专题06 三角函数的图像与性质(高考押题)-2016年高考文数二轮复习精品资料(解析版)
三角函数:三角函数的图像与性质-高三数学二轮复习

(4)对称轴:ωx + =________.
(5)对称中心:ωx + =________.
试卷讲评课件
(6)值域:若已知三角函数y = Asin ωx + + B,且x ∈ [m, n]
①若ωx +
π
可以取到
2
+
π
2kπ和−
2
+ 2kπ,则Asin ωx + + B的最大
值为________,最小值为________;
2
2
A.1
B.2
= f x 的图象与直线
C.3
D.4
π
6
试卷讲评课件
例10.( ⋅辽宁·二模)已知函数f x = sin2x + 2 3cos2 x − 3,则下
列说法正确的是(
)
A.函数f x 的最小正周期为π
B.函数f x
π 3π
在区间[ , ]上单调递减
6 4
C.将函数f x
π
的图象向右平移 个单位长度,得到函数y
π
是y
6
π
,0
3
对称
上单调递增
= f x 图象的一条对称轴
)
试卷讲评课件
例12.( ⋅河北沧州·一模)已知函数f x = sin 2x +
且f x = f
2π
3
函数,则(
)
A. =
≤
π
2
,
− x ,若函数f x 向右平移a a>0 个单位长度后为偶
π
−
6
B.函数f x 在区间
π
C.a的最小值为
6
象
高考数学专题 三角函数的图像与性质高考押题原卷

高考押题1.函数f (x )=2sin 2x -1是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数2.若函数y =cos ⎝ ⎛⎭⎪⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,则ω的最小值为( )A .1B .2C .4D .83.已知函数:①y =sin x +cos x ,②y =22·sin x cos x ,则下列结论正确的是( )A .两个函数的图象均关于点⎝ ⎛⎭⎪⎫-π4,0中心对称B .两个函数的图象均关于直线x =-π4轴对称C .两个函数在区间⎝ ⎛⎭⎪⎫-π4,π4上都是单调递增函数 D .两个函数的最小正周期相同4.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝⎛⎭⎪⎫π12,0对称 D .关于点⎝ ⎛⎭⎪⎫5π12,0对称 5.为了使变换后的函数的图象关于点⎝ ⎛⎭⎪⎫-π12,0成中心对称,只需将原函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象( )A .向左平移π12个单位长度B .向左平移π6个单位长度C .向右平移π12个单位长度D .向右平移π6个单位长度6.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象与直线y =b (0<b <A )的三个相邻交点的横坐标分别是2,4,8,则函数f (x )的单调递增区间是( )A .[6k π,6k π+3],k ∈ZB .[6k -3,6k ],k ∈ZC .[6k,6k +3],k ∈ZD .无法确定7. (如图,函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫其中A >0,ω>0,|φ|≤π2与坐标轴的三个交点P ,Q ,R 满足P (2,0),∠PQR =π4,M 为QR 的中点,PM =25,则A 的值为________.8.已知函数f (x )=A cos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f (1)+f (2)+…+f (2 015)=________.9.将函数f (x )=sin(ωx +φ)⎝⎛ ω>0,-π2⎭⎪⎫≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝ ⎛⎭⎪⎫π6=________. 10.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?11.(某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2在某一个周期内的图象时,列表如下:x 2π3 x 1 8π3 x 2 x 3 ωx+φ 0 π2 π 3π2 2π Asin(ωx+φ)2-2(1)求x 1,x 2,x 3的值及函数f (x )的表达式;(2)将函数f (x )的图象向左平移π个单位,可得到函数g (x )的图象,求函数y =f (x )·g (x )在x ∈⎝⎛⎭⎪⎫0,5π3上的最小值.。
高考数学(四海八荒易错集)专题06 三角函数的图像与性质 理

专题06 三角函数的图像与性质1.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,只需把函数y =sin2x 的图象上所有的点( ) A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度答案 D解析 由题意可知,y =sin ⎝ ⎛⎭⎪⎫2x -π3=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6,则只需把y =sin 2x 的图象向右平移π6个单位,故选D.2.若将函数y =2sin2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z ) B .x =k π2+π6(k ∈Z ) C .x =k π2-π12(k ∈Z ) D .x =k π2+π12(k ∈Z ) 答案 B3.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5 答案 B解析 因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT ,即π2=4k +14T =4k +14·2πω,所以ω=4k +1(k ∈N ),又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,由此得ω的最大值为9,故选B.4.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π5(x ∈R ,ω>0)图象的相邻两条对称轴之间的距离为π2.为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( )A .向左平移3π20个单位长度B .向右平移3π20个单位长度C .向左平移π5个单位长度D .向右平移π5个单位长度答案 A5.