高考适应性测试(一)——数学(理)

合集下载

普通高等学校招生全国统一考试考前适应性试题(一)数学(理)

普通高等学校招生全国统一考试考前适应性试题(一)数学(理)

绝密★启用前高考考前适应性试卷理科数学考前须知:1、本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、答复第一卷时,选出每题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、答复第二卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

1.集合{}230A x x x =-<,(){}ln 2B x y x ==-,那么A B =〔〕A .()2,+∞B .()2,3C .()3,+∞D .(),2-∞【答案】B【解析】集合{}230{|03}A x x x x x =-<=<<,(){}{}ln 22B x y x x x ==-=>, 所以{}()|232,3A B x x =<<=.应选B .2.定义运算a b ad bc c d =-,那么满足i01i 2iz -=--〔i 为虚数单位〕的复数z 在复平面内对应的点班级 姓名 准考证号 考场号 座位号在〔〕 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A【解析】因为()()()()i2i i 1i 2i i 101i 2iz z z -=----=-++=--.所以()()()1i i i 11i 11i 2i 2i i 222z +-+-====--,所以11i 22z =+. 复数z 在复平面内对应的点为11,22⎛⎫⎪⎝⎭,应选A .3.某商场对一个月内每天的顾客人数进行统计得到如下图的样本茎叶图,那么该样本的中位数和众数分别是〔〕A .46,45B .45,46C .46,47D .47,45【答案】A【解析】由茎叶图可知,出现次数最多的是数45,将所有数从小到大排列后,中间两数为45,47,故中位数为46,应选A .4.假设在区间2⎡⎤-⎣⎦,上随机取一个数k ,那么“直线3y kx =+222x y +=相交〞的概率为〔〕A 322-B .32-C .22D 22- 【答案】C【解析】假设直线y kx =222x y +=<k >或k <,又2k ≤,∴所求概率(22p +-===C .5.?九章算术?中有“竹九节〞问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,那么该竹子的容积为〔〕 A .10011升 B .9011升 C .25433升 D .20122升 【答案】D【解析】设竹子自上而下各自节的容积构成数列{}n a 且()11n a a n d =+-, 那么123419871463 3214a a a a a d a a a a d +++=+=++=+=⎧⎨⎩,11322766a d ⎧==⎪⎪⎨⎪⎪⎩,∴竹子的容积为 1234567891981372019936 2226622a a a a a a a a a a d ⨯++++++++=+=⨯+⨯=,应选D . 6.α,β是两个不同的平面,l 是一条直线,给出以下说法:①假设l α⊥,αβ⊥,那么l β∥;②假设l α∥,αβ∥,那么l β∥;③假设l α⊥,αβ∥,那么l β⊥;④假设l α∥,αβ⊥,那么l β⊥.其中说法正确的个数为〔〕 A .3 B .2C .1D .0【答案】C【解析】①假设l α⊥,αβ⊥,那么l β∥或l β⊂;②假设l α∥,αβ∥,那么l β∥或l β⊂; ③假设l α⊥,αβ∥,那么l β⊥,正确;④假设l α∥,αβ⊥,那么l β⊥或l β∥或l 与β相交且l 与β不垂直.应选C .7.执行如下图的程序框图,假设输入的0001t =.,那么输出的n =〔〕A .6B .5C .4D .3【答案】C【解析】第一次循环,12S =,14m =,1n =;第二次循环,18S =,18m =,2n =;第三次循环,164S =,116m =,3n =;第四次循环,11024S =,132m =,4n =,此时S t >,不成立,此时结束循环,所以输出的n 的值为4,应选C . 8.函数()()πsin 03f x x ωω⎛⎫=+> ⎪⎝⎭,ππ63f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间ππ63⎛⎫⎪⎝⎭,上有最小值,无最大值,那么ω的值为〔〕 A .23B .113C .73D .143【答案】D【解析】∵()()πsin 03f x x ωω⎛⎫=+> ⎪⎝⎭,且ππ63f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,在区间ππ63⎛⎫⎪⎝⎭,上有最小值,无最大值, ∴直线πππ6324x +==为()()πsin 03f x x ωω⎛⎫=+> ⎪⎝⎭的一条对称轴,∴()πππ2π432k k ω⋅+=-+∈Z , ∴1083k ω=-+,()k ∈Z ,又0ω>,∴当1k =时,143ω=.易知当2k ≥时,此时在区间ππ63⎛⎫⎪⎝⎭,内已存在最大值.应选D .9.点()44P ,是抛物线2:2C y px =上的一点,F 是其焦点,定点()14M -,,那么MPF △的外接圆的面积为〔〕 A .125π32B .125π16C .125π8D .125π4【答案】B【解析】将点()44P ,坐标代入抛物线C 方程22y px =,得2424p =⋅,解得2p =,∴点()10F ,, 据题设分析知,4sin 5MPF ∠=,MF =,又2sin MF R MPF =∠〔R 为MPF △外接球半径〕,25R ∴R ∴=,MPF ∴△外接圆面积22125πππ16S R ==⋅=⎝⎭,应选B .10.在3nx ⎫⎪⎭的二项展开式中,各项系数之和为A ,二项式系数之和为B ,假设72A B +=,那么二项展开式中常数项的值为〔〕 A .6 B .9 C .12 D .18【答案】B【解析】在二项式3nx ⎫⎪⎭的展开式中,令1x =得各项系数之和为4n ,4n A ∴=,二项展开式的二项式系数和为2n,2nB ∴=,4272nn∴+=,解得3n =,333n x x ⎫⎫∴=⎪⎪⎭⎭的展开式的通项为33321333C 3C rr rrr r r T x x --+⎛⎫== ⎪⎝⎭,令3302r-=,得1r =,故展开式的常数项为1233C 9T ==,应选B .11.点P 为双曲线()2222100x y a b a b-=>>,右支上一点,1F ,2F 分别为双曲线的左、右焦点,I 为12PF F △的内心〔三角形12PF F 内切圆的圆心〕,假设121212IPF IPF IF F S S S -≥△△△〔1IPF S △,2IPF S △,12IF F S △分别表示1IPF △,2IPF △,12IF F △的面积〕恒成立,那么双曲线的离心率的取值范围为〔〕A .(]12,B .()12,C .()23,D .(]23,【答案】A 【解析】如图,设圆I 与12PF F △的三边12F F ,1PF ,2PF 分别相切于点E ,F ,G ,分别连接IE ,IF ,IG ,那么12IE F F ⊥,1IF PF ⊥,2IG PF ⊥,1112IPF S PF IF ∴=⨯⋅△,2212IPF S PF IG =⨯⋅△,121212IF F S F F IE =⨯⋅△,又121212IPF IPF IF F S S S -≥△△△,IF IE IG ==,1212111224PF PF F F ∴-≥,121212PF PF F F ∴-≥,1222a c ∴≥⋅,2c a ∴≤,2c a ∴≤,又1ca>,12c a ∴<≤,应选A .12.()f x 是定义在区间12⎛⎫+∞ ⎪⎝⎭,上的函数,()f x '是()f x 的导函数,且()()1ln 22xf x x f x x ⎛⎫'>> ⎪⎝⎭,e 12f ⎛⎫= ⎪⎝⎭,那么不等式e 2x f x ⎛⎫< ⎪⎝⎭的解集是〔〕 A .()1-∞, B .()1+∞,C .112⎛⎫ ⎪⎝⎭, D .()01,【答案】D【解析】引入函数()()1ln 22f x g x x x ⎛⎫=> ⎪⎝⎭, 那么()()()()()()()2221ln 22ln 2ln 212ln 2ln 2ln 22f x f x x f x f x x xf x x f x x x g x x xx x x ''-⋅⋅-'-⎛⎫'===> ⎪⎝⎭,()()1ln 22xf x x f x x ⎛⎫'>> ⎪⎝⎭,()()1ln 202xf x x f x x ⎛⎫'∴->> ⎪⎝⎭,又12x >,2ln 20x x ∴>,()0g x '∴>,∴函数()()ln 2f x g x x =在区间12⎛⎫+∞ ⎪⎝⎭,上单调递增, 又e e 22e 2eln 22x x x xf fg x ⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎝⎭⎝⎭== ⎪⎛⎫⎝⎭⋅ ⎪⎝⎭,不等式“e 2xf x ⎛⎫< ⎪⎝⎭〞等价于“e 21x f x ⎛⎫⎪⎝⎭<〞,即e 12x g ⎛⎫< ⎪⎝⎭, 又e 12f ⎛⎫= ⎪⎝⎭,e e 22x g g ⎛⎫⎛⎫∴<⎪ ⎪⎝⎭⎝⎭,又函数()()ln 2f x g x x =在区间12⎛⎫+∞ ⎪⎝⎭,上单调递增,e e 22x ∴<, 解得1x <,又函数()f x 的定义域为12⎛⎫+∞ ⎪⎝⎭,,得e 122x >,解得0x >, 故不等式e 2xf x ⎛⎫<⎪⎝⎭的解集是()01,,应选D . 第二卷本卷包括必考题和选考题两局部。

