概率论与数理统计(复习)
概率论与数理统计考研复习资料

概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德•摩根律B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kkii i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX kk P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数). 2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(xx dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布 (1)X ~U (a,b) 区间(a,b)上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2)参数为μ,σ的正态分布222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0. 特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(zα)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布 1.若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=0y h y h f y f X Y其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布 一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性 0≤p i j ≤1 .(2)归一性∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y ,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y) 关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i·( i =1,2,…) 归一性11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p·j( j =1,2,…) 归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y ,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j= p i ··p ·j( i ,j =1,2,…)对一切x i ,y j成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X(x)f Y(y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称,}{},{jj i j j i p p y Y P y Y x X P ∙=====P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X)∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2D(X) . 2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/12 5.X 服从参数为θ的指数分布 θ θ2 6.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E {[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l}第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i XX n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i ki k X X n B 1)(1( k=1,2,…),}{},{∙=====i j i i j i p p x X P y Y x X P二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2/n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) .③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2Y S22则212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意:.).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p (x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,Xn的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧kθθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.文 - 汉语汉字 编辑词条文,wen ,从玄从爻。
概率论与数理统计总复习

概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。
随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。
2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。
6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。
例:从甲、乙两班各选一个代表。
②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。
概率论与数理统计总复习参考

定义7 (概率的统计定义) 定义8 (概率的公理化定义) 设试验E的样本
空间为Ω,对任意事件A,赋予一实数 P(A),若
它满足
非负性公理:0≤P(A) ≤1;
规范性公理:P(Ω)=1;
可列可加性公理:若A1, A2, …两两互斥, 则
P ( Ai ) P ( Ai ).
二、随机事件的关系与运算
1. 事件的关系
(1) 包含关系 若事件A发生必然导致事件B发生,则称事件A包含于B,
记为 A B.
(2) 互斥(互不相容): 若两个事件A、B不可能同时发生,则称事件A与B互斥 (互不相容). 必然事件与不可能事件互斥; 基本事件之间是互斥的.
2. 事件的运算
(1) 事件的并(和) 若C表示“事件A与事件B至少有一个发生”这一事件,
fY
(
y)
f
X
[h(
y)] | 0,
h(
y)
|,
y ,
其他.
第三章 二维随机变量及其分布
1. 二维随机变量
(X, Y ):X, Y 是定义在同一样本空间 上的两个随机变量.
2. 联合分布函数、性质 F(x, y) =P{X x, Y y}, (任意实数x, y).
3. 边缘分布函数 FX (x) = F(x, +), FY (y) = F(+, y).
P p1
p2 … pn …
注 :如果 g( xk ) 中有些项相同,则需将它们 作适当并项.
(2) 连续型随机变量函数的分布 (i) 定义法
FY ( y) P{Y y} P{g( X ) y}
{ x|g( x) y} f X ( x)dx.
概率论与数理统计复习资料

自考04183概率论与数理统计(经管类)笔记-自考概率论与数理统§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。
结论:随机现象是不确定现象之一。
2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。
E2:掷一枚骰子,观察出现的点数。
E3:记录110报警台一天接到的报警次数。
E4:在一批灯泡中任意抽取一个,测试它的寿命。
E5:记录某物理量(长度、直径等)的测量误差。
E6:在区间[0,1]上任取一点,记录它的坐标。
随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。
样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。
所有样本点的集合称为样本空间,记作。
举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。
3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。
只包含一个样本点的单点子集{}称为基本事件。
必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。
(1)事件的包含和相等包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。
性质:例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。
注:与集合包含的区别。
相等:若且,则称事件A与事件B相等,记作A=B。
(2)和事件概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。
《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题 1. 已知P(AB)?P(A),则A与B的关系是独立。
2.已知A,B互相对立,则A与B的关系是互相对立。
,B为随机事件,则P(AB)?。
P(A)?,P(B)?,P(A?B)?,4. 已知P(A)?,P(B)?,P(A?B)?,则P(A?B)?。
,B为随机事件,P(A)?,P(B)?,P(AB)?,则P(BA)?____。
36.已知P(BA)? ,P(A?B)?,则P(A)?2 / 7。
7.将一枚硬币重复抛掷3次,则正、反面都至少出现一次的概率为。
8. 设某教研室共有教师11人,其中男教师7人,现该教研室中要任选3名为优秀教师,则3名优秀教师中至少有1名女教师的概率为___26____。
339. 设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。
611110. 3人独立破译一密码,他们能单独译出的概率为,,,则此密码被译出的5343概率为______。
5后不放回,则第2次抽出的是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235Cp(1?p)7次成功的概率为______。
12. 已知3次独立重复试验中事件A至少成功一次的概率为1事件A成功的概率p?______。
319,则一次试验中27c35813.随机变量X能取?1,0,1,取这些值的概率为,c,c,则常数c?__。
24815k14.随机变量X 分布律为P(X?k)?,k?1,2,3,4,5,则P(X?3X?5 )?__。
15x??2,?0?X?(x)???2?x?0,是X的分布函数,则X分布律为__??pi?1x?0?0? ?__。
??2?0,x?0??16.随机变量X的分布函数为F(x)??sinx,0?x??,则2?1,x???2?P(X??3)?__3__。
217. 随机变量X~N(,1),P(X?3)?,P(X??)?__ 。
概率论与数理统计复习汇总