如图,函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,|φ|≤π2)与坐标轴的三个交点P 、Q 、R 满足P (2,0),∠PQR =π4,M 为QR 的中点,PM =25,则A 的值为( )A.833 B.163 3 C .8 D .16答案 B解析 由题意设Q (a,0),R (0,-a )(a >0).则M (a 2,-a2),由两点间距离公式得,PM =-a22+a22=25,解得a 1=8,a 2=-4(舍去),由此得,T2=8-2=6,即T =12,故ω=π6, 由P (2,0)得φ=-π3,代入f (x )=A sin(ωx +φ)得,f (x )=A sin(π6x -π3),从而f (0)=A sin(-π3)=-8,得A =1633.6.义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是________. 答案 7解析 在区间[0,3π]上分别作出y =sin2x 和y =cos x 的简图如下:由图象可得两图象有7个交点.7.已知函数f (x )=2a sin ωx ·cos ωx +23cos 2ωx - 3 (a >0,ω>0)的最大值为2,x 1,x 2是集合M ={x ∈R |f (x )=0}中的任意两个元素,且|x 1-x 2|的最小值为6. (1)求函数f (x )的解析式及其图象的对称轴方程;(2)将函数y =f (x )的图象向右平移2个单位后得到函数y =g (x )的图象,当x ∈(-1,2]时,求函数h (x )=f (x )·g (x )的值域.解 (1)f (x )=2a sin ωx ·cos ωx +23cos 2ωx -3=a sin2ωx +3cos2ωx . 由题意知f (x )的最小正周期为12, 则2π2ω=12,得ω=π12. 由f (x )的最大值为2,得a 2+3=2, 又a >0,所以a =1. 于是所求函数的解析式为f (x )=sin π6x +3cos π6x =2sin ⎝ ⎛⎭⎪⎫π6x +π3,令π6x +π3=π2+k π(k ∈Z ),解得x =1+6k (k ∈Z ),即函数f (x )图象的对称轴方程为x =1+6k (k ∈Z ).易错起源1、 三角函数的概念、诱导公式及同角关系式例1、(1)点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A .(-12,32)B .(-32,-12) C .(-12,-32) D .(-32,12)(2)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 答案 (1)A (2)-1解析 (1)设Q 点的坐标为(x ,y ), 则x =cos 2π3=-12,y =sin 2π3=32.∴Q 点的坐标为(-12,32).(2)∵sin α+2cos α=0,∴sin α=-2cos α, ∴tan α=-2,又∵2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1,∴原式=--1-2+1=-1. 【变式探究】(1)已知点P ⎝ ⎛⎭⎪⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4 C.5π4 D.7π4(2)如图,以Ox 为始边作角α (0<α<π),终边与单位圆相交于点P ,已知点P 的坐标为⎝ ⎛⎭⎪⎫-35,45,则sin2α+cos2α+11+tan α=________.答案 (1)D (2)1825解析 (1)tan θ=cos 34πsin 34π=-cosπ4sinπ4=-1,又sin 3π4>0,cos 3π4<0,所以θ为第四象限角且θ∈[0,2π),所以θ=7π4.(2)由三角函数定义, 得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos αα+cosαsin α+cos αcos α=2cos 2α=2×⎝ ⎛⎭⎪⎫-352=1825.【名师点睛】(1)涉及与圆及角有关的函数建模问题(如钟表、摩天轮、水车等),常常借助三角函数的定义求解.应用定义时,注意三角函数值仅与终边位置有关,与终边上点的位置无关.(2)应用诱导公式时要弄清三角函数在各个象限内的符号;利用同角三角函数的关系化简过程要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.【锦囊妙计,战胜自我】1.三角函数:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x.各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 2.同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.3.诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.易错起源2、三角函数的图象及应用例2、(1)要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin4x 的图象( ) A .向左平移π12个单位 B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位(2)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f (π3)的值为________.答案 (1)B (2)1解析 (1)∵y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π12, ∴要得到y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin4x 的图象向右平移π12个单位. (2)根据图象可知,A =2,3T 4=11π12-π6,所以周期T =π,由ω=2πT =2.又函数过点(π6,2),所以有sin(2×π6+φ)=1,而0<φ<π,所以φ=π6,则f (x )=2sin(2x +π6),因此f (π3)=2sin(2π3+π6)=1.【变式探究】(1)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(x ∈R,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( ) A .向左平移π12个单位长度B .向右平移π12个单位长度C .向左平移π3个单位长度D .