广州艺术生高考数学复习资料3三角函数性质与图像

合集下载

艺术生高考数学专题讲义:考点17 三角函数的图象和性质

艺术生高考数学专题讲义:考点17 三角函数的图象和性质

考点十七 三角函数的图象和性质知识梳理1.正弦函数、余弦函数、正切函数的图象与性质2.正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).3. 三角函数的周期性正弦函数、余弦函数都是周期函数,周期均为2k π,k ∈Z ,最小正周期均为2π;正切函数也是周期函数,周期为k π,k ∈Z ,最小正周期为π.典例剖析题型一 三角函数的定义域和值域 例1 函数y =cos x -32的定义域为________. 答案 ⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z ) 解析 ∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 变式训练 函数y =sin x -cos x 的定义域为________.答案 ⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+5π4,k ∈Z解析 要使函数有意义,必须有sin x -cos x ≥0,即sin x ≥cos x ,同一坐标系中作出y =sin x ,y =cos x ,x ∈[0,2π]的图象如图所示. 结合图象及正、余弦函数的周期是2π知,函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+5π4,k ∈Z .例2 (1) 函数y =2sin x ⎝⎛⎭⎫π6≤x ≤2π3的值域是________.(2) 函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 答案 (1) [1,2] (2) -22解析 (1) 根据正弦函数图象,可知x =π6时,函数取到最小值1;x =π2时,函数取到最大值2.(2) ∵x ∈⎣⎡⎦⎤0,π2,∴-π4≤2x -π4≤3π4,令y =2x -π4,则sin ⎝⎛⎭⎫2x -π4=sin y 在y ∈⎣⎡⎦⎤-π4,3π4上的最小值为sin ⎝⎛⎭⎫-π4=-22. 变式训练 求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. 解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22.∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫||x ≤π4的最大值为54,最小值为1-22. 解题要点 1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.2.三角函数值域的不同求法 (1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域;(3)把sin x 或cos x 看作一个整体,通过换元,令t =sin x (或t =cos x ),转换成二次函数求值域;(4)利用sin x ±cos x 和sin x cos x 的关系通过换元,令t =sin x +cos x ,转换成二次函数求值域. 题型二 三角函数的单调性例3 (1)函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________. (2) 函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是____________________. 答案 (1) ⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ) (2) ⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) 解析 (1)由y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4,得2k π≤2x -π4≤2k π+π(k ∈Z ), 故k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ). (2) 由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).变式训练 若函数f (x )=-cos 2x ,则f (x )的一个递增区间为________. 答案 ⎝⎛⎭⎫0,π2 解析 由f (x )=-cos 2x 知递增区间为⎣⎡⎦⎤k π,k π+π2,k ∈Z ,故只有B 项满足. 解题要点 1.求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;2.求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. 题型三 三角函数的周期性例4 函数f (x )=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为________. 答案 4π解析 函数f (x )=3sin ⎝⎛⎭⎫x 2-π4的最小正周期为T =2π12=4π. 当堂练习1.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 答案 -22解析 因为x ∈⎣⎡⎦⎤0,π2,所以2x -π4∈⎣⎡⎦⎤-π4,3π4,当2x -π4=-π4,即x =0时,f (x )取得最小值-22. 2.如果函数f (x )=sin(ωx +π6)(ω>0)的两个相邻零点之间的距离为π12,则ω的值为________.答案 12解析 T =π6,ω=2πT =12.3. 函数y =cos x -12的定义域为________.答案 ⎣⎡⎦⎤2k π-π3,2k π+π3,k ∈Z 解析 ∵cos x -12≥0,得cos x ≥12,∴2k π-π3≤x ≤2k π+π3,k ∈Z .4.y =sin(x -π4)的图象的一个对称中心是________.答案 (-3π4,0)解析 令x -π4=k π,k ∈Z 得x =π4+k π,k ∈Z ,于是(-3π4,0)是y =sin(x -π4)的图象的一个对称中心.5.函数f (x )=cos(2x +3π2)(x ∈R ),下面结论不正确的是________.(填序号)① 函数f (x )的最小正周期为π ② 函数f (x )的对称中心是(π2,0)③ 函数f (x )的图象关于直线x =π4对称④ 函数f (x )是偶函数 答案 ④解析 ∵f (x )=cos(2x +3π2)=sin2x (x ∈R ),∴最小正周期T =2π2=π,选项①正确;由2x =k π得x =k π2,k ∈Z ,∴函数f (x )的对称中心为(k π2,0),∴取k =1得选项②正确;由2x =k π+π2得x =k π2+π4,k ∈Z ,∴取k =0得函数f (x )的对称轴为x =π4,∴选项③正确;∵f (x )=sin2x (x ∈R ),∴f (-x )=-f (x ),f (x )为奇函数, ∴选项④不正确.课后作业一、 填空题1.若函数f (x )=sin x +φ3(φ∈[0,2π]) 是偶函数,则φ=________.答案3π2解析 ∵f (x )为偶函数,关于y 轴对称,x =0为其对称轴. ∴x +φ3=π2+k π,令x =0,φ=3k π+32π,当k =0时,φ=32π.2.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为________. 答案 π6解析 由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π=3cos ⎝⎛⎭⎫2π3+φ=0, ∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.3.函数y =cos 2x ,周期为_____,且在⎣⎡⎦⎤0,π2上是________(填“增函数”或“减函数”). 答案 π,减函数解析 因为y =cos 2x 的周期T =2π2=π,而2x ∈[0,π],所以y =cos 2x 在⎣⎡⎦⎤0,π2上为减函数. 4.函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是________. 答案 ⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z )解析 由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).5.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=________. 答案 π4解析 由题意得周期T =2⎝⎛⎭⎫54π-14π=2π,∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π4+φ=±1,f ⎝⎛⎭⎫5π4=sin ⎝⎛⎭⎫5π4+φ=±1.∵0<φ<π,∴π4<φ+π4<54π,∴φ+π4=π2,∴φ=π4.6.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 答案 -22解析 由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4,所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1,故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22.7.(2015四川文)下列函数中,最小正周期为π的奇函数是________.(填序号) ①y =sin ⎝⎛⎭⎫2x +π2 ②y =cos ⎝⎛⎭⎫2x +π2 ③y =sin 2x +cos 2x ④y =sin x +cos x 答案 ②解析 ①项,y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,最小正周期为π,且为偶函数,不符合题意; ②项,y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,最小正周期为π,且为奇函数,符合题意; ③项,y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,最小正周期为π,为非奇非偶函数,不符合题意; ④项,y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,最小正周期为2π,为非奇非偶函数,不符合题意. 8.函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为________. 答案 ⎣⎡⎦⎤-32,3 解析 当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3, 即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 9.函数y =3sin(2x +π4)的最小正周期为________.答案 π 解析 T =2π2=π.10.函数f (x )=cos(2x -π4)+3在[-π2,π2]上的单调递减区间为________.答案 [-π2,-3π8]∪[π8,π2]解析 由2k π≤2x -π4≤2k π+π得k π+π8≤x ≤k π+5π8,k ∈Z .∵x ∈[-π2,π2],∴取k =0得f (x )在[-π2,π2]上的单调递减区间为[π8,π2];取k =-1得f (x )在[-π2,π2]上的单调递减区间为[-π2,-3π8].∴f (x )在[-π2,π2]上的单调递减区间为[-π2,-3π8]和[π8,π2]. 11.函数y =sin(x +π4)的对称中心为________.答案 (k π-π4,0),k ∈Z二、解答题12.已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解析 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx +cos2ωx )+ 2 =2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎣⎡⎦⎤π8,π2上单调递减.13.(2015北京文)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解 (1)因为f (x )=sin x +3cos x - 3.=2sin ⎝⎛⎭⎫x +π3- 3. 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3时,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3.。