高三数学下学期第一次适应性考试试题(解析版)理

高三数学下学期第一次适应性考试试题(解析版)理

高三第一次适应性考试数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}22,14A x x x B x x =≤=<<,则A B ⋃=( ) A .(),4-∞B .[)0,4C .(]1,2D .()1,+∞2.设1i1iz +=-,z 是z 的共轭复数,则z z ⋅=( ) A.1- B .i C .1 D .43.在各项都为正数的等比数列{}n a 中,首项13a =,前三项和为21,则345a a a ++=( ) A.33 B .72 C .84 D .189 4.某公司2018年在各个项目中总投资500万元,右图是几类项目的投资 占比情况,已知在1万元以上的项目投资中,少于3那么不少于3万元的项目投资共有( )A .56万元B .65万元C .91万元D .147万元5.已知函数()()122,2,, 2.x f x x f x e x x -⎧-->⎪=⎨+≤⎪⎩则()2019f =( )A .2B .1eC .-2D .e+46.已知ξ服从正态分布2(1,),N a R σ∈,则“()0.5P a ξ>=”是“关于x 的二项式321()ax x+的展开式的常数项为3”的( ) A .充分不必要条件B .必要不充分条件C .既不充分又不必要条件D .充要条件7.已知函数()3f x x π⎛⎫=+ ⎪⎝⎭,以下结论错误的是( )A. 函数()y f x =的图象关于直线6x π=对称B. 函数()y f x =的图象关于点203π⎛⎫⎪⎝⎭,对称C. 函数()y f x π=+在区间5,66ππ⎡⎤-⎢⎥⎣⎦上单调递增D. 在直线1y =与曲线()y f x =的交点中,两交点间距离的最小值为2π8.已知()20{,|20360x y D x y x y x y +-≤⎧⎫⎪⎪=-+≤⎨⎬⎪⎪-+≥⎩⎭,给出下列四个命题:()1:,,0;P x y D x y ∀∈+≥ ()2,,210;P x y D x y ∀∈-+≤:()31:,,4;1y P x y D x +∃∈≤-- ()224,,2;P x y D x y ∃∈+≥: 其中真命题的是( ) A. 12,P PB. 23,P PC. 34,P PD. 24,P P9.设点P 是正方体1111ABCD A B C D -的对角线1BD 的中点,平面α过点P ,且与直线1BD 垂直,平面α平面ABCD m =,则m 与1A C 所成角的余弦值为( )ABC .13D10.已知ABC ∆是边长为2的正三角形,点P 为平面内一点,且3CP =则()PC PA PB ⋅+的取值范围是( )A. []0,12B. 30,2⎡⎤⎢⎥⎣⎦C. []0,6D. []0,311.设1F 、2F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线2x a =上一点,∆21F PF 是底边为1PF 的等腰三角形,且直线1PF 的斜率为13,则椭圆E 的离心率为( )A.1013 B. 58C . 35D .2312.已知函数21()2(2)2f x x x x 1=+≤≤的图象上存在点P ,函数()3g x ax =-的图象上存在点Q ,且P ,Q 关于原点对称,则实数a 的取值范围是( )A .[4,0]-B .5[0,]8C .[0,4]D .5[,4]8二、填空题:本题共4小题,每小题5分,共20分。

高考适应性测试数学试题(理)含答案编

高考适应性测试数学试题(理)含答案编

河南省普通高中毕业班高考适应性测试理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}(){}2|230|lg 20A x x x B x x =-->=-≤,则()R C A B =A. ()1,12-B. ()2,3C. (]2,3D.[]1,12-2.欧拉(Leonhard Euler,国籍瑞士)是科学史上最多产的一位杰出的数学家,他发明的公式cos sin ix e x i x =+(i 为虚数单位),将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,这个公式在复变函数理论中占有非常重要的地位,被誉为“数学中的天桥”.根据此公式可知,表示的复数i e π-在复平面内位于 A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限3.下列命题中,正确的是 A. 0003,sin cos 2x R x x ∃∈+=B. 0x ∀≥且x R ∈,22x x >C. 已知,a b 为实数,则2,2a b >>是4ab >的充分条件D. 已知,a b 为实数,则0a b +=的充要条件是1ab=- 4.已知圆22:4O x y +=(O 为坐标原点)经过椭圆()2222:10x y C a b a b+=>>的短轴端点和两个焦点,则椭圆C 的标准方程为A. 22142x y +=B. 22184x y +=C.221164x y +=D. 2213216x y +=5.已知等差数列{}n a 满足121,6n n a a a +=-=,则11a 等于 A. 31 B. 32 C. 61 D.626.某几何体的三视图如图所示,则该几何体的体积为 A. 33 B.3 C.43 D. 537.已知函数()132221x xx f x +++=+的最大值为M ,最小值为m ,则M m +等于A. 0B. 2C. 4D. 88.如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入,a b 的值分别为21,28,则输出a 的值为A. 14B. 7C. 1D. 09.已知函数1ln y x x =++在点()1,2A 处的切线为l ,若l 与二次函数()221y ax a x =+++的图象也相切,则实数a 的取值范围为A. 12B. 8C. 0D.410.已知ABC ∆的三个顶点坐标为()()()0,1,1,0,0,2,A B C O -为坐标原点,动点M 满足1CM =,则OA OB OM ++的最大值是A. 21+B. 71+C. 21-D.71-11.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,,F F O 为坐标原点,点P 是双曲线在第一象限内的点,直线2,PO PF 分别交双曲线C 的左、右支于另一点M,N ,若122PF PF =,且2120MF N ∠=,则双曲线的离心率为A.22B. 7C. 3D.212.定义在R 上的函数()f x ,当[]0,2x ∈时,()()411f x x =--,且对任意实数()122,22,2n n x n N n +*⎡⎤∈--∈≥⎣⎦,都有()1122x f x f ⎛⎫=- ⎪⎝⎭.若()()log a g x f x x =-有且仅有三个零点,则a 的取值范围是A. []2,10B. C. ()2,10 D.[)2,10第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知实数,x y 满足条件2420x x y x y m ≥⎧⎪+≤⎨⎪-++≥⎩,若目标函数2z x y =+的最小值为3,则其最大值为 .14.设二项式6x ⎛ ⎝展开式中的常数项为a ,则20cos 5ax dx π⎰的值为 .15.已知A,B,C 是球O的球面上三点,且3,AB AC BC D ===为该球面上的动点,球心O 到平面ABC 的距离为球半径的一半,则三棱锥D ABC -体积的最大值为 .16.已知函数()212n n n f x a x a x a x =+++,且()()11,.nn f n n N *-=-∈设函数(),,2n a n g n n g n ⎧⎪=⎨⎛⎫ ⎪⎪⎝⎭⎩为奇数为偶数,若()24,n n b g n N *=+∈,则数列{}n b 的前()2n n ≥项和n S = .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分)已知向量()()2cos ,sin ,cos ,23cos a x x b x x ==,函数() 1.f x a b =⋅-(1)求函数()f x 的单调递减区间;(2)在锐角ABC ∆中,内角A,B,C 的对边分别为,tan B =对任意满足条件的A,求()f A 的取值范围.18.(本题满分12分)某品牌汽车的4S 店,对最近100份分期付款购车情况进行统计,统计情况如下表所示.已知分9期付款的频率为0.4,;该店经销一辆该品牌汽车,若顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为2万元;分12期付款,其利润为3万元.(1)若以上表计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3为顾客,求事件A:“至多有1位采用分6期付款”的概率();P A (2)按分层抽样的方式从这100为顾客中抽取5人,再从抽取的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量η,求η的分布列和数学期望()E η.19.(本题满分12分)如图所示,已知长方体ABCD 中,2AB AD M ==为DC 的中点.将ADM ∆沿AM 折起,使得.AD BM ⊥ (1)求证:平面ADM ⊥平面ABCM ;(2)是否存在满足()01BE tBD t =<<的点E ,使得二面角E AM D --为大小为4π,?若存在,求出相应的实数t ;若不存在,请说明理由.20.(本题满分12分)设抛物线的顶点在坐标原点,焦点F 在y 轴上,过点F 的直线交抛物线于A,B 两点,线段AB 的长度为8,AB 的中点到x 轴的距离为3. (1)求抛物线的标准方程;(2)设直线m 在y 轴上的截距为6,且与抛物线交于P,Q 两点,连结QF 并延长交抛物线的准线于点R,当直线PR 恰与抛物线相切时,求直线m 的方程.21.(本题满分12分)已知函数()()()ln 1.1axf x x a R x=+-∈- (1)当1a =时,求函数()f x 的单调区间;(2)若11x -<<时,均有()0f x ≤成立,求实数a 的取值范围.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

高三数学适应性考试试题理含解析试题1

高三数学适应性考试试题理含解析试题1

卜人入州八九几市潮王学校峨2021年高考适应性考试理科数学试题〔考试时间是是:120分钟试卷总分值是:150分〕本卷须知: 1.2.答复选择题时,选出每一小题答案后,用铅笔把答题卡对应题目之答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答复非选择题时,将答案写在答题卡上。