向右平移π3个单位长度(2)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 (1)A (2)C【名师点睛】(1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(2)在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向. 【锦囊妙计,战胜自我】 函数y =A sin(ωx +φ)的图象 (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图象变换:y =sin x―――――――――→向左φ或向右φ平移|φ|个单位y =sin(x +φ)10sin()y x ωωωϕ>−−−−−−−−→横坐标变为原来的()倍纵坐标不变=+―――――――――――→纵坐标变为原来的A A 倍横坐标不变y =A sin(ωx +φ). 易错起源3、 三角函数的性质例3、已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性. 解 (1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos2x )=12sin2x -32cos2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32,因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.【变式探究】设函数f (x )=2cos 2x +sin2x +a (a ∈R ).(1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈[0,π6]时,f (x )的最大值为2,求a 的值,并求出y =f (x )(x ∈R )的对称轴方程.解 (1)f (x )=2cos 2x +sin2x +a =1+cos2x +sin2x +a =2sin(2x +π4)+1+a ,则f (x )的最小正周期T =2π2=π,且当2k π-π2≤2x +π4≤2k π+π2(k ∈Z ),即k π-3π8≤x ≤k π+π8(k ∈Z )时,f (x )单调递增.所以[k π-3π8,k π+π8](k ∈Z )为f (x )的单调递增区间.【名师点睛】函数y =A sin(ωx +φ)的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B 的形式; 第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题. 【锦囊妙计,战胜自我】 1.三角函数的单调区间:y =sin x 的单调递增区间是[2k π-π2,2k π+π2](k ∈Z ),单调递减区间是[2k π+π2,2k π+3π2](k ∈Z ); y =cos x 的单调递增区间是[2k π-π,2k π](k ∈Z ),单调递减区间是[2k π,2k π+π](k ∈Z ); y =tan x 的递增区间是(k π-π2,k π+π2)(k ∈Z ).2.y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得.y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数.1.若0≤sin α≤22,且α∈[-2π,0],则α的取值范围是( ) A.⎣⎢⎡⎦⎥⎤-2π,-7π4∪⎣⎢⎡⎦⎥⎤-5π4,-π B.⎣⎢⎡⎦⎥⎤-2π+2k π,-7π4+2k π∪⎣⎢⎡⎦⎥⎤-5π4+2k π,-π+2k π(k ∈Z )C.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤3π4,πD.⎣⎢⎡⎦⎥⎤2k π,2k π+π4∪⎣⎢⎡⎦⎥⎤2k π+3π4,2k π+π(k ∈Z )答案 A解析 根据题意并结合正弦线可知,α满足⎣⎢⎡⎦⎥⎤2k π,2k π+π4∪⎣⎢⎡⎦⎥⎤2k π+3π4,2k π+π(k ∈Z ),∵α∈[-2π,0],∴α的取值范围是⎣⎢⎡⎦⎥⎤-2π,-7π4∪⎣⎢⎡⎦⎥⎤-5π4,-π.故选A.2.函数f (x )=cos ⎝ ⎛⎭⎪⎫3x -π3的图象向左平移π3个单位长度后得到的图象对应的函数为( ) A .y =cos ⎝ ⎛⎭⎪⎫3x +π3 B .y =sin ⎝ ⎛⎭⎪⎫3x +π3C .y =cos ⎝ ⎛⎭⎪⎫3x +2π3D .y =sin ⎝⎛⎭⎪⎫3x +2π3答案 C解析 函数f (x )=cos ⎝ ⎛⎭⎪⎫3x -π3的图象向左平移π3个单位长度后所得图象的解析式为y =cos[3(x +π3)-π3]=cos(3x +2π3),故选C. 3.已知tan α=3,则π-αcos ⎝⎛⎭⎪⎫α-π2的值为( ) A .-13B .-3 C.13 D .3答案 A 解析π-αcos ⎝⎛⎭⎪⎫α-π2=-cos αsin α=-1tan α=-13. 4.已知角α的终边经过点A (-3,a ),若点A 在抛物线y =-14x 2的准线上,则sin α等于( )A .-32B.32C .-12D.12答案 D解析 由条件,得抛物线的准线方程为y =1,因为点A (-3,a )在抛物线y =-14x 2的准线上,所以a=1,所以点A (-3,1),所以sin α=13+1=12. 5.函数f (x )=A sin ωx (A >0,ω>0)的部分图象如图所示,则f (1)+f (2)+f(3)+…+f (2015)的值为( )A .0B .3 2C .6 2D .- 2答案 A解析 由图可得,A =2,T =8,2πω=8,ω=π4,∴f (x )=2sin π4x ,∴f (1)=2,f (2)=2,f (3)=2,f (4)=0,f (5)=-2,f (6)=-2,f (7)=-2,f (8)=0,而2015=8×251+7,∴f (1)+f (2)+…+f (2015)=0.6.函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值与最小值之差为________.答案 2+ 3 解析 因为0≤x ≤9, 所以-π3≤πx 6-π3≤7π6,因此当πx 6-π3=π2时,函数y =2sin(πx 6-π3)取得最大值,即y max =2×1=2.当πx 6-π3=-π3时,函数y =2sin(πx 6-π3)取得最小值, 即y min =2sin(-π3)=-3,因此y =2sin(πx 6-π3)(0≤x ≤9)的最大值与最小值之差为2+ 3.7.已知函数f (x )=3sin(ωx -π6)(ω>0)和g (x )=3cos(2x +φ)的图象的对称中心完全相同,若x ∈[0,π2],则f (x )的取值范围是________.