高考数学总复习 第三章 第3讲 三角函数的图象与性质课件 理

高考数学总复习 第三章 第3讲 三角函数的图象与性质课件 理

考点2 三角函数的对称性
例2:(1)函数y=cos2x+π3图象的对称轴方程可能是(
)
A.x=-π6
B.x=-1π2
C.x=6π
D.x=1π2
解析:(1)令2x+
π 3
=kπ(k∈Z),得x=
kπ 2

π 6
(k∈Z),令k=
0,得该函数的一条对称轴为x=-6π.
答案:A
(2)函数y=sin3x-4π的图象的一ห้องสมุดไป่ตู้对称中心是(
(0,0),π2,1,(π,0),32π,-1,(2π,0). (2)y=cosx的图象在[0,2π]上的五个关键点的坐标为 (0,1),π2,0,(π,-1),32π,0,(2π,1).
2.三角函数的图象和性质
函数
y=sinx
y=cosx
定义域
R
R
y=tanx
x|
xk2,kZ
图象
值域
[-1,1]
2.使 cosx=1-m 有意义的 m 值为( C )
A.m≥0
B.m≤0
C.0≤m≤2
D.-2≤m≤0
3.(2013 年上海)既是偶函数又在区间(0,π)上单调递减的
函数是( B )
A.y=sinx
B.y=cosx
C.y=sin2x
D.y=cos2x
4.函数 y=5tan(2x+1)的最小正周期为( B )
【规律方法】本题主要考查函数 y=Asin(wx+φ)的图象特 征,正弦函数的值域与最值.解题关键在于将已知的函数表达式 化为三角函数模型,再根据此三角函数模型的图象与性质进行 解题即可.
【互动探究】 3.已知函数 f(x)=2cos2x+sin2x-4cosx.