写在套本套试卷上无效。

3.在在考试完毕之后以后,将本套试卷和答题卡一起交回。

一、选择题:此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.{}1,2,3A =,{|10}B x x =->,那么A B ⋂=〔〕A.{}1,2B.{}2,3C.{}1,3D.{}1,2,3【答案】B 【解析】 【分析】化简集合B ,根据交集运算求解即可. 【详解】由10x ->可得1x >,所以{}1Bx x =,{2,3}A B =,应选B.【点睛】此题主要考察了集合的交集运算,属于容易题.3iz i+=,i 是虚数单位,那么z 的虚部为〔〕 A.1B.-1C.3D.-3【答案】D【解析】 因为z=3ii+13i =-∴z 的虚部为-3,选D. ξ服从正态分布(0,1)N ,假设(1)0.8413P ξ≤=,那么(10)P ξ-<≤=〔〕【答案】A 【解析】 依题意得:()10.1587P ξ>=,()10.15872100.34132P ξ-⨯-<≤==.应选A .sin 6y x π⎛⎫=- ⎪⎝⎭的图象上所有的点向右平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍〔纵坐标不变〕,那么所得图象的解析式为〔〕A.5sin 212y x π⎛⎫=- ⎪⎝⎭B.sin 212x y π⎛⎫=+ ⎪⎝⎭C.5sin 212x y π⎛⎫=- ⎪⎝⎭D.5sin 224x y π⎛⎫=- ⎪⎝⎭【答案】C 【解析】右平移4π个单位长度得带5πsin 12x ⎛⎫- ⎪⎝⎭,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变)得到5sin 212x y π⎛⎫=- ⎪⎝⎭,应选C.{}n a 中,3a ,9a 是方程224120x x ++=的两根,那么数列{}n a 的前11项和等于〔〕A.66B.132C.-66D.-132【答案】D 【解析】 【分析】由根与系数的关系可求出3924a a +=-,再根据等差中项的性质得612a =-,利用等差数列的求和公式即可求解.【详解】因为3a ,9a 是方程224120x x ++=的两根所以3924a a +=-,又396242a a a +=-=,所以612a =-61111111211()13222a a a S ⨯⨯+===-,应选D.【点睛】此题主要考察了等差数列的性质,等差中项,数列的求和公式,属于中档题.[1,1]-上随机取一个数k ,使直线(3)y k x =+与圆221x y +=相交的概率为〔〕A.12B.13C.4D.3【答案】C 【解析】 【分析】根据直线与圆相交,可求出k 的取值范围,根据几何概型可求出相交的概率. 【详解】因为圆心(0,0),半径1r=,直线与圆相交,所以1d =≤,解得44k -≤≤所以相交的概率224P ==,应选C.【点睛】此题主要考察了直线与圆的位置关系,几何概型,属于中档题.7.某几何体的三视图如下列图,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,那么该几何体的体积是〔〕 A.1763B.1603C.1283D.32【答案】B 【解析】该几何体为一个正方体去掉一个倒四棱锥,其中正方体棱长为4,倒四棱锥顶点为正方体中心,底面为正方体上底面,因此体积是32116042433-⨯⨯=,选B. 点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽〞,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.a ,b ,c ,满足23a =,2log 5b =,32c =,那么〔〕A.c a b <<B.b c a <<C.a b c <<D.c b a <<【答案】A 【解析】分析:先利用指数函数的单调性确定,a c 的取值范围,再通过对数函数的单调性确定b 的范围,进而比较三个数的大小. 详解:因为223(2,2)a=∈,所以12a <<, 因为32(1,3)c=∈,所以01c <<, 又22log 5log 42b=>=,所以c a b <<.点睛:此题考察指数函数的单调性、对数函数的单调性等知识,意在考察学生的逻辑思维才能. 9.宋元时期数学名着算学启蒙中有关于“松竹并生〞的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,假设输入的a ,b 分别为5,2,那么输出的n =〔〕A.5B.4C.3D.2【答案】B 【解析】模拟程序运行,可得:52a b ==,,1n =,1542a b ==,,不满足条件a b ≤,执行循环体 2n =,4584a b ==,,不满足条件a b ≤,执行循环体 3n =,135168a b ==,,不满足条件a b ≤,执行循环体 4n =,4053216a b ==,,满足条件a b ≤,退出循环,输出n 的值是4 应选B214y x =的焦点F 是椭圆22221(0)y x a b a b+=>>的一个焦点,且该抛物线的准线与椭圆相交于A 、B 两点,假设FAB ∆是正三角形,那么椭圆的离心率为〔〕11C.3【答案】C 【解析】 由题知线段AB 是椭圆的通径,线段AB 与y 轴的交点是椭圆的下焦点1F ,且椭圆的1c =,又60FAB =∠,112122tan 603FF c AF AF AF =====,由椭圆定义知212c AF AF a a e a +==∴====C. 11.如图,在四棱锥C ABOD -中,CO ⊥平面ABOD ,//AB OD ,OB OD ⊥,且212AB OD ==,AD =CD 与AB 所成角为30︒,点O ,B ,C ,D 都在同一个球面上,那么该球的外表积为〔〕A.72πB.84πC.128πD.168π【答案】B 【解析】 由底面ABOD 的几何特征易得6OB =,由题意可得:6OD =,由于AB ∥OD ,异面直线CD 与AB 所成角为30°故∠CDO =30°, 那么tan 3023COOD =⨯=设三棱锥O -BCD 外接球半径为R , 结合,,OCOD OC OB OD OB ⊥⊥⊥可得:()222222844R OB OC OD R =++==,该球的外表积为:2484S R ππ==.此题选择B 选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出适宜的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.()(ln )xe f x k x x x=+-,假设1x =是函数()f x 的唯一极值点,那么实数k 的取值范围是〔〕A.(,]e -∞B.(,)e -∞C.(,)e -+∞D.[,)e【答案】A 【解析】由函数()()ln xe f x k x x x =+-,可得()211'1x x x e x e x e f x k x x x x ⎛⎫--⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭,()f x 有唯一极值点()1,'0x f x =∴=有唯一根1x =,0x e k x ∴-=无根,即y k =与()xe g x x=无交点,可得()2(1'x e x g x x-=,由()'0g x >得,()g x 在[)1+∞上递增,由()'0g x <得,()g x 在()0,1上递减,()()min 1,g x g e k e ∴==∴≤,即实数k 的取值范围是(],e -∞,应选A.【方法点睛】函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)别离参数法,先将参数别离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.二、填空题:此题一共4小题,每一小题5分,一共20分.(2,3)a =,(,6)b m =-,假设a b ⊥,那么m =________.【答案】9 【解析】 【分析】根据向量垂直可知向量的数量积等于零,利用数量积的坐标运算即可. 【详解】因为a b ⊥所以(2,3)(,6)2180a b m m ⋅=⋅-=-=, 解得m=9, 故填9.【点睛】此题主要考察了向量垂直,向量的数量积计算,属于中档题.x ,y 满足3040240x x y x y +≥⎧⎪-+≤⎨⎪+-≤⎩,那么3z x y =+的最小值为________.【答案】0 【解析】【分析】画出可行域,分析目的函数得133z y x =-+,当13y x =-在y 轴上截距最小时,即可求出z 的最小值.【详解】作出可行域如图:联立3040x x y +=⎧⎨-+=⎩得31x y =-⎧⎨=⎩化目的函数3zx y =+为133zy x =-+,由图可知,当直线13y x =-过点(3,1)A -时,在y 轴上的截距最小,z 有最小值为0,故填0.【点睛】此题主要考察了简单的线性规划,属于中档题.{}n a 的前n 项和为n S ,且21n n S a =-,那么数列1n a ⎧⎫⎨⎬⎩⎭的前6项和为_____.【答案】6332【解析】 由题意得n-111121(2)222n n n n n n S a n a a a a a ---=-≥∴=-∴=,因为1111111=2112()2n n n n S a a a a ---∴=∴=∴=∴数列{n 1a }的前6项和为611()63213212-=-. 22(0)y px p =>的焦点为F ,准线为l ,A 、B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB 的中点M 在l 上的投影为N ,那么MN AB的最大值是________.【答案】A 【解析】试题分析:设|AF|=a ,|BF|=b ,连接AF 、BF .由抛物线定义得2|MN|=a+b ,由余弦定理可得|AB|2=〔a+b 〕2﹣3ab ,进而根据根本不等式,求得|AB|的取值范围,从而得到此题答案. 解:设|AF|=a ,|BF|=b ,连接AF 、BF ,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|, 在梯形ABPQ 中,2|MN|=|AQ|+|BP|=a+b . 由余弦定理得,|AB|2=a 2+b 2﹣2abcos60°=a 2+b 2﹣ab , 配方得,|AB|2=〔a+b 〕2﹣3ab , 又∵ab≤,∴〔a+b 〕2﹣3ab≥〔a+b 〕2﹣〔a+b 〕2=〔a+b 〕2得到|AB|≥〔a+b 〕. ∴≤1, 即的最大值为1.应选:A .考点:抛物线的简单性质.三、解答题:一共70分.解容许写出文字说明、证明过程或者演算步骤.第17~21题为必考题,每个试题考生都必须答题.第22、23题为选考题,考生根据要求答题. 〔一〕必考题:一共60分.ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .满足2cos cos cos 0a C b C c B ++=.〔1〕求角C 的大小;〔2〕假设2a =,ABC ∆的3c 的大小.【答案】〔1〕23π〔27【解析】 【分析】(1)根据题意,由正弦定理和正余弦和差角公式进展化简,求得cosC 的值,求出角C ;〔2〕先用面积公式求得b 的值,再用余弦定理求得边c.【详解】(1)在ABC ∆中,因为2cos cos cos 0a C b C c B ++=, 所以由正弦定理可得:2sin cos sin cos sin cos 0A C B C C B ++=, 所以()2sin cos sin0A C B C ++=,又ABC ∆中,()sin sin 0B C A +=≠,所以1cos 2C =-.因为0C π<<,所以23Cπ=.