答案 [-32,3]8.已知α是三角形的内角,若sin α+cos α=15,则tan α=________.答案 -43解析 方法一 由⎩⎪⎨⎪⎧sin 2α+cos 2α=1,sin α+cos α=15,解得⎩⎪⎨⎪⎧sin α=45,cos α=-35或⎩⎪⎨⎪⎧sin α=-35,cos α=45.因为α∈(0,π),所以sin α>0,所以⎩⎪⎨⎪⎧sin α=45,cos α=-35.所以tan α=sin αcos α=-43.方法二 由已知得(sin α+cos α)2=125,化简得2sin αcos α=-2425,则可知角α是第二象限角,且(sin α-cos α)2=1-2sin αcos α=4925,由于sin α-cos α>0,所以sin α-cos α=75,将该式与sin α+cos α=15联立,解得⎩⎪⎨⎪⎧sin α=45,cos α=-35.所以tan α=sin αcos α=-43.9.已知函数f (x )=cos ⎝⎛⎭⎪⎫x -π4.(1)若f (α)=35,其中π4<α<3π4,求sin ⎝⎛⎭⎪⎫α-π4的值;(2)设g (x )=f (x )·f ⎝ ⎛⎭⎪⎫x +π2,求函数g (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上的最大值和最小值.解 (1)因为f (α)=cos ⎝ ⎛⎭⎪⎫α-π4=35,且0<α-π4<π2,所以sin ⎝⎛⎭⎪⎫α-π4=45. (2)g (x )=f (x )·f ⎝ ⎛⎭⎪⎫x +π2=cos ⎝ ⎛⎭⎪⎫π4-x ·cos ⎝⎛⎭⎪⎫x +π4=sin ⎝ ⎛⎭⎪⎫π4+x ·cos ⎝ ⎛⎭⎪⎫x +π4=12cos2x .x ∈⎣⎢⎡⎦⎥⎤-π6,π3时,2x ∈⎣⎢⎡⎦⎥⎤-π3,2π3.则当x =0时,g (x )的最大值为12;当x =π3时,g (x )的最小值为-14.10.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.(2)由(1)得,f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z . 11.函数f (x )=sin ωx (ω>0)的部分图象如图所示,点A ,B 是最高点,点C 是最低点,若△ABC 是直角三角形,则f (12)=________.答案2212.已知函数f (x )=A sin(ωx +π4)(A >0,ω>0),g (x )=tan x ,它们的最小正周期之积为2π2,f (x )的最大值为2g (17π4).(1)求f (x )的单调递增区间;(2)设h (x )=32f 2(x )+23cos 2x .当x ∈[a ,π3)时,h (x )有最小值为3,求a 的值.解 (1)由题意,得2πω·π=2π2,所以ω=1.又A =2g (17π4)=2tan 174π=2tan π4=2,所以f (x )=2sin(x +π4).令2k π-π2≤x +π4≤2k π+π2(k ∈Z ),得2k π-3π4≤x ≤2k π+π4(k ∈Z ).故f (x )的单调递增区间为[2k π-3π4,2k π+π4](k ∈Z ).(2)因为h (x )=32f 2(x )+23cos 2x=32×4×sin 2(x +π4)+23cos 2x=3(sin x +cos x )2+23cos 2x =3+3sin2x +3(cos2x +1) =3+3+23sin(2x +π6),又h (x )有最小值为3,所以有3+3+23sin(2x +π6)=3,即sin(2x +π6)=-12.因为x ∈[a ,π3),所以2x +π6∈[2a +π6,5π6),所以2a +π6=-π6,即a =-π6.。
专题06知识点 三角函数的图像与性质

-
-3 2
-2
1
o
-1
2
3
2 2
7
3 2
5
4
2
x
y
y=tanx
y
y=cotx
3 -2
-
-2
o
2
3
x
2
-
-2
o
2
3 2 x
2
函数 y=sinx
y=cosx
定义 域
值域
R
R
[-1,1]x=2kπ+ [-1,1] 2
时 ymax=1
x=2kπ时
x=2kπ- 2
时 ymin=-1
ymax=1
0
2 3 5
3 2
6
4
3
2
3
4
6
2
3.弧长及扇形面积公式
弧长公式: l .r
扇形面积公式:S= 1 l.r 2
----是圆心角且为弧度制。 r-----是扇形半径
知识点二:诱导公式
1.常用的诱导公式
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关 系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关 系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα
专题05 三角函数图象与性质(高考押题)-2016年高考数学(文)考纲解读及热点难点试题演练(原卷版)

【高考押题】1.若点(4,a )在y =x 12的图象上,则tan a 6π的值为( )A .0 B.33 C .1 D. 32.若点P 在-10π3角的终边上,且P 的坐标为(-1,y ),则y 等于( )A .-33 B.33 C .- 3 D. 33.已知α是第四象限角,且sin α=-35,则tan α=( ) A.34 B .-34 C.43 D .-434.设α是第二象限角,P (x ,4)为其终边上的一点,且cos α=15x ,则tan α=( ) A.43 B.34 C .-34 D .-435.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是() A .(-2,3] B .(-2,3)C .[-2,3)D .[-2,3]6.已知α满足sin α=12,那么sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α的值为( ) A.14 B .-14 C.12 D .-127.当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最小值,则函数y =f ⎝⎛⎭⎫3π4-x 是( )A .奇函数且图象关于点⎝⎛⎭⎫π2,0对称B .偶函数且图象关于点(π,0)对称C .奇函数且图象关于直线x =π2对称D .偶函数且图象关于点⎝⎛⎭⎫π2,0对称8.已知函数f (x )=sin ⎝⎛⎭⎫2x +3π2(x ∈R ),下面结论错误的是( )A .函数f (x )的最小正周期为πB .函数f (x )是偶函数C .