚数单位)的形式,则p q += .3、已知命题P :“R x ∈∀,0322≥-+x x ”,请写出命题P 的否定: 4、从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据可知a = 。
若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为 。
5、设向量(cos ,sin )a αα=,(cos ,sin )b ββ=,其中πβα<<<0,若|2||2|a b a b +=-,则βα-= .6、圆2244100x y x y +---=上的点到直线140x y +-=的最大距离与最小距离之差是_____________.7、已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)nn a a n -⋅=≥,则当1n ≥时,2123221l o g l o g l o g n a a a -+++=______8、已知F 1、F 2是椭圆2222)10(a y a x -+=1(5<a <10)的两个焦点,B 是短轴的一个端点,则 △F 1BF 2的面积的最大值是9、α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断:①m ⊥n②α⊥β③n ⊥β④m ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题: _____. 10、将正偶数集合,6,4,2{…}从小到大按第n 组有n2个偶数进行分组如下: 第一组 第二组 第三组 …………}4,2{ }12,10,8,6{ }28,26,24,22,20,18,16,14{ …………则2010位于第_______组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H
O
y2 1 的焦点到渐近线的距离为 2 2 ,则实数 k 的值是 k
▲ B .
k 1 k k 2 2 。解得 k 8 。 由焦点到渐近线的距离为 2 2 ,不妨 1 k
·1·
法二:可以将问题变为“若椭圆 x2 类讨论的意思
1 y2 1 的离心率为 ,则实数 k= 3 k
江苏省镇江市 2013 届高三高考适应性测试数学卷 6
一、填空题:本大题共 14 小题,每小题 5 分,共 70 分.请把答案填写在答题卡相应的位置上. 1.若集合 A={x|x>2},B={x|x≤3},则 A∩B= ▲ . 答案: (2,3] 解析:A∩B= (2,3] 讲评:主要考查集合运算,应强调考生回归课本、注重运算、留心 ∩ 及 集合描述的对象、认真审 题. 2.函数 y= 3 sin2x+cos2x 的最小正周期是 答案:π 解析:y= 3 sin2x+cos2x=2 sin(2 x+60º) T=2π /2= π 3.已知(a+i) =2i,其中 i 是虚数单位,那么实数 a= 答案:1 2 2 2 2 解析:(a+i) = a +2 ai+ i = a -1+2 ai=2i a=1
3
] 上的解集为 ( , ] , 2 3 2
结合函数是偶函数得原问题中 x0 取值范围是 [ 法2
, )( , ]. 2 3 3 2
2 作出函数 y x 2 1 , y cos x 在 [ , ] 上的图象 2 2 9 2
2 1 2 f ( x0 ) f ( ) x0 cos x0 , 3 9 2
2
▲
.
▲
.
4.已知向量 a 与 b 的夹角为 60º,且|a|=1,|b|=2,那么 (a b)2 的值为 答案:7 解析: (a b)2 =a + b +2ab = a + b +2|a||b| cos60º=1 +2 +2x1x2=7
2 2 2 2 2 2
▲
.
5.底面边长为 2m,高为 1m 的正三棱锥的全面积为 ▲ m. 摘自课本《必修 2》P49 练习 2 的原题,主要考查基本运算,应强调考生回归课本、注重运算、留心 单位、认真审题. 答案: 3 3 解析:如图所示,正三棱锥 S -ABC , O 为顶点 S 在底面 BCD 内的射影,则 O 为正 BCD 的垂心,过 S C 作 CH AB 于 H ,连接 SH 。 则 SO HC ,且 HO 1 CH
1 z 即使得函数 y x 在 y 轴上的截距最大。 2 2
结合可行域范围知,当其过点 P(0,1) 时, Zmax 0 2 1 2 。 8.对于定义在 R 上的函数 f(x),给出三个命题: ①若 f (2) f (2) ,则 f(x)为偶函数; ②若 f (2) f (2) ,则 f(x)不是偶函数; ③若 f (2) f (2) ,则 f(x)一定不是奇函数. 其中正确命题的序号为 ▲ . 答案:② 解析:命题③学生很容易判为真命题. 反例:函数 f ( x) 0( x R) 是奇函数,且满足 f (2) f (2) . 请注意以下问题:既是奇函数又是偶函数的函数是否唯一?
.
1 1 解析: log9 2 log3 2 , log27 2 log3 2 2 3 x log 9 2 x log3 2 log9 2 log3 2 q 3 x log 27 2 x log 9 2 log 27 2 log 9 2
本题首先应整体观察出三个对数值之间的关系,并由此选
” ,这时需要增加分
法三:结论法: 在双曲线中,双曲线的焦点到渐近线的距离为 b 【在本题中,则 b =k=( 2 2 ) =8】
x y 1≥ 0, 7.若实数 x,y 满足 x y ≥ 0, 则 z=x+2y 的最大值是 x ≤ 0,
2
2
▲
.
y
P(0,1)
答案:2 解析:满足题中约束条件的可行域如图所示。 目标函数 z x 2 y 取得最大值,
n←1,S←0 S<2011 是 S←S+2n n←n+1
(第 9 题图)
否 输出 n 结束
1 1 定 log32,得出 log272= log32,log92= log32,最 2 3 后通过假设将 x 用 log32 表示.