(2)由1sin 2Sab C ==,2a=,23C π=,得1b =.由余弦定理得214122172c⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,所以c =【点睛】此题考察理解三角形中的正余弦定理和面积公式,解题关键是在于公式的合理运用,属于根底题. 18.由HY 电视台综合频道〔1CCTV-〕和唯众传媒结合制作的开讲啦是中国首档青年电视公开课.每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜欢,为了理解观众对节目的喜欢程度,电视台随机调查了A 、B 两个地区的100名观众,得到如下的22⨯列联表,在被调查的100名观众中随机抽取1名,该观众是B 地区当中“非常满意〞的观众的概率为0.35.〔1〕现从100名观众中用分层抽样的方法抽取20名进展问卷调查,那么应抽取“非常满意〞的A 、B 地区的人数各是多少.〔2〕完成上述表格,并根据表格判断是否有95%的把握认为观众的满意程度与所在地区有关系. 〔3〕假设以抽样调查的频率为概率,从A 地区随机抽取3人,设抽到的观众“非常满意〞的人数为X ,求X 的分布列和期望.附:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++.【答案】〔1〕A 抽6人,B 抽取7人;〔2〕没有95%的把握认为观众的满意程度与所在地区有关系;〔3〕见解析 【解析】 【分析】〔1〕根据分层抽样的抽样比为201=1005计算各层抽取人数即可〔2〕根据卡方公式计算即可,得出结论〔3〕由题意可得X 的可能取值,且X 服从二项分布,分别计算相应的概率即可.【详解】〔1〕由题意,得0.35100x=,所以35x =, A地抽取20306100⨯=,B 地抽取20357100⨯=. 〔2〕22100(30203515)1000.1 3.841653545551001K ⨯-⨯==≈<⨯⨯⨯,所以没有95%的把握认为观众的满意程度与所在地区有关系.〔3〕从A 地区随机抽取1人,抽到的观众“非常满意〞的概率为23P =, 随机抽取3人,X 的可能取值为0,1,2,3,311(0)327P X ⎛⎫=== ⎪⎝⎭,2132162(1)33279P X C ⎛⎫⎛⎫==== ⎪⎪⎝⎭⎝⎭, 22321124(2)33279P X C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,328(3)327P X ⎛⎫===⎪⎝⎭,【点睛】此题主要考察了分层抽样,2⨯2列联表,相关性检验,二项分布列及期望,属于中档题. 19.如图,在矩形ABCD 中,4AB =,2AD =,E 是CD 的中点,以AE 为折痕将DAE ∆向上折起,D 变为'D ,且平面'D AE ⊥平面ABCE .〔1〕求证:'AD BE ⊥; 〔2〕求二面角'A BD E --的大小.【答案】〔Ⅰ〕证明见解析;〔Ⅱ〕90. 【解析】试题分析:〔Ⅰ〕根据勾股定理推导出AE EB ⊥,取AE 的中点M ,连结MD ',那么MD '⊥BE ,从而EB ⊥平面AD E ',由此证得结论成立;〔Ⅱ〕以C 为原点,CE 为x 轴,CB 为y 轴,过C 作平面ABCE 的垂线为z 轴,建立空间直角坐标系,利用向量法能求出二面角A BD'E --的大小.试题解析:〔Ⅰ〕证明:∵AE BE ==,AB 4=,∴222AB AE BE =+,∴AE EB ⊥,取AE 的中点M ,连结MD ',那么AD D E 2MD AE ''==⇒⊥, ∵平面D AE '⊥平面ABCE , ∴MD '⊥平面ABCE ,∴MD '⊥BE ,从而EB ⊥平面AD E ',∴AD EB '⊥ 〔Ⅱ〕如图建立空间直角坐标系, 那么()A4,2,0、()C 0,0,0、()B 0,2,0、()D 3,1,2',()E 2,0,0,从而BA =〔4,0,0〕,BD'312=-(,,),()BE 2,2,0=-. 设1n x y z)(,,=为平面ABD '的法向量,那么11n BA 40n BD'32x x y z⎧⋅==⎪⇒⎨⋅=-+⎪⎩可以取1n 0,2,1)=(设()2n x y z ,,=为平面BD E '的法向量,那么22n BE 220n BD'320x y x y z ⎧⋅=-=⎪⇒⎨⋅=-+=⎪⎩可以取2n (1,12=-,)因此,12n n 0⋅=,有12n n ⊥,即平面ABD '⊥平面BD E ',故二面角A BD E -'-的大小为90.G :22221(0)x y a b a b +=>>过点6A 和点(0,1)B -.〔1〕求椭圆G 的方程; 〔2〕设直线y x m =+与椭圆G 相交于不同的两点M ,N ,记线段MN 的中点为P ,是否存在实数m ,使得BM BN=?假设存在,求出实数m ;假设不存在,请说明理由.【答案】〔1〕2213x y +=;〔2〕见解析【解析】 【分析】〔1〕根据椭圆过点,代入即可求出,a b ,写出HY 方程〔2〕假设存在m ,联立直线与椭圆方程,利用韦达定理可求弦MN 中点,根据BM BN =知BP MN ⊥,利用垂直直线斜率之间的关系可求出m ,结合直线与椭圆相交的条件∆>0,可知m 不存在.【详解】〔1〕椭圆G :22221(0)x y a b a b +=>>过点3A ⎛⎫ ⎪ ⎪⎝⎭和点(0,1)B -, 所以1b =,由22111a ⎝⎭+=,解得23a =,所以椭圆G :2213x y +=. 〔2〕假设存在实数m 满足题设,由2213y x mx y =+⎧⎪⎨+=⎪⎩,得()2246310x mx m ++-=, 因为直线与椭圆有两个交点,所以()22364810mm ∆=-->,即24m <,设MN 的中点为(,)P P P x y ,M x ,N x 分别为点M ,N 的横坐标,那么324M N p x x mx +==-,从而4p p m y x m =+=,所以143p BP py m k x m ++==-, 因为BM BN=,所以BP MN ⊥,所以1BP MN k k ⋅=-,而1MN k =,所以413m m+-=-, 即2m =,与24m <矛盾,因此,不存在这样的实数m ,使得BM BN =.【点睛】此题主要考察了椭圆HY 方程的求法,直线与椭圆的位置关系,涉及根与系数的关系,中点,垂直直线斜率的关系,属于中档题.21.11()ln e x e f x x x ⎛⎫=++- ⎪⎝⎭.〔1〕求函数()f x 的极值;〔2〕设()ln(1)xg x x ax e =+-+,对于任意1[0,)x ∈+∞,2[1,)x ∈+∞,总有()()122egx f x ≥成立,务实数a 的取值范围. 【答案】(1)()f x 的极小值为:12()f e e =-,极大值为:2()f e e=(2)(,2]-∞ 【解析】试题分析:(1)先求函数的定义域,然后对函数求导,利用导数求得函数的单调区间,进而求得极值.(2)由(1)得到函数()f x 的最大值为2e,那么只需()e 212e g x ≥⋅=.求出函数()g x 的导数,对a 分成2,2a a ≤>两类,讨论函数()g x 的单调区间和最小值,由此求得a 的取值范围.试题解析:(1)()()221111x e x e e e f x x x x ⎛⎫--+⎪⎝⎭=--=-' 所以()f x 的极小值为:12f e e ⎛⎫=- ⎪⎝⎭,极大值为:()2f e e =;(2)由(1)可知当[)1,x ∈+∞时,函数()f x 的最大值为2e对于任意[)[)120,,1,x x ∈+∞∈+∞,总有()()122eg x f x ≥成立,等价于()1g x ≥恒成立,①2a ≤时,因为1x e x ≥+,所以()1112011xg x e a x a a x x =+-≥++-≥-+'≥+,即()g x 在[)0,+∞上单调递增,()()01g x g ≥=恒成立,符合题意.②当2a >时,设()11xh x e a x =+-+,()()()()222111011x x x e h x e x x +-=-=≥++', 所以()g x '在[)0,+∞上单调递增,且()020g a ='-<,那么存在()00,x ∈+∞,使得()0g x '=所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,又()()001g x g <=, 所以()1gx ≥不恒成立,不合题意.综合①②可知,所务实数a 的取值范围是(],2-∞.【点睛】本小题主要考察函数导数与极值,考察利用导数求解恒成立问题.求极值的步骤:①先求'()0f x =的根0x 〔定义域内的或者者定义域端点的根舍去〕;②分析0x 两侧导数'()f x 的符号:假设左侧导数负右侧导数正,那么0x 为极小值点;假设左侧导数正右侧导数负,那么0x 为极大值点.求函数的单调区间、极值、最值是统一的,极值是函数的拐点,也是单调区间的划分点,而求函数的最值是在求极值的根底上,通过判断函数的大致图像,从而得到最值,大前提是要考虑函数的定义域.〔二〕选考题:一共10分,请考生在第22、23题中任选一题答题,假设多做,那么按所做的第一题计分.C 的参数方程为12cos 12sin x y θθ=-+⎧⎨=+⎩〔θ为参数〕,直线l 的极坐标方程为3()4R ,直线l 与曲线C 相交于M ,N 两点,以极点O 为原点,极轴为x 轴的非负半轴建立平面直角坐标系. 〔1〕求曲线C 的极坐标方程; 〔2〕记线段MN 的中点为P ,求OP的值.【答案】〔1〕2cos 24ρθπ⎛⎫++= ⎪⎝⎭;〔2〕OP =【解析】 【分析】〔1〕利用22sin cos 1θθ+=消去参数即可化为普通直角坐标方程,再根据cos sin x y ρθρθ=⎧⎨=⎩化为极坐标方程〔2〕联立34πθ=和22cos 2sin 20ρρθρθ+--=,可得220ρ--=,利用极径的几何意义知12||2OP ρρ+=,即可求解.【详解】〔1〕∵曲线C 的参数方程为12cos 12sin x y θθ=-+⎧⎨=+⎩〔θ为参数〕,∴所求方程为222(1)(1)2x y ++-=,∵cos sin x y ρθρθ=⎧⎨=⎩,∴22cos 2sin 2ρρθρθ+-=,∴曲线C 的极坐标方程为2cos 24ρθπ⎛⎫++= ⎪⎝⎭.〔2〕联立34πθ=和22cos 2sin 20ρρθρθ+--=,得220ρ--=,设()1,Mρα,()2,N ρα,那么12ρρ+=12||2OP ρρ+=,得OP =.【点睛】此题主要考察了参数方程与普通方程,普通方程与及坐标方程的互化,利用极径的几何意义求弦长,属于中档题.()241f x x x =-++.〔1〕解不等式()9f x ≤;〔2〕假设不等式()2f x x a <+的解集为{}2,|30A B x x x =-<,且满足B A ⊆,务实数a 的取值范围.【答案】〔Ⅰ〕[2,4]-;〔Ⅱ〕5a ≥. 【解析】 【分析】〔Ⅰ〕通过讨论x 的范围得到关于x 的不等式组,解出即可; 〔Ⅱ〕求出B ,根据集合的包含关系求出a 的范围即可. 【详解】〔Ⅰ〕()9f x ≤可化为2419x x -++≤,即>2,339x x ⎧⎨-≤⎩或者12,59x x -≤≤⎧⎨-≤⎩或者<1,339,x x -⎧⎨-+≤⎩解得2<4x ≤或者12x -≤≤,或者2<1x -≤-;不等式的解集为[]2,4-.〔Ⅱ〕易知()0,3B =;所以B A ⊆,又241<2x x x a -+++在()0,3x ∈恒成立;24<1x x a ⇒-+-在()0,3x ∈恒成立;1<24<1x a x x a ⇒--+-+-在()0,3x ∈恒成立;()()>30,305>350,35a x x a a a x x a ⎧-∈≥⎧⎪⇒⇒≥⎨⎨-+∈≥⎪⎩⎩在恒成立在恒成立. 【点睛】此题考察理解绝对值不等式问题,考察函数恒成立以及分类讨论思想,转化思想,是一道中档题.。