函数f (x )是图象关于直线x =π4对称D .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 9.在(0,2π)内,使|sin x |≥cos x 成立的x 的取值范围是( )A.⎣⎡⎦⎤π4,7π4 B.⎣⎡⎦⎤π4,5π4 C.⎣⎡⎦⎤0,5π4 D.⎣⎡⎦⎤0,π4∪⎣⎡⎦⎤7π4,2π 10.函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且其图象向右平移π12个单位后得到的函数为奇函数,则函数f (x )的图象( )A .关于点⎝⎛⎭⎫π2,0对称 B .关于直线x =5π12对称 C .关于点⎝⎛⎭⎫5π12,0对称 D .关于直线x =π12对称 11.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x .(1)求当x ∈[-π,0]时,f (x )的解析式;(2)画出函数f (x )在[-π,π]上的简图;(3)求当f (x )≥12时x 的取值范围. 12.已知函数f (x )=32sin ωx +32cos ωx (ω>0)的周期为4.(1)求f (x )的解析式;(2)将f (x )的图象沿x 轴向右平移23个单位得到函数g (x )的图象,P ,Q 分别为函数g (x )图象的最高点和最低点(如图),求∠OQP 的大小.:。
三角函数的图象与性质高考复习题

三角函数的图象与性质高考复习题1.函数y =2sin )36(ππ-x (0≤x ≤9)的最大值与最小值之和为( ) A .2-3 B .0 C .-1 D .-1- 32.若函数y =cos )6(πω+x (ω∈N *)图象的一个对称中心是)06(,π,则ω的最小值为( ) A .1 B .2 C .4 D .8 3.为了得到函数y =cos )32(π+x 的图象,可将函数y =sin 2x 的图象( ) A .向左平移5π6单位长度B .向右平移5π6单位长度C .向左平移5π12单位长度D .向右平移5π12单位长度4.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13 B .3 C .6 D .9 5.已知函数f (x )=2cos 2x -sin 2x -1,则以下判断中正确的是( )A .函数f (x )的图象可由函数y =2cos 2x 的图象向左平移π8而得到B .函数f (x )的图象可由函数y =2cos 2x 的图象向左平移π4而得到C .函数f (x )的图象可由函数y =2sin 2x 的图象向右平移3π8而得到D .函数f (x )的图象可由函数y =2sin 2x 的图象向左平移3π4而得到6.已知函数f (x )=sin )6(πω+x -1(ω>0)的最小正周期为2π3,则f (x )的图象的一条对称轴方程( )A .x =π9B .x =π6C .x =π3D .x =π27.已知函数f (x )=sin(ωx +φ))2,0(πϕω<>的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点)0,12(π对称D .关于点)0,125(π对称 8.已知f (x )=2sin )4(π+x ,x ∈[0,π],则f (x )的单调递增区间为________. 9.若函数y =sin(ωx +φ)(ω>0)的部分图象如图,则ω=________.10.已知函数f (x )=2sin ωx (ω>0)在]4,3[ππ-上的最小值是-2,则ω的最小值为________. 11.函数y =sin(ωx +φ)(ω>0,0<φ<π)的最小正周期为π,且函数图象关于点)0,83(π-对称,则函数的解析式为________.12.已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.。
三角函数的图像和性质知识点讲解+例题讲解(含解析)

三角函数的图像与性质一、知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π3.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期. (2)正切曲线相邻两对称中心之间的距离是半个周期.(3).对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )解析 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条. (2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 答案 (1)× (2)× (3)× (4)√2.若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2解析 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 答案 A3.函数y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为________.解析 由-π2+k π<2x -3π4<π2+k π(k ∈Z ), 得π8+k π2<x <5π8+k π2(k ∈Z ),所以y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 答案 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2解析 由题意T =2π2=π. 答案 C5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65B.1C.35D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 答案 -π6考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x |x ≠π6 B.⎩⎨⎧⎭⎬⎫x |x ≠-π12 C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 解析 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56 π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 答案 (1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.解析 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .答案(1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z (2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________. (3)函数y =sin x -cos x +sin x cos x 的值域为________.解析 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2 .所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 答案 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A.4B.5C.6D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________. 解析 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π. 答案 (1)B(2)⎣⎢⎡⎦⎥⎤π3,π考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z )C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . 答案 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c解析 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6, ∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 答案 A角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.答案 A【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增(2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数,∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32.答案 (1)C (2)sin 68°>cos 23°>cos 97° (3)32考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( ) A.-π6 B.π6 C.-π3 D.π3解析 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3, 由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ). ∵|θ|<π2,∴k =-1时,θ=-π6. 答案 (1)B (2)A角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称 C.关于直线x =π3对称 D.关于直线x =π6对称解析 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33,所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. 规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x1+tan 2x的最小正周期为( )A.π4B.π2C.πD.2π(2)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .f (x )=sin x cos x 1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x ,∴f (x )的最小正周期T =2π2=π.(2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x+π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.答案 (1)C (2)D三、课后练习1.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为( )A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ) 解析 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4. 令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ). 答案 D2.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( ) A.ω=23,φ=π12 B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24解析 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12.答案 A3.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________.解析 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ),得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z )4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.解析 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2. 答案 π26.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π解析 ∵y =2⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π.答案 C7.(2019·石家庄检测)若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8解析 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6.答案 C8.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C.2 D.3解析 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 B9.