三角函数图像与性质-知识点总结及题型归纳讲义

三角函数图像与性质-知识点总结及题型归纳讲义

专题七《三角函数》讲义7.3 三角函数的图像与性质知识梳理.三角函数的图像与性质1.正弦、余弦、正切函数的图象与性质函数y=sin x y=cos x y=tan x 图象定义域R R错误!值域[-1,1][-1,1]R奇偶性奇函数偶函数奇函数单调性在⎣⎡⎦⎤-π2+2kπ,π2+2kπ(k∈Z)上是递增函数,在⎣⎡⎦⎤π2+2kπ,3π2+2kπ(k∈Z)上是递减函数在[2kπ-π,2kπ](k∈Z)上是递增函数,在[2kπ,2kπ+π](k∈Z)上是递减函数在⎝⎛⎭⎫-π2+kπ,π2+kπ(k∈Z)上是递增函数周期性周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是kπ(k∈Z且k≠0),最小正周期是π对称性对称轴是x=π2+kπ(k∈Z),对称中心是(kπ,0)(k∈Z)对称轴是x=kπ(k∈Z),对称中心是⎝⎛⎭⎫kπ+π2,0(k∈Z)对称中心是⎝⎛⎭⎫kπ2,0(k∈Z)题型一. 三角函数图像的伸缩变换1.要得到函数y =3sin (2x +π3)的图象,只需要将函数y =3cos2x 的图象( ) A .向右平行移动π12个单位 B .向左平行移动π12个单位C .向右平行移动π6个单位D .向左平行移动π6个单位2.(2017•新课标Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 23.(2021春•闵行区校级期中)函数y =cos (2x +φ)的图象向右平移π2个单位长度后与函数y =sin (2x +2π3)的图象重合,则|φ|的最小值为 .4.(2016春•南通期末)将函数f(x)=sin(ωx +φ),(ω>0,−π2<φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π4个单位长度得到y =sin x 的图象,则f(π6)= .5.(2015•湖南)将函数f (x )=sin2x 的图象向右平移φ(0<φ<π2)个单位后得到函数g (x )的图象.若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,有|x 1﹣x 2|min =π3,则φ=( ) A .5π12B .π3C .π4D .π6题型二. 已知图像求解析式1.图是函数y =A sin (ωx +φ)(x ∈R )在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R )的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变2.已知函数y =sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则( )A .ω=π2,φ=−π4 B .ω=π2,φ=π4C .ω=π,φ=−π4D .ω=π,φ=π43.已知函数f (x )=A cos (ωx +φ)的图象如图所示,f (π2)=−23,则f (0)=( )A .−23B .−12C .23D .124.已知函数f (x )=A tan (ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,下列关于函数g (x )=A cos (ωx +φ)(x ∈R )的表述正确的是( )A .函数g (x )的图象关于点(π4,0)对称B .函数g (x )在[−π8,3π8]递减 C .函数g (x )的图象关于直线x =π8对称D .函数h (x )=cos2x 的图象上所有点向左平移π4个单位得到函数g (x )的图象题型三. 三角函数的性质 考点1.单调性1.函数y =sin (﹣2x +π3)的单调递减区间是( ) A .[k π−π12,k π+5π12],k ∈Z B .[2k π−π12,2k π+5π12],k ∈ZC .[k π−π6,k π+5π6],k ∈ZD .[2k π−π6,2k π+5π6],k ∈Z2.已知函数f(x)=Asin(x +φ)(A >0,−π2<φ<0)在x =5π6时取得最大值,则f (x )在[﹣π,0]上的单调增区间是( ) A .[−π,−5π6] B .[−5π6,−π6] C .[−π3,0]D .[−π6,0]3.已知函数f (x )=sin (2x +π3)在区间[0,a ](其中a >0)上单调递增,则实数a 的取值范围是( ) A .{a |0<a ≤π12} B .{a |0<a ≤π2} C .{a |a =k π+π12,k ∈N *} D .{a |2k π<a ≤2k π+π12,k ∈N *} 4.已知ω>0,函数f (x )=sin (ωx +π4)在区间(π2,π)上单调递减,则实数ω的取值范围是( ) A .[12,54] B .[12,34]C .(0,12]D .(0,2]考点2.周期性、奇偶性、对称性1.已知函数f (x )=cos 2x +sin 2(x +π6),则( )A .f (x )的最小正周期为π,最小值为12B .f (x )的最小正周期为π,最小值为−12C .f (x )的最小正周期为2π,最小值为12D .f (x )的最小正周期为2π,最小值为−122.已知f (x )=sin2x +|sin2x |(x ∈R ),则下列判断正确的是( ) A .f (x )是周期为2π的奇函数 B .f (x )是值域为[0,2]周期为π的函数 C .f (x )是周期为2π的偶函数 D .f (x )是值域为[0,1]周期为π的函数3.将函数y =sin2x −√3cos2x 的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是( ) A .712π B .π4C .π12D .π64.已知函数f (x )=a sin x ﹣b cos x (ab ≠0,x ∈R )在x =π4处取得最大值,则函数y =f (π4−x )是( )A .偶函数且它的图象关于点(π,0)对称B .偶函数且它的图象关于点(3π2,0)对称 C .奇函数且它的图象关于点(3π2,0)对称 D .奇函数且它的图象关于点 (π,0)对称考点3.三角函数性质综合1.(2019•天津)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g (π4)=√2,则f (3π8)=( )A .﹣2B .−√2C .√2D .22.(2015•天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R ,若函数f (x )在区间(﹣ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为 .3.(2014•大纲版)若函数f (x )=cos2x +a sin x 在区间(π6,π2)是减函数,则a 的取值范围是 .4.(2016•新课标Ⅰ)若函数f (x )=x −13sin2x +a sin x 在(﹣∞,+∞)单调递增,则a 的取值范围是( ) A .[﹣1,1]B .[﹣1,13]C .[−13,13]D .[﹣1,−13]5.(2013•安庆二模)已知函数f (x )=sin (ωx +π6),其中ω>0,若f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值、无最大值,则ω等于( )A .403B .283C .163D .436.(2014•北京)设函数f (x )=A sin (ωx +φ)(A ,ω,φ是常数,A >0,ω>0)若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f(2π3)=﹣f (π6),则f (x )的最小正周期为 .题型四. 三角函数最值1.函数f (x )=15sin (x +π3)+cos (x −π6)的最大值为( ) A .65B .1C .35D .152.函数f (x )=cos (ωx +π3)(ω>0)在[0,π]内的值域为[﹣1,12],则ω的取值范围为( ) A .[32,53]B .[23,43]C .[23,+∞)D .[23,32]3.已知函数f (x )=cos2x +sin x ,则下列说法中正确的是( ) A .f (x )的一条对称轴为x =π4 B .f (x )在(π6,π2)上是单调递减函数C .f (x )的对称中心为(π2,0)D .f (x )的最大值为14.若0<x ≤π3,则函数y =sin x +cos x +sin x cos x 的值域为 .5.已知函数f(x)=2sinωx ⋅cos 2(ωx 2−π4)−sin 2ωx(ω>0)在区间[−2π5,5π6]上是增函数,且在区间[0,π]上恰好取得一次最大值1,则ω的取值范围是( ) A .(0,35]B .[12,35]C .[12,34]D .[12,52)6.已知函数f (x )=cos x •sin (x +π3)−√3cos 2x +√34,x ∈R (1)求f (x )的最小正周期;(2)求f (x )在闭区间[0,π2]上的最大值和最小值及相应的x 值;(3)若不等式|f (x )﹣m |<2在x ∈[0,π2]上恒成立,求实数m 的取值范围.题型五.三角函数零点1.已知函数f (x )=sin ωx −√3cos ωx (ω>0),若方程f (x )=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为 .2.已知函数f (x )=√3sin ωx cos ωx +cos 2ωx −12,(ω>0,x ∈R ),若函数f (x )在区间(π2,π)内没有零点,则ω的取值范围( ) A .(0,512] B .(0,512]∪[56,1112]C .(0,58]D .(0,56]∪[1112,1)3.函数f(x)=2sin(2ωx +π6)(ω>0)图象上有两点A (s ,t ),B (s +2π,t )(﹣2<t <2),若对任意s ∈R ,线段AB 与函数图象都有五个不同交点,若f (x )在[x 1,x 2]和[x 3,x 4]上单调递增,在[x 2,x 3]上单调递减,且x 4−x 3=x 2−x 1=23(x 3−x 2),则x 1的所有可能值是课后作业. 三角函数的图像与性质1.函数f (x )=A sin (ωx +φ)(A >0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g (x )=A sin ωx 的图象,只需将函数y =f (x )的图象( )A .向左平移π3个单位长度B .向左平移π12个单位长度 C .向右平移π3个单位长度D .向右平移π12个单位长度2.关于函数y =2sin (3x +π4)+1,下列叙述正确的是( ) A .其图象关于直线x =−π4对称 B .其图象关于点(π12,1)对称 C .其值域是[﹣1,3]D .其图象可由y =2sin (x +π4)+1图象上所有点的横坐标变为原来的13得到 3.已知函数f (x )=(12a −√3)sin x +(√32a +1)cos x ,将f (x )的图象向右平移π3个单位长度得到函数g (x )的图象,若对任意x ∈R ,都有g (x )≤g (π4),则a 的值为 . 4.已知函数f (x )=sin (ωx +φ)(ω>1,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π2]上是单调函数,则ω和φ的值分别为( )A .23,π4B .2,π3C .2,π2D .103,π25.已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,−π4为f (x )的零点:且f (x )≤|f (π4)|恒成立,f (x )在区间(−π12,π24)上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .176.已知函数f (x )=2sin (ωx −π6)sin (ωx +π3)(ω>0),若函数g (x )=f (x )+√32在[0,π2]上有且只有三个零点,则ω的取值范围为( )A .[2,113) B .(2,113) C .[73,103) D .(73,103)。