2023年贵州省高考数学适应性试卷(理科)+答案解析(附后)

2023年贵州省高考数学适应性试卷(理科)+答案解析(附后)

2023年贵州省高考数学适应性试卷(理科)1. 复数在复平面上对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 设,,则( )A. B. C. D.3. 实数x,y满足约束条件则的最大值等于( )A. 0B. 2C. 3D. 44. 某校为了解高一学生一周课外阅读情况,随机抽取甲,乙两个班的学生,收集并整理他们一周阅读时间单位:,绘制了下面频率分布直方图.根据直方图,得到甲,乙两校学生一周阅读时间的平均数分别为,标准差分别为,,则于( )A. ,B. ,C. ,D. ,5. 已知函数,下列结论正确的是( )A. 是偶函数B. 在上单调递增C. 的图象关于直线对称D. 的图象与x轴围成的三角形面积为26. 在直角坐标系xOy中,锐角的顶点为坐标原点,始边与x轴的非负半轴重合,终边与单位圆交于点若,则( )A. B. C. D.7. 直角三角形ABC中,,,若点P满足,则( )A. 0B.C.D.8. 如图,圆柱的底面直径AB与母线AD相等,E是弧AB的中点,则AE与BD所成的角为( )A.B.C.D.9. 某工厂产生的废气经过过滤后排放,已知在过滤过程中的污染物的残留含量单位:与过滤时间单位:之间的函数关系为,其中e是自然对数的底数,k 为常数,为原污染物总量.若前5个小时废气中的污染物被过滤掉了,则污染物被过滤掉了所需时间约为( )A. 73hB. 75hC. 77hD. 79h10. 椭圆的上顶点为A,F是C的一个焦点,点B在C上,若,则C的离心率为( )A. B. C. D.11. 将函数的图象向左平移个单位后得到函数的图象.若的图象关于点对称,且在上单调递减,则( )A. B. C. 1 D. 212. 设,则( )A. B. C. D.13. 的展开式中的常数项为______ .14. 已知圆M:,双曲线倾斜角为锐角的直线l过M的圆心,且与N的一条渐近线平行,则l的方程为______ .15. 在中,点D在BC边上,若,,则______ .16. 如图,某环保组织设计一款苗木培植箱,其外形由棱长为单位:的正方体截去四个相同的三棱锥截面为等腰三角形后得到.若将该培植箱置于一球形环境中,则该球表面积的最小值为______17. 公比为q的等比数列的前n项和求a与q的值;若,记数列的前n项和为,求18.矩形ABCD中,,如图,将沿AC折起到的位置.点在平面ABC上的射影E在AB边上,连结如图证明:;过直线的平面与BC平行,求与所成角的正弦值.19. 为普及航空航天科技相关知识、发展青少年航空航天科学素养,贵州省某中学组织开展“筑梦空天”航空航天知识竞赛,竞赛试题有甲、乙、丙三类每类题有若干道,各类试题的每题下表所示,各小题回答正确得到相应分值,否则得0分,竞赛分三轮分之和即为选手总分.题型每小题分值每小题答对概率项目甲类题10乙类题20丙类题30其竞赛规则为:第一轮,先回答一道甲类题,若正确,进入第二轮答题:若错误,继续回答另一道甲类题,该题回答正确,否则退出比赛.第二轮,在乙类题中选择一道作答,若正确,进入第三轮答题;否则,退出比赛.第三轮,在前两轮位作答的那一类试题中选择一道作答.小明参加竞赛,有两种方案选择,方案一:先答甲类题,再答乙类题,最后答丙类题;方案二:先答甲类题,再答丙类题,最后答乙类题.各题答对与否互不影响.请完成以下解答:若小明选择方案一,求答题次数恰好为3次的概率;经计算小明选择方案一所得总分的数学期望为,为使所得总分的数学期望最大,小明该选择哪一种方案?并说明理由.20. 过点的直线l与抛物线C:交于A,B两点,O为坐标原点,求C的方程;在x轴上是否存在点T,使得直线TA与直线TB的斜率之和为定值若存在,求出点T的坐标和定值k;若不存在,请说明理由.21. 已知函数,当时,讨论函数的单调性;当时,求曲线与的公切线方程.22. 在直角坐标系xOy中,曲线C的参数方程为为参数,常数,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的方程为写出C的极坐标方程和l的直角坐标方程;若直线和C相交于A,B两点,以AB为直径的圆与直线l相切,求的值.23. 设,,已知函数的最小值为求证:;,求证:答案和解析1.【答案】D【解析】解:因为,所以,所以复数z在复平面内对应的点的坐标为,位于第四象限.故选:根据复数代数形式的除法运算化简复数z,再根据复数的几何意义判断即可.本题主要考查复数的几何意义,以及复数的四则运算,属于基础题.2.【答案】B【解析】解:,解得或,故或,故故选:解不等式得到集合B,从而求出交集.本题主要考查了集合交集运算,属于基础题.3.【答案】C【解析】解:根据题意,画出可行域阴影部分及目标函数,因为中斜率为,z的几何意义为与y轴交点的纵坐标,故当经过点A时,取得最大值,联立,得,故,将其代入解析式,得到的最大值为故选:画出可行域及目标函数,利用几何意义得到最大值.本题考查简单线性规划相关知识,属于中档题.4.【答案】D【解析】解:根据频率分布直方图可知,,所以,,,所以故选:根据频率分布直方图求出平均数与方差,即可判断.本题主要考查频率分布直方图,平均数与方差的求法,考查运算求解能力,属于基础题.5.【答案】C【解析】解:A选项,,画出其函数图象,如下:故不是偶函数,A错误;B选项,在上单调递减,故B错误;C选项,的图象关于直线对称,C正确;D选项,的图象与x轴围成的三角形面积为,D错误.故选:去掉绝对值,得到,画出其图象,进而判断出四个选项.本题主要考查了分段函数的图象和性质,属于基础题.6.【答案】B【解析】解:因为,所以,所以,所以,又,,所以,因为点为的终边与单位圆的交点,所以,所以故选:由两角和正切公式求,结合同角关系求,根据三角函数定义求本题主要考查了两角和的正切公式,同角基本关系及三角函数定义的应用,属于基础题.7.【答案】B【解析】解:由题意得,,,,,,故选:利用表示,结合数量积的性质和数量积的定义,即可得出答案.本题考查平面向量数量积的性质,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.8.【答案】C【解析】解:取的中点F,连接EF,BF,DF,则,且,故四边形ADFE为平行四边形,所以,所以或其补角为AE与BD所成角,设,则,由勾股定理得:,,,由余弦定理得,故,所以AE与BD所成角为故选:作出辅助线,找到异面直线形成的夹角,求出各边长,利用余弦定理求出夹角.本题考查异面直线所成角问题,余弦定理的应用,化归转化思想,属中档题.9.【答案】C【解析】解:由题意得,化简得,两边取对数,,故,故设污染物被过滤掉了所需时间约为,则,化简得,即,解得,故污染物被过滤掉了所需时间约为故选:根据题意列出方程,求出,得到函数解析式,再设出未知数,解方程,求出答案.本题主要考查函数在实际问题中的应用,考查运算求解能力,属于中档题.10.【答案】A【解析】解:因为,所以A,B,F三点共线,其中,不妨设,,则,由,得,,解得,,故,将其代入中得:,解得,故离心率为故选:根据向量关系得到A,B,F三点共线,表达出B点坐标,代入椭圆方程,求出离心率.本题考查椭圆的几何性质,向量的坐标运算,方程思想,属中档题.11.【答案】B【解析】解:由题意得,的图象关于点对称,故,故,,解得,,又在上单调递减,故,又,解得,则,,解得或1,故当时,满足要求,经检验,满足在上单调递减,当时,,当时,,因为在上不单调递减,不合要求,舍去,其他均不合要求.故选:先根据左加右减得到的解析式,进而根据函数关于对称,求出,,又函数的单调性得到,从而求出答案.本题考查三角函数的图象与性质,属于中档题.12.【答案】A【解析】解:设,,则,,且,,,,单调递减,,即,,即,设,,则,设,则,设,则,在时单调递增,,即,在时单调递增,,即,在时单调递增,,,,,,,,即,故选:构造函数,,并判断单调性,得到,再构造函数,并判断单调性,得到即可.本题考查利用构造函数的单调性比较大小,属于中档题.13.【答案】【解析】解:的展开式通项公式为,令,解得,故,所以展开式中常数项为故答案为:利用二项式定理得到展开式的通项公式,求出常数项.本题主要考查二项式定理的应用,属于基础题.14.【答案】【解析】解:圆M:,即圆M的标准方程为,圆M:的圆心,半径,又双曲线的渐近线方程为或,直线l过圆M的圆心,且与N的一条渐近线平行,其倾斜角为锐角,直线l的方程为,即故答案为:由圆的方程求圆心,由双曲线方程求双曲线的渐近线方程,由此确定直线l的方程.本题考查双曲线的性质,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.15.【答案】3【解析】解:在中,由正弦定理,得,①在中,由正弦定理,得,②两式相除,得,因为,,,且,所以,故,解得故答案为:在两个三角形中,分别使用正弦定理,结合,求出答案.本题主要考查了正弦定理在求解三角形中的应用,属于中档题.16.【答案】【解析】解:如图将正方体补全,依题意可得A、B、、D为正方体底面边上的中点,要使球的表面积最小,即为求的外接球的表面积,如图建立空间直角坐标系,则,,则几何体外接球的球心必在上、下底面中心的连线上,设球心为,球的半径为R,则,即,解得,所以,所以外接球的表面积,即该球表面积的最小值为故答案为:将正方体补全,依题意可得A、B、、D为正方体底面边上的中点,要使球的表面积最小,即为求的外接球的表面积,建立空间直角坐标系,几何体外接球的球心必在上、下底面中心的连线上,设球心为,球的半径为R,由距离公式得到方程,求出m,即可求出,从而得解.本题考查球的表面积计算,考查空间向量在立体几何中的运用,考查运算求解能力,属于中档题.17.【答案】解:,当时,;当时,,,,又数列为等比数列,则,又,,解得;,,当时,,【解析】根据,的关系由条件求,再结合等比数列定义,即可得出答案;先求,利用等差数列求和公式求,利用裂项相消法求和,即可得出答案.本题考查数列的求和,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.18.【答案】证明:由题意知:平面ABC,平面ABC,所以又,平面,平面,且,所以平面又平面,所以;解:过E 作交AC 于F ,连结,由于,平面,平面,所以平面故平面即为平面建立如图所示空间直角坐标系:由于,,故,又,,,,因此,故是的一个法向量,由,又,,BC ,平面,所以平面,平面,所以,则在中可得,,,,则,,设与所成角为,则,即与平面所成角的正弦值为【解析】先证明,,由线面垂直判定定理证明平面,再证明;过E 作交AC 于F ,连结,证明平面与平面重合,建立空间直角坐标系,求直线的方向向量和平面的法向量,结合向量夹角公式求与所成角的正弦值.本题主要考查了直线与平面垂直的判定定理,考查了利用空间向量求直线与平面所成的角,属于中档题.19.【答案】解:记事件“小明先答对甲类一道试题”,“小明继续答对另一道甲类试题”,“小明答对乙类试题”,“小明答对丙类试题”,则,记事件“小明答题次数恰好为3次”,则,,即小明答题次数恰好为3次的概率为;解:设小明竞赛得分为X ,由方案二知X 的可能值为0、10、40、60,,,,,所以,,因为,所以选择方案一.【解析】记事件“小明先答对甲类一道试题”,“小明继续答对另一道甲类试题”,“小明答对乙类试题”,“小明答题次数恰好为3次”,可知,利用独立事件和互斥事件的概率公式可求得事件E 的概率;设小明竞赛得分为X ,由方案二知X 的可能值为0、10、40、60,计算出X 在不同取值下的概率,可求得的值,与方案一的期望进行大小比较,可得出结论.本题考查了离散型随机变量的分布列与期望,属于中档题.20.【答案】解:当直线l的斜率为0时,与抛物线交点为1个,不合要求,舍去,故设直线l的方程为,代入并整理得设,,则,由得,即,所以,即,故抛物线的方程为;假设存在满足条件的点,使,由知,,所以,化简可得:,因为上式对恒成立,所以,解得,,所以在x轴上存在点,使得直线TA与直线TB的斜率之和为【解析】先得到直线l的斜率不为0,设出直线方程,联立抛物线方程,得到两根之积,进而由垂直得到向量数量积为0,列出方程,求出及抛物线方程;假设点,使,结合第一问得到,得到方程组,求出,本题主要考查了圆锥曲线定值问题,设出直线方程,与圆锥曲线方程联立,得到两根之和,两根之积,应用设而不求的思想,进行求解,属于中档题.21.【答案】解:当时,,令,有,当时,,函数在上单调递减,,,函数在上单调递增,故,即,所以在R上单调递增;因为,,所以,,设曲线在点与曲线在的切线相同,则切线方程为,即,整理得,又切线方程也可表示为,即整理得,所以,消整理得令,,令,因为,所以函数在R上单调递增,又函数在R上单调递增,所以在R上单调递增,又,当,,,,又得,所以,,,,所以在单调递减,在单调递增,所以,因此函数只有一个零点,即只有一个解,此时切线方程为,所以曲线与的公切线方程为【解析】讨论的导函数的单调性,确定的单调性;把公切线设出来,通过待定系数法,比较系数可得切点横坐标,从而确定公切线方程.本题考查公切线,属于难题.22.【答案】解:将曲线C的参数方程为参数,常数,消去t,得C的普通方程为,且因为,所以,将,,,代入,得,即,,即为C的极坐标方程,由直线l的方程化简得,化简得,即为l的直角坐标方程.将直线代入,得,即故以AB为直径的圆圆心为O,半径圆心O到直线l的距离,由已知得,解得【解析】消去参数得到C的普通方程,再利用公式得到极坐标方程,注意定义域,再求出l的直角坐标方程;将代入C的极坐标方程,求出A,B的坐标,得到AB为直径的圆的圆心和半径,根据相切关系得到方程,求出答案.本题主要考查简单曲线的极坐标方程,考查转化能力,属于中档题.23.【答案】证明:因为,,,由题意得,于是,当且仅当时取等号,即由柯西不等式得,当且仅当,即,即时取等号.故【解析】由绝对值三角不等式求出,再利用基本不等式证明不等式;由柯西不等式进行证明.本题主要考查不等式的证明,考查转化能力,属于中档题.。