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2解析 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2.答案 C10.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 答案 2311.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π, ∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4. 令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8; 同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.。
专题06 三角函数的图像与性质(押题专练)-2018年高考理数二轮复习精品资料(原卷版)

1.函数f (x )=⎪⎪⎪⎪sin x 2cos x 2的最小正周期是( )A.π4B.π2C .πD .2π2.设函数f (x )=3sin ⎝⎛⎭⎫2x +π4(x ∈R )的图象为C ,则下列表述正确的是( )A .点⎝⎛⎭⎫π2,0是C 的一个对称中心B .直线x =π2是C 的一条对称轴C .点⎝⎛⎭⎫π8,0是C 的一个对称中心D .直线x =π8是C 的一条对称轴3.函数f (x )=A sin ωx (A >0,ω>0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2 017)的值为()A. 2B .3 2C .6 2D .- 24.函数f (x )=2cos(ωx +φ)(ω≠0)对任意x 都有f ⎝⎛⎭⎫π4+x =f ⎝⎛⎭⎫π4-x ,则f ⎝⎛⎭⎫π4等于( )A .2或0B .-2或2C .0D .-2或05.若函数y =f (x )的最小正周期为π,且图象关于点⎝⎛⎭⎫π3,0对称,则f (x )的解析式可以是( )A .y =sin ⎝⎛⎭⎫x 2+5π6B .y =sin ⎝⎛⎭⎫2x -π6C .y =2sin 2x -1D .y =cos ⎝⎛⎭⎫2x -π66.已知ω>0,函数f (x )=cos ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递增,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,74 C.⎣⎡⎦⎤34,94 D.⎣⎡⎦⎤32,74 7.为了得到函数f (x )=2sin ⎝⎛⎭⎫2x -π6的图象,可将函数g (x )=3sin 2x +cos 2x 的图象( ) A .向左平移π3 B .向右平移π3C .向左平移π6D .向右平移π68.将函数f (x )=cos 2x 的图象向右平移π4个单位后得到函数g (x ),则g (x )具有性质( ) A .最大值为1,图象关于直线x =π2对称 B .在⎝⎛⎭⎫0,π4上单调递增,为奇函数 C .在⎝⎛⎭⎫-3π8,π8上单调递增,为偶函数 D .周期为π,图象关于点⎝⎛⎭⎫3π8,0对称9.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =2所得线段长为π2,则f ⎝⎛⎭⎫π6的值是( ) A .- 3 B.33 C. 3 D .110.将函数f (x )=sin ⎝⎛⎭⎫2x +π3的图象向右平移φ个单位,得到的图象关于原点对称,则φ的最小正值为( ) A.π6 B.π3C.5π12D.7π1211.若函数f (x )=2sin ⎝⎛⎭⎫π6x +π3(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B ,C 两点,则(OB →+OC →)·OA →=( )A .-32B .-16C .16D .3212.已知函数f (x )=sin(2x +α)在x =π12时有极大值,且f (x -β)为奇函数,则α,β的一组可能值依次为( ) A.π6,-π12 B.π6,π12C.π3,-π6D.π3,π613.函数y =12sin x +32cos x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的单调递增区间是________. 14.已知函数f (x )=sin ⎝⎛⎭⎫2x +π6.若y =f (x -φ)⎝⎛⎭⎫0<φ<π2是偶函数,则φ=________. 15.将函数y =2sin ⎝⎛⎭⎫ωx -π4(ω>0)的图象分别向左、向右各平移π4个单位长度后,所得的两个图象对称轴重合,则ω的最小值为________.16.已知函数f (x )=cos x sin 2x ,下列结论中正确的是________(填入正确结论的序号). ①y =f (x )的图象关于点(2π,0)中心对称;②y =f (x )的图象关于直线x =π对称;③f (x )的最大值为32; ④f (x )既是奇函数,又是周期函数.17.已知函数f (x )=2sin x ·sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考押题
1.函数f (x )=2sin 2
x -1是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数 【答案】D 【解析】
2.若函数y =cos ⎝ ⎛⎭⎪⎫ωx +π6(ω∈N *
)图象的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,则ω的最小值为( )
A .1
B .2
C .4
D .8 【答案】B
【解析】由题意知ωπ6+π6=k π+π2(k ∈Z)⇒ω=6k +2(k ∈Z),又ω∈N *
,∴ωmin =2.故选B.
3.已知函数:①y =sin x +cos x ,②y =22·sin x cos x ,则下列结论正确的是( )
A .两个函数的图象均关于点⎝ ⎛⎭
⎪⎫-π4,0中心对称
B .两个函数的图象均关于直线x =-π
4轴对称
C .两个函数在区间⎝
⎛⎭⎪⎫-π4,π4上都是单调递增函数 D .两个函数的最小正周期相同 【答案】C
【解析】设f (x )=sin x +cos x =2sin ⎝
⎛⎭⎪⎫x +π4,
g (x )=22sin x cos x =2sin 2x ,
对于A ,B ,f ⎝ ⎛⎭⎪⎫-π4=0,g ⎝ ⎛⎭
⎪⎫-π4=-2≠0,易知A ,B 都不正确.