高考数学一轮复习讲义3三角函数的图象与性质

高考数学一轮复习讲义3三角函数的图象与性质

2x+π 3
B.y=2sin
2x-π 6
x+π C.y=2sin 2 3
2x-π D.y=2sin 3
答案 B
解析
函数 y=2sin
2x-π 6
的最小正周期 T=2π=π,
2
2×π-π 又 sin 3 6 =1,
∴函数 y=2sin
2x-π 6
的图象关于直线 x=π对称.
3
π-2x 6.函数 f(x)=4sin 3 的单调递减区间是______________________.
解析

x∈
0,π 2
时,2x-π∈
-π,5π 66

6
2x-π -1,1 sin 6 ∈ 2 ,
2x-π -3,3 故 3sin 6 ∈ 2 ,
2x-π
-3,3
即 y=3sin
6 的值域为 2 .
2x-3π
4.函数 y=-tan
4 的单调递减区间为________________.
π+kπ,5π+kπ 答案 8 2 8 2 (k∈Z)
2
2
递减区间 对称中心 对称轴方程
2kπ+π,2kπ+3π
2
2
(kπ,0)
x=kπ+π 2
[2kπ,2kπ+π] kπ+π,0 2 x=kπ
无 kπ,0 2

概念方法微思考 1.正(余)弦曲线相邻两条对称轴之间的距离是多少?相邻两个对称中心的距离呢? 提示 正(余)弦曲线相邻两条对称轴之间的距离是半个周期;相邻两个对称中心的距离也为 半个周期. 2.思考函数 f(x)=Asin(ωx+φ)(A≠0,ω≠0)是奇函数,偶函数的充要条件? 提示 (1)f(x)为偶函数的充要条件是φ=π+kπ(k∈Z);