高考数学适应性考试试题一理 试题

高考数学适应性考试试题一理 试题

射洪中学2021届高考数学适应性考试试题〔一〕理制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日第I 卷(选择题,一共60分〕一.选择题(本大题一一共12小题,每一小题5分,一共60分.在每个小题所给出的四个选项里面,只 有一项是哪一项符合题目要求的,把正确选项的代号填在答题卡的规定的正确位置.〕1.设是纯虚数,那么复数在复面上对应的点的坐标为A. B.C. D.2.一个几何体的三视图如下图,那么该几何体的体积为A. 2B. 1C. 23D.133.假设变量,x y 满足不等式组2{1 y x y x y a≤+≥-≤,且3z x y =-的最大值为7,那么实数a 的值是A. 1B. 7C. 1-D. 7-4.假设实数a , b 满足0a >, 0b >,那么“a b >〞是“ln ln a a b b +>+〞的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件5.执行如下图的程序框图,假设输入,那么输出的的值满足A. B. C.D.6.如下图,三国时代数学家赵爽在?周髀算经?中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形〔阴影〕,设直角三角形有一内角为,假设向弦图内随机抛掷500颗米粒〔大小忽略不计,取〕,那么落在小正方形〔阴影〕内的米粒数大约为〔〕A. 13134B. 67C. 200D. 2507.函数,将图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再向右平移个单位得到的图像,假设为偶函数,那么的一个值为A. B.C. D.8.在中,三内角的对边分别为,且,,那么角的大小是A. 或者B.C. D.9.如图,在正方体中,点在线段上运动,那么以下判断中正确的选项是〔〕①平面平面;②平面;③异面直线与所成角的取值范围是;④三棱锥的体积不变.A. ①②B. ①②④C. ③④D. ①④10.将边长为的正方形沿对角线折起,那么三棱锥的外接球体积为〔〕A. B. C.D.11.椭圆的左右焦点分别为,过左焦点作斜率为2的直线与椭圆交于两点,的中点是,为坐标原点,假设直线的斜率为,那么的值是A. 2B.C.D.12.假设函数的图像和直线有四个不同的公一共点,那么实数的取值范围是A. B. C.D.第二卷〔非选择题一共90分〕二、填空题(本大题一一共4小题,每一小题5分,满分是20分〕13.假如的展开式中各项系数之和为256,那么展开式中的系数是__________.=所围成的封闭图形的面积为 .2y x=与直线y x15.如下图,点是的重心,过点作直线分别交两边于两点,且,,那么的最小值为__________.16.的内角所对的边分别为,,,那么的最小值为__________.三、解答题〔一共70分,解容许写出文字说明、证明过程或者演算步骤,第17 ~ 21题为必考题,每个试题考生都必须答题,第22、23题为选考题,考生根据要求答题.〕17.〔本大题满分是12分〕在中,内角的对边分别为,,三边成等比数列,且面积为1,在等差数列中,,公差为.〔1〕求数列的通项公式;〔2〕数列满足,设为数列的前项和,求的取值范围.18.〔本大题满分是12分〕某工厂一共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:每月完成合格产品的件数〔单位:百件〕频数10 45 35 6 4 男员工人数7 23 18 1 1 〔1〕其中每月完成合格产品的件数不少于3200件的员工被评为“消费能手〞.由以上统计数据填写上下面列联表,并判断是否有95%的把握认为“消费能手〞与性别有关?非“消费能手〞“消费能手〞合计男员工女员工合计〔2〕为进步员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的局部,累进计件单价为1.2元;超出件的局部,累进计件单价为1.3元;超出400件以上的局部,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进展工资调查,设实得计件工资〔实得计件工资=定额计件工资+超定额计件工资〕不少于3100元的人数为,求的分布列和数学期望.附:,.19.〔本大题满分是12分〕如图,在三棱锥中,底面是边长为4的正三角形,,底面,点分别为,的中点.〔1〕求证:平面平面;〔2〕在线段上是否存在点,使得直线与平面所成的角的正弦值为?假设存在,确定点的位置;假设不存在,请说明理由.20.〔本大题满分是12分〕抛物线的焦点为,准线为,抛物线上存在一点,过点作,垂足为,使是等边三角形且面积为.〔1〕求抛物线的方程;〔2〕假设点是圆与抛物线的一个交点,点,当获得最小值时,求此时圆的方程.21.〔本大题满分是12分〕函数〔其中,为自然对数的底数,〕.〔1〕假设,求函数的单调区间;〔2〕证明:当时,函数有两个零点,且.〔二〕选考题:一共10分,请考生在第22、23题中任选一题答题.假如多做,那么按所做的第一题计分.22. [选修4-4:坐标系与参数方程]〔10分〕在直角坐标系中,过点的直线的参数方程为〔为参数〕,以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.〔1〕假设点的直角坐标为,求直线及曲线的直角坐标方程;〔2〕假设点在上,直线与交于两点,求的值.23.设函数.〔1〕当时,求关于的不等式的解集;〔2〕假设在上恒成立,求的取值范围.高考适应性考试数学(理科〕试题答案一.选择题二.填空题14.1615.16.17解:〔1〕∵,,,∴,.〔2〕∵,∴∵是关于n的增函数,∴.18.〔1〕非“消费能手〞“消费能手〞合计男员工48 2 50女员工42 8 50合计90 10 100因为的观测值,所以有的把握认为“消费能手〞与性别有关.〔2〕当员工每月完成合格产品的件数为3000件时,得计件工资为元,由统计数据可知,男员工实得计件工资不少于3100元的概率为,女员工实得计件工资不少于3100元的概率为,设2名女员工中实得计件工资不少于3100元的人数为,1名男员工中实得计件工资在3100元以及以上的人数为,那么,,的所有可能取值为,,,,,,,,所以的分布列为0 1 2 3故.19.〔1〕证明:∵,为的中点,∴又平面,平面,∴∵∴平面∵平面∴平面平面〔2〕解:如图,由〔1〕知,,,点,分别为的中点,∴,∴,,又,∴两两垂直,分别以方向为轴建立坐标系.那么,,,,设,所以,,设平面的法向量,那么,,令,那么,,∴由或者〔舍去〕故;故线段上存在点,使得直线与平面所成的角的正弦值为,此时为线段的中点.20.解:〔1〕如下图,∵等边的面积为,设边长为,∴,∴,∴∵,∴所以抛物线的方程是.〔2〕法一:设的坐标为,因为抛物线:的焦点,,,所以当且仅当时取等号,即当取最小值时,点坐标为把点坐标代入圆的方程可得.法二:设的坐标为,因为抛物线:的焦点,,,所以,当且仅当时取等号,即当取最小值时,点坐标为把点坐标代入圆的方程可得.21.(1)令得或者所以函数的单调递增区间为,,单调递减区间为〔2〕当时,恒成立,所以在递减,在递增那么为函数极小值点又因为对于恒成立对于恒成立对于恒成立所以当时,有一个零点,当时,有一个零点即,且,所以下面再证明即证由得又在上递减,于是只需证明,即证明将代入得令那么因为为上的减函数,且所以在上恒成立于是为上的减函数,即所以,即成立综上所述,22.〔1〕曲线:化为直角坐标方程为:过点直线的直角坐标方程为:〔2〕将直线的参数方程与曲线的直角坐标方程联立可得:那么〔其中、为方程的两根〕又点在上,那么,故23.〔1〕因为,所以的解集为.〔2〕因为,所以,即,那么,所以.制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日。