对于C ,由-π2+2k π≤x +π4≤π2+2k π(k ∈Z),得f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z),由-π2+2k π≤2x ≤π2+2k π(k ∈Z),得g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z),
易知C 正确.
对于D ,f (x )的最小正周期为2π,g (x )的最小正周期为π,D 不正确.故选C.
4.已知函数f (x )=sin(ωx +φ) ⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个
单位后得到的图象关于原点对称,则函数f (x )的图象( )
A .关于直线x =π12对称
B .关于直线x =5π
12对称
C .关于点⎝
⎛⎭⎪⎫π12,0对称 D .关于点⎝ ⎛⎭
⎪⎫5π12,0对称 【答案】B 【解析】
5.为了使变换后的函数的图象关于点⎝ ⎛⎭⎪⎫-π12,0成中心对称,只需将原函数y =sin ⎝
⎛⎭⎪⎫2x +π3的图象( )
A .向左平移π
12个单位长度
B .向左平移π
6个单位长度
C .向右平移π
12个单位长度
D .向右平移π
6个单位长度
【答案】C
【解析】函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π6,0(k ∈Z),其中距离点⎝ ⎛⎭⎪⎫-π12,0最近的对称中心为⎝ ⎛⎭
⎪⎫-π6,0,故只需将原函数的图象向右平移π12个单位长度即可.
6.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象与直线y =b (0<b <A )的三个相邻交点的横坐标分别是2,4,8,则函数f (x )的单调递增区间是( )
A .[6k π,6k π+3],k ∈Z
B .[6k -3,6k ],k ∈Z
C .[6k,6k +3],k ∈Z
D .无法确定 【答案】C 【解析】
7. (如图,函数f (x )=A sin(ωx +φ) ⎝
⎛⎭⎪⎫其中A >0,ω>0,|φ|≤π2与坐标轴的三个交点P ,Q ,R 满足P (2,0),∠PQR =π
4
,M 为QR 的中点,PM =25,则A 的值为________.
【答案】163
3
【解析】
8.已知函数f (x )=A cos 2
(ωx +φ)+1⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y 轴的交
点坐标为(0,2),其相邻两条对称轴间的距离为2,则f (1)+f (2)+…+f (2 015)=________.
【答案】4 030
【解析】f (x )=A 2cos(2ωx +2φ)+A 2+1.由相邻两条对称轴间的距离为2知,T 2=2,得T =4=2π
2ω
,ω
=
π4,由f (x )的最大值为3,得A =2.又f (x )的图象过点(0,2),∴cos 2φ=0,∴2φ=k π+π
2
(k ∈Z),又0<φ<π2,∴φ=π4,∴f (x )=cos ⎝ ⎛⎭⎪⎫π
2
x +π2+2=-sin πx 2+2.
∴f (1)=1,f (2)=2,f (3)=3,f (4)=2.又f (x )的周期为4,2 015=4×503+3,∴f (1)+f (2)+…+f (2 015)=503×(1+2+3+2)+1+2+3=4 030.
9.将函数f (x )=sin(ωx +φ)⎝
⎛ ω>0,-π2
⎭
⎪⎫≤φ<π
2图象上每一点的横坐标缩短为原来的一半,
纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝ ⎛⎭
⎪⎫π6=________. 【答案】
2
2
【解析】将y =sin x 的图象向左平移π6个单位长度可得y =sin ⎝
⎛⎭⎪⎫x +π6的图象,保持纵坐标不变,横
坐标变为原来的2倍可得y =sin ⎝ ⎛⎭⎪⎫12x +π6的图象,故f (x )=sin ⎝ ⎛⎭⎪⎫12x +π6.所以f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭
⎪⎫12×π6+π6=sin
π4=2
2
. 10.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:
f (t )=10-3cos π
12t -sin π12
t ,t ∈[0,24).
(1)求实验室这一天的最大温差;
(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 【解析】(1)
11.(某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2在某一个周期内的图象时,列表如下:
(1)求x 1,x 2,x 3的值及函数f (x )的表达式;
(2)将函数f (x )的图象向左平移π个单位,可得到函数g (x )的图象,求函数y =f (x )·g (x )在x ∈
⎝ ⎛⎭
⎪⎫0,5π3上的最小值. 【解析】
:。