高考数学一轮复习 讲义三角函数图像与性质 学生

高考数学一轮复习 讲义三角函数图像与性质 学生

课题:三角函数图像与性质知识点:1.正弦、余弦、正切函数的图像 2.正弦、余弦、正切函数的性质 函数性质sinx y =cosx y =tanx y =定义域RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ图像值域[]1,1-[]1,1-R 对称性对称轴:()Z k k x ∈+=2ππ对称中心:()()Z k k ∈0,π对称轴:()z k k x ∈=π 对称中心:(,0)2k ππ+无对称轴对称中心:()Z k k ∈⎪⎭⎫⎝⎛0,2π 周期 π2π2π奇偶性奇 偶奇单调性单调递增区间()Z k k k ∈⎥⎦⎤⎢⎣⎡+-22,22ππππ 单调递减区间()Z k k k ∈⎥⎦⎤⎢⎣⎡++232,22ππππ 单调递增区间[]()Z k k k ∈-πππ2,2单调递减区间[]()Z k k k ∈+πππ2,2单调递增区间Z k k k ∈+-)2,2(ππππ最值当22ππ+=k X 时,y 的最大值:1;22ππ-=k X 时,y 的最小值:1,其中Z k ∈当πk x 2=时,y 的最大值:1;当ππ+=k x 2时,y 的最小值:1,其中Z k ∈无最大值,无最小值用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点. 【注2】1.三角函数定义域的求法:求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解. 2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin (ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域. 【注3】1.求形如()sin y A x ωϕ=+或()cos y A x ωϕ=+ (其中A ≠0,0ω>)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“x ωϕ+ (0ω>)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与sin y x = (x R ∈),cos y x = (x R ∈)的单调区间对应的不等式方向相同(反). 2.如何确定函数sin()(0)y A x A ωϕ=+>当0ω<时函数的单调性对于函数sin()y A x ωϕ=+求其单调区间,要特别注意ω的正负,若为负值,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.3.求函数sin()y A x ωϕ=+ (或cos()y A x ωϕ=+,或tan()y A x ωϕ=+)的单调区间的步骤: (1)将ω化为正.(2)将x ωϕ+看成一个整体,由三角函数的单调性求解.4.特别提醒:解答三角函数的问题时,不要漏了“k Z ∈”. 三角函数存在多个单调区间时易错用“∪”联结.求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域. 【注4】先化成sin)y A x B ωϕ=++(的形式再求解.其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 【注5】1. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=()f x ,则函数是奇函数,否则是非奇非偶函数.2.如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 【注6】1.求三角函数的周期的方法(1)定义法:使得当x 取定义域内的每一个值时,都有()()f x T f x +=.利用定义我们可采用取值进行验证的思路,非常适合选择题;(2)公式法:()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=,()tan()f x A x ωϕ=+的周期为T πω=.要特别注意两个公式不要弄混; (3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如x y x y sin ,sin 2==的周期都是π, 但sin y x =cos x +的周期为2π, 而1|2sin(3)|,|2sin(3)2|626y x y x ππ=-+=-+,|tan |y x =的周期不变. 2.使用周期公式,必须先将解析式化为sin()y A x h ωϕ=++或cos()y A x h ωϕ=++的形式;正弦余弦函数的最小正周期是2T πϖ=,正切函数的最小正周期公式是T πϖ=;注意一定要注意加绝对值.3.对称与周期:正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.典型例题例1下列函数中最小正周期为π的是( ) A .sin y x =B .sin y x =C .tan2x y = D .cos 4y x =例2函数π()sin(2)3f x x =+的最小正周期为( ) A .4π B .2π C . π D .π2例3已知直线π6x =是函数()πsin ω0ω86f x x ⎛⎫=+<< ⎪⎝⎭()图象的一条对称轴,则f (x )的最小正周期为( ) A .π4B .π2C .πD .2π例4已知函数()sin 2f x x π⎛⎫=- ⎪⎝⎭,则()f x 是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数D .周期为2π的偶函数例5函数()π26f x sin x ⎛⎫=-⎪⎝⎭的图象的一条对称轴是( ) A .π3x =-B .π12x =C .π4x =D .π3x =例6已知函数π()3(2)6f x sin x =+,则下列说法正确的是( )A .图象关于点π(0)6,对称 B .图象关于点π(0)3,对称 C .图象关于直线π6x =对称 D .图象关于直线π3x =对称 例7函数()ππ448f x tan x ⎛⎫=+⎪⎝⎭的单调递增区间是( )A .()534422k k k Z ⎛⎫-+∈ ⎪⎝⎭,B .()354422k k k Z ⎛⎫-+∈ ⎪⎝⎭,C .()538822k k k Z ⎛⎫-+∈ ⎪⎝⎭, D .()358822k k k Z ⎛⎫-+∈ ⎪⎝⎭,例8设函数()sin 2f x x =,x ∈R ,若[)0,θπ∈,函数()f x θ+是偶函数,则θ的值为( ) A .12π或1112πB .6π或56π C .4π或34π D .3π或23π例9函数()πcos 3f x x x ⎛⎫=+- ⎪⎝⎭的单调递减区间为( )A .π4π|π,π,33x k k k Z ⎡⎤++∈⎢⎥⎣⎦ B .π2ππ,π,63k k k Z ⎡⎤++∈⎢⎥⎣⎦ C .π4π2π,2π33k k k Z ⎡⎤++∈⎢⎥⎣⎦, D .π2π2π,2π,63k k k Z ⎡⎤++∈⎢⎥⎣⎦例10下列坐标所表示的点不是函数tan()26x y π=-的图象的对称中心的是 ( ) A .03π⎛⎫⎪⎝⎭, B .503π⎛⎫- ⎪⎝⎭, C .203π⎛⎫ ⎪⎝⎭, D .403π⎛⎫ ⎪⎝⎭, 例11函数()π223f x sin x ⎛⎫=-⎪⎝⎭的一个单调递减区间是( ) A .5π11π66⎡⎤⎢⎥⎣⎦, B .