2024高考数学适应性模拟考试试题01原卷版

2024高考数学适应性模拟考试试题01原卷版

2024高考数学适应性模拟考试试题01(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如 需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写 在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题A .甲村销售收入的第50百分位数为7百万B .甲村销售收入的平均数小于乙村销售收入的的平均数C .甲村销售收入的中位数大于乙村销售收入的中位数D .甲村销售收入的方差大于乙村销售收入的方差2.下列函数中为偶函数,且在(0,)+∞上单调递减的是( )3.公差不为零的等差数列{}n a 的前n 项和为n S ,若5a 是3a 与8a 的等比中项,520S =,则10S =( ) A .45 B .55 C .65 D .904.一种卫星接收天线(如图1),其曲面与轴截面的交线可视为抛物线的一部分(如图2),已知该卫星接收天线的口径8AB =米,深度1MO =米,信号处理中心F 位于焦点处,以顶点O 为坐标原点,建立如图2所示的平面直角坐标系xOy ,则该抛物线的方程为( )A .28y x =B .216y x =C .28y x =D .216y x =6.某个班级组织元旦晚会,一共准备了A 、B 、C 、D 、E 、F 六个节目,节目演出顺序第一个节目只能排A 或B ,最后一个节目不能排A ,且C 、D 要求相邻出场,则不同的节目顺序共有种A .72B .84C .96D .1207.如图,正方体1111ABCD A B C D −的棱长为1,动点M 在线段1CC 上,动点P 在平面1111D C B A 上,且AP ⊥平A .[1,2]C .2[,2] A .c b a >> B .c a b >>C .b c a >>D .b a c >> 二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.A .2ω=B .函数π6y f x =−为偶函数11.已知函数()f x 及其导函数()f x ′的定义域均为R ,若()f x 是奇函数,()()210f f =−≠,且对任意x ,第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.(1)证明:PB PM⊥;(1)若nn n b a c =+,且数列{}n b 是数列{}n a 的“相伴数列”,试写出{}n c 的一个通项公式,并说明理由; (2)设21na n =−,证明:不存在等差数列{}nb ,使得数列{}n b 是数列{}n a 的“相伴数列”; (3)设12n n a −=,1 n n b b q −=⋅(其中0q <),若{}n b 是数列{}n a 的“相伴数列”,试分析实数b 、q 的取值应满足的条件.。