·2·
a11 a21 11.已知 5×5 数字方阵: a31 a41 a 51
235, 240 240, 245 245, 250
① 15 10
0.24 ② 0.20
[250, 255] 第五组 5 0.10 合 计 50 1.00 (1)写出表中①②位置的数据; (2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取 6 名学生进行第 二轮考核,分别求第三、四、五各组参加考核人数; (3)在(2)的前提下,高校决定在这 6 名学生中录取 2 名学生,求 2 人中至少有 1 名是第四组的 概率. 解:(1) ①②位置的数据分别为 12、0.3; „„„„„„„„„„„„„„„„„„4 分 (2) 第三、四、五组参加考核人数分别为 3、2、1; „„„„„„„„„„„„„8 分 (3) 设上述 6 人为 abcdef(其中第四组的两人分别为 d, e), 则从 6 人中任取 2 人的所有情形为: {ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,de,df,ef} 共有 15 种.„„„„„„„„„„„„„„„„„„„„„„„„„„„„10 分 记“ 2 人中至少有一名是第四组”为事件 A ,则事件 A 所含的基本事件的种数有 9 种. „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„12 分 9 3 3 所以 P( A) ,故 2 人中至少有一名是第四组的概率为 . „„„„„14 分 15 5 5
190
·3·
作为填空题倒 2 题,应适当考虑试题的长度(阅读量) 、知识点(综合度) 、难度(可区分性) 、思维 量等一些问题.问题只要求 11∶00 时的问题,故应绕开干扰因素,直奔主题:速度为 7∶50 至 11∶00 的平均速度 v,时间为 7∶50 至 12∶00,总路程为 250km,求最后 1 小时的路程. 14. 定义在 [1, ) 上的函数 f(x)满足: ①f(2x)=cf(x)(c 为正常数); ②当 2≤x≤4 时, f(x)=1-|x-3|. 若 函数的所有极大值点均落在同一条直线上,则 c= 答案:1 或 2
法1
▲
.
注意到函数 f ( x) x 2 cos x, x [ , ] 是偶函数故只需考虑 [0, ] 区间上的情形. 2 2 2
由 f ( x) 2 x sin x 0, x [0, 所以 f ( x 0 ) f ( ) 在 [0,
] 知函数在 [0, ] 单调递增, 2 2
c c
▲
.
解析:由已知可得:当 1 x 2 时, f ( x) 1 f (2 x) 1 (1 x 3 ) ; 当 2 x 4 时, f ( x) 1 x 3 ;当 4 x 8 时, f ( x) cf ( ) c(1 x 3 ) , 由题意点 ( 3 , 1 ), (3,1), (( 6, c) 共线,据
1
O
x
答案是否定的,如函数 f ( x) 0( x {1,1} , f ( x) 0( x {1,0,1} , f ( x) 0( x R) 等. 9.图中是一个算法流程图,则输出的 n= ▲ . 答案:11 10.已知三数 x+log272,x+log92,x+log32 成等比数列,则公比为 ▲ 答案:3 开始
并注意到 x 两函数有交点可得 x0 取值范围是 [ , ) ( , ] .
3
2 3
3 2
这是一个常见考型,应引起足够重视.填写答案时,应注意区间的闭、开问题,注意规范答题,否 则将可能因为表述问题而失去已到手的分. 13. 甲地与乙地相距 250 公里. 某天小袁从上午 7∶50 由甲地出发开车前往乙地办事. 在上午 9∶00, 10∶00,11∶00 三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那 么还有 1 小时到达乙地” .假设导航仪提示语都是正确的,那么在上午 11∶00 时,小袁距乙地 还有 ▲ 公里. 答案:60 解析:设从出发到上午 11 时行了 s 公里,则 s s 60 250 ,解得 s 190 ,此时小袁距乙地还有 60 公里.
3 3 ,在 Rt SHO 3
2
中, SH SO 2 HO 2 2 3 。
3
于是, SSAB 1 AB SH 2
2
3 3
, SABC 3 AB 2 3 。
4
A
C
所以 S全面积 =SBCD +3SSAB 3 3 。 6.若双曲线 x2 答案:8 解析:法一:双曲线的渐近线方程为 y k x ;焦点坐标是 ( 1 k ,0) 。
·4·
主要考查直线与平面的位置关系特别是平行与垂直的关系,考查空间想象能力、逻辑推理能力,考 查画图、读图、用图的能力. E A1 C1 16.(本题满分 14 分) 如图,在三棱柱 ABC-A1B1C1 中. B1 (1)若 BB1=BC,B1C⊥A1B,证明:平面 AB1C 平面 A1BC1; (2)设 D 是 BC 的中点,E 是 A1C1 上的一点,且 A1B∥平面 A C AE B1DE,求 1 的值. D EC1 B 解: (1) 因为 BB1=BC ,所以侧面 BCC1B1 是菱形,所以 B1C ⊥ (第 16 题图) BC1. „„„„„„„3 分 又因为 B1C⊥A1B ,且 A1B∩BC1=B,所以 BC1⊥平面 A1BC1, „„„„„„„5 分 又 B1C 平面 AB1C ,所以平面 AB1C⊥平面 A1BC1 .„„„„„„„„„„„7 分 (2)设 B1D 交 BC1 于点 F,连结 EF,则平面 A1BC1∩平面 B1DE=EF. 因为 A1B//平面 B1DE, A1B 平面 A1BC1,所以 A1B//EF. „„„„„„„11 分 A1 E BF 所以 = . EC1 FC1 AE BF BD 1 1 ,所以 1 = . „„„„„„„„„„„„„„„14 分 又因为 = FC1 B1C1 2 EC1 2