π5π1212⎡⎤⎢⎥⎣⎦, C .5π11π1212⎡⎤⎢⎥⎣⎦, D .π5π66⎡⎤⎢⎥⎣⎦, 例12函数()sin ,[,0]3f x x x ππ⎛⎫=-∈- ⎪⎝⎭的单调递增区间是( )A .5,6ππ⎡⎤-⎢⎥⎣⎦ B .5,66ππ⎡⎤--⎢⎥⎣⎦ C .,03π⎡⎤-⎢⎥⎣⎦ D .,06π⎡⎤-⎢⎥⎣⎦ 例13函数()πtan 23f x x ⎛⎫=-⎪⎝⎭的图象的一个对称中心为( ) A .π012⎛⎫⎪⎝⎭, B .7π012⎛⎫ ⎪⎝⎭, C .5π012⎛⎫- ⎪⎝⎭, D .π012⎛⎫- ⎪⎝⎭, 例14函数 ()sin 23f x x π⎛⎫=+ ⎪⎝⎭ 的图象的对称轴方程可以为( )A .12x π=B .512x π=C .3x π=D .6x π=例15若π2x =是函数()ω(ω0)f x cos x =≠图象的对称轴,则()f x 的最小正周期的最大值是( ) A .πB .2πC .π2D .π4例16函数()π3f x sin x ⎛⎫=-⎪⎝⎭的单调递增区间为( )A .π5π2π2π66k k ⎡⎤-+⎢⎥⎣⎦,,Z k ∈ B .π5πππ66k k ⎡⎤-+⎢⎥⎣⎦,,Z k ∈ C .5π11π2π2π66k k ⎡⎤++⎢⎥⎣⎦,,Z k ∈ D .5π11πππ66k k ⎡⎤++⎢⎥⎣⎦,,Z k ∈ 例17已知()sin(2),,22f x x ππϕϕ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,且6f x π⎛-⎫ ⎪⎝⎭为偶函数,则φ=________.例18已知函数()π2ω3f x sin x ⎛⎫=+⎪⎝⎭(ω0>)的最小正周期为π. (1)求π6f ⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递减区间.例19已知函数()π226f x sin x ⎛⎫=-⎪⎝⎭,R x ∈.(1)若()0f x =0x 的值; (2)求()f x 的单调递增区间;(3)当π5π612x ⎡⎤∈⎢⎥⎣⎦,时,求()f x 的最大值和最小值. 举一反三1.函数()π3cos 26f x x ⎛⎫=--⎪⎝⎭的一条对称轴是( ) A .π6x =-B .π12x =C .π4x =D .π3x =2.下列直线中,函数()π76f x sin x ⎛⎫=-⎪⎝⎭的对称轴是( ) A .π3x =B .2π3x =C .π6x =D .π2x =3.已知函数()()π2ω10ω56f x sin x ⎛⎫=-+<< ⎪⎝⎭的图像经过点8π315⎛⎫ ⎪⎝⎭,,则()f x 的最小正周期为( )A .3π2B .4π5C .8π5D .5π44.函数π()(2φ)|φ|2f x sin x ⎛⎫=+<⎪⎝⎭在区间ππ126⎛⎤- ⎥⎝⎦,上单调且()f x ≤,则φ的范围是( ) A .π03⎡⎤-⎢⎥⎣⎦,B .ππ36⎡⎤-⎢⎥⎣⎦, C .π04⎡⎤-⎢⎥⎣⎦, D .π03⎡⎤⎢⎥⎣⎦, 5.已知函数()()πωω06f x sin x ⎛⎫=-> ⎪⎝⎭在4π03⎛⎫ ⎪⎝⎭,单调递增,在4π2π3⎛⎫⎪⎝⎭,单调递减,则ω=( ) A .12B .1C .43D .326.已知函数()()πωω03f x sin x ⎛⎫=+> ⎪⎝⎭在区间ππ62⎛⎫⎪⎝⎭,上单调递减,则ω的取值范围是( ) A .703⎛⎤ ⎥⎝⎦,B .713⎡⎤⎢⎥⎣⎦,C .[1,3]D .(]03,7.如果函数y=3cos (2x+φ)的图象关于点4π(0)3,对称,那么|φ|的最小值为( ) A .π6B .π4C .π3D .π28.下列区间中,函数π()2()6f x sin x =-单调递减的是( )A .π(0)2,B .π(π)2,C .3π(π)2,D .3π(2π)2, 9.函数()ππ33364f x sin x ⎛⎫=--⎪⎝⎭的最小正周期为 .10.已知函数()()π2ωω06f x sin x ⎛⎫=+> ⎪⎝⎭的最小正周期为π,则()f x 在区间ππ33⎡⎤-⎢⎥⎣⎦,上的最小值为 .11.已知函数()π23f x cos x ⎛⎫=-⎪⎝⎭在()0m ,上的值域为112⎛⎤⎥⎝⎦,,则m 的取值范围是 . 12.已知函数()π323f x sin x ⎛⎫=- ⎪⎝⎭,R x ∈.(1)求()f x 的最小正周期及单调增区间;(2)求()f x 在区间ππ44⎡⎤-⎢⎥⎣⎦,的值域.13.已知函数 1()sin 262f x x π⎛⎫=-+ ⎪⎝⎭ . (1)求y = f (x )的单调减区间;(2)当 63x ππ⎡⎤∈⎢⎥⎣⎦, 时,求f (x )的最大值和最小值.课后练习1.函数()()πωω02f x sin x ⎛⎫=-> ⎪⎝⎭在π05⎡⎤⎢⎥⎣⎦,上单调递增,则ω的最大值为( ) A .6B .5C .4D .12.函数()π4f x tan x ⎛⎫=+⎪⎝⎭的单调递增区间为( ) A .()ππππ22k k k Z ⎛⎫-+∈ ⎪⎝⎭, B .()()πππk k k Z +∈,C .()3ππππ44k k k Z ⎛⎫-+∈ ⎪⎝⎭, D .()π3πππ44k k k Z ⎛⎫-+∈ ⎪⎝⎭, 3.下列区间中,函数 ()15sin 23f x x π⎛⎫=-+ ⎪⎝⎭ 单调递减的区间是( )A .2ππ⎡⎤--⎢⎥⎣⎦,B .2ππ⎡⎤⎢⎥⎣⎦, C .322ππ⎡⎤⎢⎥⎣⎦,D .522ππ⎡⎤⎢⎥⎣⎦, 故答案为:B4.(多选)已知函数()ωf x sin x =(ω0>)在ππ66⎛⎫- ⎪⎝⎭,上单调,则ω的可能值为( )A .2B .3C .4D .55.已知函数(φ)(0φπ)y sin x =+<<为偶函数,则φ=( )A .π4B .π3C .π2D .5π66.下列关于函数()π246f x sin x ⎛⎫=+⎪⎝⎭的图象,说法正确的是( )A .关于点π03⎛⎫ ⎪⎝⎭,对称 B .关于直线π24x =-对称 C .关于直线π12x =对称 D .关于点π02⎛⎫ ⎪⎝⎭,对称 7.如果函数()(2φ)f x sin x =+的图像关于点2π03⎛⎫-⎪⎝⎭,对称,则|φ|的最小值是( ) A .π6B .π3 C .5π6D .4π38.函数2sin 26y x π⎛⎫=+ ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的值域是___________.9.已知函数()2cos (0)6f x x πωω⎛⎫=+> ⎪⎝⎭,在[]0,π内的值域为⎡-⎣,则ω的取值范围为___________. 10.已知函数()()πωω04f x sin x ⎛⎫=+> ⎪⎝⎭在π2π43⎡⎤⎢⎥⎣⎦,上单调递减,则ω的取值范围为 . 11.若函数()()πωω04f x tan x ⎛⎫=+> ⎪⎝⎭的最小正周期为π,则ω的值为 . 12.已知函数π()(ωφ)ω0|φ|2f x sin x ⎛⎫=+>< ⎪⎝⎭,的最小正周期是π,且()f x 的图象过点π112⎛⎫⎪⎝⎭,,则()f x 的图象的对称中心坐标为 .13.函数()π2φ0φ2y sin x ⎛⎫=+<<⎪⎝⎭图象的一条对称轴是π12x =,则φ的值是 .14.已知函数()π26f x x ⎛⎫=- ⎪⎝⎭.(1)求函数()f x 的单调区间;(2)求函数()f x 在区间ππ42⎡⎤-⎢⎥⎣⎦,上的最小值和最大值.。