高考适应性考试数学理科试题

高考适应性考试数学理科试题

2022年厦门市高中毕业班适应性测试数学〔理科〕试题本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部.总分值为150分,测试时间120分钟.考前须知:1. 考生将自己的姓名、准考证号及所有答案均填写在做题卡上;2. 做题要求,见做题卡上的“填涂样例〞和考前须知.参考公式:如果事件A 、B 互斥,那么P 〔A+B 〕=P 〔A 〕+P 〔B 〕如果事件A 、B 相互独立,那么P 〔A ·B 〕=P 〔A 〕·P 〔B 〕如果事件A 在一次试验中发生的概率是P,那么n 次独立重复试验中恰好发生k 次的概率()(1)k k n k n n P k C P P -=-球的外表积公式:24S R π=,球的体积公式:3V R π=,其中R 表示球的半径. 第I 卷〔选择题 共140分〕一、选择题:本大题共12个小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.集合{}1|(1)0,|01P x x x Q x x ⎧⎫=-≥=>⎨⎬-⎩⎭,那么P Q ⋂等于 A .∅ B .{}|1x x ≥ C .{}|1x x > D .{}|10x x x ≥<或2.如果a <0, b >0, c ∈R , 那么,以下不等式中正确的选项是A .||||a b >B .{|1}x x ≥C . {|1}x x >D .{|10}x x x ≥<或3.i 、j 是单位正交向量,(1),2a i j b i j λλ=+-=+.那么“1λ=-〞是“a //b 〞的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件4.设S n 是等差数列{a n }的前n 项和,552833(),a S a a a =+则的值为A .16B .13C .35D .565.函数sin sin y x x =+图象的一条对称轴是A .4x π=- B .4x π=C .2x π=D .34x π= 6.点〔–3,1〕是曲线2240x x y ++=的弦AB 的中点,那么弦AB 所在的直线方程是A .x –y –4=0B .x +y +2=0C .x +2y +1=0D .x –y +4=07.如果函数(0,1)x y a a a -=>≠是增函数,那么函数1()log 1a f x x =+的图像大致是8.五名同学进行百米赛跑比赛,先后到达终点,那么甲比乙先到达的情况有A .240种B .120种C .60种D .30种9.假设22165lim 1x x x a x →-++=-,那么数列的极限1lim 1n n n a a→∞-+为 A .3 B .1 C .12- D .1210.正三棱柱ABC —A 1B 1C 1的各棱长均为4,那么A 1到直线BC 1的距离为A .3B 10C 14D .411.点P 是椭圆22122:11x y C a a +=+与双曲线22222:11x y C a a-=-的交点,F 1与F 2是椭圆C 1的焦点,那么12F PF ∠等于A .3πB .2π C .23π D .与a 的取值有关 12.国际上常用恩格尔系数〔恩格尔系数=食物支出金额总支出金额〕来衡量一个国家和地区人民生活水平的状况.根据联合国粮农组织提出的标准,恩格尔系数在60%以上为贫困,50%~60%为温饱,40%~50%为小康,30%~40%为富裕,低于30%为最富裕.一个地区今年刚好脱贫,以后每年食物支出金额和总支出金额分别以5%和10%的年增长率递增,如果该地区的生活水平要到达富裕,那么至少需要〔可参考(1)n x +的二项展开式进行估算〕A .5年B .7年C .9年D .11年第二卷〔非选择题 共90分〕二、填空题:本大题共4小题,每题4分,共16分.在做题卡上相应题目的做题区域内作答.13.复数21i i++的虚部是__________________________. 14.5(21)(1)x x -+的展开式中,含x 3项的系数为_____________________.15.空间三条直线中,任何两条不共面,且两两互相垂直,直线l 与这三条直线所成的角都为α,那么tan α=__________________________.16.函数y=f 〔x 〕在R 上处处可导,f 〔0〕=0,当x ≠0时,xf ’〔x 〕>0.给出以下四个判断:① f 〔–2〕< f 〔–1〕; ② y = f 〔x 〕不可能是奇函数;③存在区间[–a ,a ],使得当1x 、12122()()[,]()22x x f x f x x a a f ++∈-≤时,成立; ④ y = x f 〔x 〕在R 上单调递增.判断正确的序号是____________________.〔请填上所有判断正确的序号〕三、解做题:本大题共6小题,共74分,解做题应写出文字说明、证实过程或演算步骤,在做题卡上相应题目的做题区域内作答.17.〔本小题总分值12分〕在∆ABC 中,角A 、B 、C 所对边分别为a 、b 、c ,且2sin.22A c b c -= (1) 判断∆ABC 的形状,并加以证实;(2) 当c =1时,求∆ABC 面积的最大值.18.〔本小题总分值12分〕甲、乙两人玩投篮游戏,规那么如下:两人轮流投篮,每人至多投2次,甲先投,假设有人投中即停止投篮,结束游戏.甲每次投中的概率为14,乙每次投中的概率为13.求: 〔1〕乙投篮次数不超过1次的概率;〔2〕记甲、乙两人投篮次数和为ξ,求ξ的分布列和数学期望.19.〔本小题总分值12分〕在四棱锥P —ABCD 中,底面ABCD 是矩形,AD =2,侧面P AD 是正三角形且与底面ABCD 垂直,E 是AB 中点,PC 与平面ABCD 所成角为30︒.(1) 证实:CD ⊥平面P AD ;(2) 求二面角P —CE —D 的大小;(3) 求点D 到平面PCE 的距离.20.〔本小题总分值12分〕数列{a n }满足111,(1)(1)!.n n a a n a n +==+++(1) 求证:数列!n a n ⎧⎫⎨⎬⎩⎭是等差数列,并求{a n }的通项公式; (2) 121!2!2!3!!(1)!n n a a a T m n n =⋅<++++对任何*n N ∈恒成立,求实数m 的取值范围. 〔注:!123n n =⨯⨯⨯⨯〕21.〔本小题总分值12分〕 抛物线的方程为24y x =,过点P 〔2,0〕的直线l 与抛物线交于A 、B 两点,点Q 满足()OQ OA OB R λλ=+∈.(1) 当1λ=时,求点Q 的轨迹方程;(2) 假设点Q 在x 轴上,且13λ<<,求直线l 的斜率k 的取值范围.22.〔本小题总分值14分〕函数21()ln ,()(1)(1),()()()2f x x a x g x a x a H x f x g x =+=+≠-=-. (1) 假设函数f 〔x 〕、g 〔x 〕在区间[1,2]上都为单调函数且它们的单调性相同,求实数a 的取值范围;(2) α、β是函数H 〔x 〕的两个极值点,α<β,(1,]( 2.71828)e e β∈=.求证:对任意的x 1、x 2[,]αβ∈,不等式12|()()|1H x H x -<成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年河南省普通高中毕业班高考适应性测试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x ≥0},B ={x |y =lg (x 2-x )},则A ∩B =A .[0,+∞)B .(1,+∞)C .{0}∪[1,+∞)D .(-∞,0]∪(1,+∞)2.已知复数()211z i =-(i 为虚数单位),则|z |=A .14B .12C .22D .2i 3.2019年,河南省郑州市的房价依旧是郑州市民关心的话题.总体来说,二手房房价有所下降;相比二手房而言,新房市场依然强劲,价格持续升高.已知销售人员主要靠售房提成领取工资.现统计郑州市某新房销售人员一年的工资情况的结果如图所示,若近几年来该销售人员每年的工资总体情况基本稳定,则下列说法正确的是A .月工资增长率最高的为8月份B .该销售人员一年有6个月的工资超过4000元C .由此图可以估计,该销售人员2020年6,7,8月的平均工资将会超过5000元D .该销售人员这一年中的最低月工资为1900元4.已知()523450123451x a a x a x a x a x a x +=+++++,则a 2+a 4的值为 A .7 B .8C .15D .165.已知双曲线C :22221x y a b -=(a >0,b >0)的一个焦点为F ,过F 作x 轴的垂线分别交双曲线的两渐近线于A ,B 两点,若△AOB 的面积为2b 2,则双曲线C 的离心率为A .2B .3C .223D .2336.九连环是我国古代至今广为流传的一种益智游戏,它由九个铁丝圆环相连成串,按一定规则移动圆环的次数,决定解开圆环的个数.在某种玩法中,用n a 表示解下n (n ≤9,n N *∈)个圆环所需的最少移动次数,数列{n a }满足1a =1,且112122n n n a n a a n ⎧⎪⎨⎪⎩---,为偶数,=+,为奇数,则解下5个环所需的最少移动次数为 A .7 B .10 C .16 D .227.已知某个几何体的三视图如图所示,根据图中标出的数据,可得出这个几何体的表面积是A .6B .846+C .426+D .46+8.已知函数sin 3y x πω⎛⎫ ⎪⎝⎭=+(ω>0)在区间(-6π,3π)上单调递增,则ω的取值范围是A (0,12]B .[12,1]C .(13,23]D .[23,2] 9.已知平行四边形ABCD 中,AB =AD =2,∠DAB =60°,对角线AC 与BD 相交于点O ,点M 是线段BC 上一点,则OM u u u u r ·CM u u u u r 的最小值为A .-916 B .916C .-12D .1210.已知正方形ABCD ,其内切圆I 与各边分别切于点E ,F ,G ,H ,连接EF ,FG ,GH ,HE .现向正方形ABCD 内随机抛掷一枚豆子,记事件A :豆子落在圆I 内,事件B :豆子落在四边形EFGH 外,则P (B |A )=A .2πB .21π- C .12 D .142π- 11.已知定义在R 上的奇函数f (x ),对任意实数x ,恒有f (x +3)=-f (x ),且当x ∈(0,32]时,f (x )=x 2-6x +8,则f (0)+f (1)+f (2)+…+f (2020)= A .6 B .3 C .0 D .-312.如图,在四棱锥P —ABCD 中,PA =PB =PC =PD =2,底面ABCD 是边长为2的正方形,点E 是PC 的中点,过点A ,E 作棱锥的截面,分别与侧棱PB ,PD 交于M ,N 两点,则四棱锥P —AMEN 体积的最小值为A .223B .233C .229 D .239 二、填空题:本题共4小题,每小题5分,共20分。

13.已知函数f (x )=(x -2)lnx ,则函数f (x )在x =1处的切线方程为__________.14.已知数列{n a }为公差不为零的等差数列,其前n 项和为n S ,且1a ,2a ,4a 成等比数列,5S =15,则4a =__________.15.现有灰色与白色的卡片各八张,分别写有数字1到8.甲、乙、丙、丁四个人每人面前摆放四张,并按从小到大的顺序自左向右排列(当灰色卡片和白色卡片数字相同时,白色卡片摆在灰色卡片的右侧).如图,甲面前的四张卡片已经翻开,则写有数字4的灰色卡片是__________(填写字母).16.设F 1,F 2是椭圆C :2214x y +=的两个焦点,过F 1,F 2分别作直线l 1,l 2,且l 1∥l 2,若l 1与椭圆C 交于A ,B 两点,l 2与椭圆C 交于C ,D 两点 (点A ,D 在x 轴上方),则四边形ABCD 面积的最大值为__________.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

如图,在三棱柱ABC —A 1B 1C 1中,△BCC 1为正三角形,AC ⊥BC ,AC =AA 1=2,A 1C =22,点P 在线段BB 1上,且A 1P ⊥AA 1.(1)证明:AA 1⊥C 1P ;(2)求BC 1和平面A 1CP 所成角的正弦值.18.(12分)如图,在梯形ABCD 中,AB ∥CD ,CD =3AB =3.(1)若CA =CD ,且tan ∠ABC =-5,求△ABC 的面积S ;(2)若cos ∠DAC =24,cos ∠ACD =34,求BD 的长.19.(12分) 已知O 为坐标原点,点F (0,1),M 为坐标平面内的动点,且2,|FM u u u u r |,2OM u u u u r ·OF u u u r成等差数列.(1)求动点M 的轨迹方程;(2)设点M 的轨迹为曲线T ,过点N (0,2)作直线l 交曲线T 于C ,D 两点,试问在y 轴上是否存在定点Q ,使得QC uuu r ·QD uuu r 为定值?若存在,求出定点Q 的坐标;若不存在,说明理由.20.(12分)已知函数f (x )=axe x +(x +1)sinx +cosx .(1)若a =1,x ≥-2π,求函数f (x )的最小值; (2)函数()()sin cos f x x x g x x --=,x ∈[-4π,0)∪(0,74π],若函数g (x )的导函数()g x '存在零点,求实数a 的取值范围.某中医药研究所研制出一种新型抗癌药物,服用后需要检验血液是否为阳性,现有n (n N *∈)份血液样本,每个样本取到的可能性均等,有以下两种检验方式:(1)逐份 检验,则需要检验n 次;(2)混合检验,将其中k (k N *∈,2≤k ≤n )份血液样本分别取样混合在一起检验,若结果为阴性,则这k 份的血液全为阴性,因而这k 份血液样本只需检验一次就够了;若检验结果为阳性,为了明确这k 份血液究竟哪份为阳性,就需要对这k 份再逐份检验,此时这k 份血液的检验次数总共为k +1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是相互独立的,且每份样本是阳性的概率为p (0<p <1).(1)假设有6份血液样本,其中只有两份样本为阳性,若采取逐份检验的方式,求恰好经过两次检验就能把阳性样本全部检验出来的概率.(2)现取其中的k (k N *∈,2≤k ≤n )份血液样本,记采用逐份检验的方式,样本需要检验的次数为1ξ;采用混合检验的方式,样本需要检验的总次数为2ξ.(i )若1E ξ=2E ξ,试运用概率与统计的知识,求p 关于k 的函数关系p =f (k );(ii)若1p =的期望少,求k 的最大值.(ln4=1.386,ln5=1.609,ln6=1.792,ln7=1.946,ln8=2.079,ln9=2.197)(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.[选修4—4:坐标系与参数方程](10分)已知在平面直角坐标系内,曲线C 的参数方程为2cos 2sin cos sin x y θθθθ⎧⎨⎩=+,=-(θ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 4πρθ⎛⎫ ⎪⎝⎭-= (1)把曲线C 和直线l 化为直角坐标方程;(2)过原点O 引一条射线分别交曲线C 和直线l 于A ,B 两点,射线上另有一点M 满足|OA |2=|OM |·|OB |,求点M 的轨迹方程(写成直角坐标形式的普通方程).23.[选修4—5:不等式选讲](10分)已知函数f(x)=2|x+2|-3|x-1|.(1)求函数f(x)的最大值M;(2)已知a>0,b>0,a+4b=M,求2221a ba b+++的最大值.。

相关文档
最新文档