高考数学复习讲义:三角函数的图象与性质

高考数学复习讲义:三角函数的图象与性质

2
突破点二 三角函数的性质
3
课时跟踪检测
返回
突破点一 三角函数的定义域和值域
返回
抓牢双基·自学回扣
[基本知识]
三角
余弦函数 y=
正弦函数 y=sin x
正切函数 y=tan x
函数
cos x
图象
定义 R

{ x| x∈R ,且 x
R

kπ+π2
,k∈Z
返回
三角 函数 值域
正弦函数 y=sin x
()
返回
二、填空题
1.y= 2sin x- 2的定义域为________________________.
解析:要使函数式有意义,需2sin
x-
2≥0,即sin
x≥
2 ,借 2
助正弦函数的图象(图略),可得 π4 +2kπ≤x≤34π +2kπ,k∈Z,所
以该函数的定义域是π4+2kπ,34π+2kπ(k∈Z).
换元法 asin xcos x+b(sin x±cos x)+c的三角函数,可先设t =sin x±cos x,化为关于t的二次函数求值域(最值)
返回
[集训冲关]
1.[考法一]函数y=log2(sin x)的定义域为________.
解析:根据题意知sin x>0,得x∈(2kπ,2kπ+π)(k∈Z).
(2)依题意,f(x)=sin2x+ 3cos x-34=-cos2x+ 3cos x
+14=-cos x- 232+1, 因为 x∈0,π2,所以 cos x∈[0,1],
因此当 cos x= 23时,f(x)max=1.
返回
(3)设t=sin x-cos x, 则t2=sin2x+cos2x-2sin xcos x, 即sin xcos x=1-2 t2,且-1≤t≤ 2. ∴y=-t22+t+12=-12(t-1)2+1. 当t=1时,ymax=1;当t=-1时,ymin=-1. ∴函数的值域为[-1,1]. [答案] (1)B (2)1 (3)[-1,1]

2024年高考数学---三角函数的图象及性质

2024年高考数学---三角函数的图象及性质

3
2
3
2sin
2
x
3
.将
函数f(x)的图象向右平移 个单位长度后,得y= 2 sin 2 x- + =
3
33
2
sin
2
x
3
的图象,故选C.
答案 C
例2 (2021全国甲文,15,5分)已知函数f(x)=2cos(ωx+φ)的部分图象如图所
示,则f
2
=
.
解析
由题图可知点
3
,
0
,
2
2)ω由周期得到.
3)利用峰点、谷点或零点列出关于φ的方程,结合φ的范围解得φ的值,所 列方程如下:
峰点:ωx+φ= +2kπ;谷点:ωx+φ=- +2kπ.
2
2
利用零点时,要区分该零点是升零点,还是降零点.升零点(图象上升时与x
轴的交点的横坐标):ωx+φ=2kπ;降零点(图象下降时与x轴的交点的横坐
3 2
,
0
,(2π,1).
2.用“五点法”画y=Asin(ωx+φ)(A,ω≠0)在一个周期内的简图 用五点法画y=Asin(ωx+φ)(A,ω≠0)在一个周期内的简图时,一般先列表,后 描点,连线,其中所列表如下:
ωx+φ x
y=A· sin(ωx+φ)
0
π
2
-
π - + 2
0
A
π

2
=-
3 ,k∈Z.
答案 - 3
考法二 三角函数的性质的应用 1.三角函数的单调性 1)求函数的单调区间应遵循简单化原则,将解析式进行化简,并注意复合 函数单调性法则“同增异减”. 2)求形如y=Asin(ωx+φ)+B或y=Acos(ωx+φ)+B(其中ω>0)的单调区间时,要 视“ωx+φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助 诱导公式将x的系数化为正数. 3)已知三角函数的单调区间求参数,先求出函数的单调区间,然后利用集 合间的关系求解. 2.三角函数的奇偶性

高考数学艺考生总复习课件三角函数的图象与性质

高考数学艺考生总复习课件三角函数的图象与性质

(1)函数 f(x)=sin
-2������
+
π 3
的单调减区间

.
(2)已知 ω>0,函数 f(x)=sin
������������
+
π 4
的一个单调递减区间为
π 8
,
5π 8
,
则 ω=
.
(3)(2018·全国卷Ⅱ改编)若函数 f(x)=cosx-sinx 在[0,a]是减函数,则 a
的最大值是
.
+
,
3 2
k∈Z π,
������ = 16������ + 2,

������
=
16 5
������
+
2,解得
ω=2.
典例变式
(3)f(x)=cosx-sinx= 2cos ������ 当 x∈[0,a]时,π4≤x+π4≤a+π4,
+
π 4
,
由题意知 a+π4≤π,即 a≤34π,故所求 a 的最大值为34π.
+
������
+

=3cos
2π 3
+
������
=0,
∴ ∴ 取2φ3kπ==+k0φπ,得=-π6k,|kπφ∈+|的π2Z,k最,∈小Z值, 为π6.
【答案】(1)B (2)A
典例变式
【规律方法】三角函数的奇偶性、对称性和周期性问题的解题思路 (1)奇偶性的判断方法:三角函数中奇函数一般可化为 y=Asinωx 或 y=Atanωx 的形式,而偶 函数一般可化为 y=Acosωx+b 的形式. (数2)周y=期At的an计(ω算x+方φ)法(ω:>利0用)的函最数小y正=周As期in(为ωx���π���+求φ)解,y=. Acos(ωx+φ)(ω>0)的最小正周期为2���π��� ,函 (3)对称性的判断:对于函数 y=Asin(ωx+φ),其对称轴一定经过图象的最高点或最低点,对 称中心的横坐标一定是函数的零点,因此在判断直线 x=x0 或点(x0,0)是否是函数的对称 轴或对称中心时,可通过检验 f(x0)的值进行判断.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数性质与图像 知识清单:
..........
函数s i n ()y A x ωϕ=+的图像和性质以函数sin y x =为基础,通过图像变换来把握.如①sin y x
=−−−−→图例变化为
②sin()y A x ωϕ=+(A >0,ω>0)相应地,
①的单调增区间2,22
2
k k ππππ⎡⎤-++⎢⎥


−−−
→变为
222
2
k x k π
π
πωϕπ-
+++≤≤
的解集是②的增区间.
注:⑴)sin(ϕω+=x y 或cos()y x ωϕ=+(0≠ω
)的周期ω
π
2=
T ;
⑵sin()y x ωϕ=+的对称轴方程是2
x k π
π=+
(Z k ∈),对称中心(,0)k π;
cos()y x ωϕ=+的对称轴方程是x k π=(Z k ∈)
,对称中心1(,0)
2
k ππ+;
)tan(ϕω+=x y 的对称中心(
0,2πk ).
课前预习
1.函数sin cos y x x =-的最小正周期是 2π . 2. 函数1
π2sin()23
y x =+
的最小正周期T = 4π .
3.函数sin
2
x y =的最小正周期是2π
4.函数]),0[)(26
sin(
2ππ
∈-=x x y 为增函数的区间是]6
5,
3
[
ππ
5.函数22cos()(
)3
6
3
y x x π
π
π=-
≤≤的最小值是1
6.为了得到函数)6
2sin(π-=x y 的图象,可以将函数x y 2cos =的图象向左平移3
π
个单位长度
7.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移
3
π
个单位,所得图象的解析式是y=sin(
2
1x+
6
π
).
8.
函数sin y x x =+
在区间[0,
2
π
]的最小值为___1___.
9.已知f (x )=5sin x cos x -35cos 2
x +
3
2
5(x ∈R )
⑴求f (x )的最小正周期;y=5sin(2x-3π
) T=π ⑵求f (x )单调区间;[k 12
π
π-
,k π+
12
5π], [k 12
5ππ+
,k π+
12
11π]k Z ∈
⑶求f (x )图象的对称轴,对称中心。

x=1252ππ+k ,(
0,6

π+
k ) k Z ∈
典型例题
例1、三角函数图像变换
将函数1
2cos()3
2
y x π=+的图像作怎样的变换可以得到函数cos y x =的图像?
变式1:将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4
y x π
=-的图像?
例2、已知简谐运动π
π()2sin 32f x x ϕϕ⎛⎫⎛
⎫=+<
⎪ ⎪⎝⎭⎝
⎭的图象经过点(01),,则该简谐运动的最
小正周期T 和初相ϕ分别为6T =,π6
=
例3、三角函数性质 求函数34sin(2)2
3
y x ππ=
+
的最大、最小值以及达到最大(小)值时x 的值的集合.;
变式1:函数y =2sin x 的单调增区间是[2k π-2
π
,2k π+
2
π
](k ∈Z )
变式2、下列函数中,既是(0,
2
π)上的增函数,又是以π为周期的偶函数是( B)
(A)y =lg x 2 (B)y =|sin x | (C)y =cos x (D)y=x 2sin 2 变式3、已知⎥

⎤⎢⎣⎡
∈2,
0πx ,求函数)12
5cos(
)12
cos(
x x y
+--=ππ
的值域y=2sin (x+
6
π
)⎥⎦

⎝⎛2,22
变式4、已知函数12
()log (sin cos )f x x x =- y=log 2
1()4
sin(2π
-x )
⑴求它的定义域和值域;(2k 4
52,4
πππ
π+
+
k ) k ∈Z ⎪⎭

⎢⎣
⎡+∞-
,21
⑵求它的单调区间;减(2k 4
32,4
πππ
π+
+
k ),增(2k 4
52,4
3ππππ+
+
k ) k ∈Z
⑶判断它的奇偶性;非奇非偶 ⑷判断它的周期性.2π 例4、三角函数的简单应用
如图,某地一天从6时至14时的温度变化曲线近似
满足函数y =A sin (ωx +ϕ)+b .
(Ⅰ)求这段时间的最大温差;20
(Ⅱ)写出这段曲线的函数解析式.y=10sin (4
38π
π
+x )+20
例5、三角恒等变换 函数y =
x
x cos sin 21
++的最大值是
2
2+1.
变式1:
已知cos 2π2
sin 4αα=-

⎫- ⎪

⎭,求cos sin αα+的值.1/2
变式2:
已知函数2π
()2sin 24f x x x ⎛⎫
=+- ⎪⎝⎭
,ππ42x ⎡⎤
∈⎢⎥⎣⎦
,.求()f x 的最大值和最小值.32
实战训练
1.函数x x f 2
sin
21)(-=的最小正周期为 π
2. 函数f x x x x ()cos sin cos =-223的最小正周期是_π___ 3.函数)(2cos 2
1cos )(R x x x x f ∈-
=的最大值等于
16
7
4.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,
2
ϕπ<)的最小正周期是π,且(0)f =则23
ωϕπ==

5.若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =--的图象,则向量a =(12)-, 6..函数5tan(21)y x =+的最小正周期为π2
7.将π2c o s 3
6x
y ⎛⎫
=+
⎪⎝⎭
的图象按向量π
24
⎛⎫=-- ⎪⎝


a 平移,则平移后所得图象的解析式为π2c o s 2
3
4x
y ⎛⎫=+-
⎪⎝⎭ 8..若函数
2
1()sin ()
2
f x x x R =-
∈,则f(x)是最小正周期为π的偶函数
9.已知函数()sin (0)f x x ωωπ⎛
⎫=+
> ⎪3⎝
⎭的最小正周期为π,则该函数的图象( A )A .关于点0π⎛⎫
⎪3⎝⎭

对称 B .关于直线x π=
4
对称C .关于点0π
⎛⎫
⎪4⎝⎭
,对称 D .关于直线x π=
3
对称
10
.下列函数中,周期为
2
π
的是( D )
A .sin
2
x y = B .sin 2y x = C .cos
4
x y = D .cos 4y x =
11
.函数()sin ([,0])f x x x x π=-
∈-的单调递增区间是( D )
A .5[,]6
ππ--
B .5[,]6
6
ππ
-
-
C .[,0]3
π
-
D .[,0]6
π
-
12.设函数()sin ()3f x x x π⎛

=+
∈ ⎪⎝

R ,则()f x ( A ) A .在区间2736ππ⎡⎤
⎢⎥⎣⎦,上是增函数
B .在区间2π⎡

-π-⎢
⎥⎣

,上是减函数 C .在区间
84ππ⎡⎤
⎢⎥⎣
⎦,上是增函数
D .在区间
536ππ⎡⎤
⎢⎥⎣⎦,上是减函数
13.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫
=- ⎪3⎝

的图象( A ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移
π3
个单位
D .向左平移
π6
个单位
14.函数sin y x =的一个单调增区间是( C )
A .ππ⎛
⎫-
⎪44⎝⎭,
B .3ππ⎛⎫ ⎪44⎝⎭,
C .3π⎛⎫
π ⎪2⎝
⎭, D .32π
⎛⎫π
⎪2⎝⎭
, 15.函数()sin 2cos 2f x x x =-的最小正周期是π
16.已知函数
)
2
sin(42cos 2ππ+

⎭⎫ ⎝⎛
-x x 。

(Ⅰ)求f (x )的定义域; (Ⅱ)若角a 在第一象限且)。

(求a f a ,5
3cos =
{x|x ≠k π-2
π
,k ∈Z} 14/5。

相关文档
最新文档