第二章:随机变量及其相关内容
基本概念:随机变量、分布律、概率密度、分布函数 随机变量:设随机试验的样本空间为 S = {e}, X = X (e) 是定义在样本空间 S 上的
实值单值函数,称 X = X (e) 为随机变量. ( 样本点到数的对应法则) 随机变量的分类:离散型随机变量和连续型随机变量(基于 r.v. 的取值类型) 离散型随机变量 取值为有限个或者无限可列个的随机变量 分布律 若 r.v. X 的取值为 x1, x2 , , xn , 对应概率值为 p1, p2 , , pn , ,即
(1) 任取一件产品为次品的概率是多少? (2) 已知取得的产品为次品,求此次品来自甲厂生产的概率是多少? 2. 人们为了了解一支股票未来一定时期内价格的变化,往往会去分析影响股票 价格的基本因素,比如利率的变化. 现假设人们经分析评估知利率下降的概率为 60%,利率不变的概率为 40%.根据经验,人们估计,在利率下调的情况下,该
一个划分.或者 B1, B2 , , Bn 为一个完备事件组.
全概率公式:设设 S 为随机试验 E 的样本空间, B1, B2, , Bn 为一个完备事件组,
则有 P( A) = P(B1)P( A B1) + P(B2 )P( A B2 ) + + P(Bn )P( A Bn )
Bi 称为原因, A 称为结果;全概率公式由原因找结果; 贝叶斯公式: 由结果找造成的原因
运算规律:德摩根律 AB = A ∪ B; A ∪ B = AB
加法原理: n1 + n2 + + nm (分类),乘法原理: n1 ⋅ n2 ⋅ ⋅ nm (分步)
概率论与数理统计复习

一般正态分布的标准化
定理 设 X ~ N(, 2), 则 Y ~ N(0, 1).
Y X ,
结论:
若 X ~ N(, 2),
则
F(x)
x
例
设 X ~ N(10, 4),
求 P(10<X<13), P(|X10|<2).
解: P(10<X<13) = (1.5)(0) = 0.9332 0.5 = 0.4332
第一章 随机事件与概率
1、随机事件的表示, 由简单事件的运算表达复杂事件; 2、概率的运算性质,如加法公式,减 法公式,乘法公式等; 3、条件概率公式,全概率公式,贝叶 斯公式; 4、事件独立性定义
例. 试用A、B、C 表示下列事件:
① A 出现; A ② 仅 A 出现;ABC ③ 恰有一个出现;ABC ABC ABC
条件概率 乘法公式
全概率公式的例题
• 甲口袋有a只白球、b只黑球;乙口袋有n只白球、 m只黑球. 从甲口袋任取一球放入乙口袋,然后 从乙口袋中任取一球,求从乙口袋中取出的是白 球的概率.
• 概率为:
a n1 b n ab nm1 ab nm1
已知“结果” ,求“原 因”
第二章 随机变量及其分布
1、会由随机变量的已知分布律或密度函数求出 其分布函数; 2、六种重要分布的分布律和密度函数; 3、有关正态分布的概率计算; 4、会求随机变量函数的分布;
一、分布函数、分布律、密度函数、概率之间关系
例 已知 X 的分布列如下:
X0 1 2 P 1/3 1/6 1/2
求 X 的分布函数.
f
X
(h(
y)) | 0,
大学概率论与数理统计复习资料

知识点:概率的性质事件运算古典概率常用公式(2)P(A BP P(A) P(B)- P(AB)(加法定理)nnP(U A) Y p(A)i d innP(U A)=l-n [1-P(A)]i di d(3) P(B/A)二 P(AB)/P(A) (4)P(AB)二 P(A)P(B/A)二P(B)P(A/B) P(AB)二 P(A)P(B) (A 与B 独立时)P(AB)二0(A,B 互不相容时)(5) P (A- Bp P(ABp P(A)- P(AB)P(A- B)二 P(AB)二 P(A) - P(B)(当B A 时)n(6) P (B)八 P(A i )P(B/A i )(全概率公式)i=1(其中A ,,A 2 A n 为"的一个划分,且P(A i 0)) (7) P (A /B) = nP(A)P(B/A)(逆概率公式)迟 P(A i )P(B/A)事件的独立性条件概率全概率与贝叶斯公式(1)P(Ap r/nP(AP L(A)/L(S)(设A,4…A 两两互斥,有限可加性)(A ,4, A 相互独立时)i =1应用举例1、已知事件A, B 满足P(AB) = P(AB),且P(A) = 0.6 ,贝卩P(B)=()。
2、已知事件A,B 相互独立,P(A) =k, P(B) =0.2, P(0 B)=0.6,贝k - ()。
3、已知事件A,B 互不相容,P(A) =0.3, P(B) = 0.5,则 P(A B)=()。
4、若P(A) =0.3, P(B)=0.4 ,P(AB) = 0.5, P(BA B)=( )。
5、A, B,C是三个随机事件,C B,事件AUC - B与A的关系是6、5张数字卡片上分别写着1, 2, 3, 4, 5,从中任取3张,某日他抛一枚硬币决定乘地铁还是乘汽车。
(1 )试求他在5:40〜5:50到家的概率;(2)结果他是5:47到家的。
试求他是乘地铁回家的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填充题
1、设A、B、C表示三个随机事件,用A、B、C及其运算符号可将事件“事件A、B、C中至少有一个事
件发生”表示为;“恰有一个事件发生”表示为。
2、一袋中有20个红球,5个黑球,有放回取球,每次取1个球,共取3次,取到1个黑球的概率为;
至少1个黑球概率为。
3、已知P(A)=0.6,P(B)=0.5,P(A|B)=0.7,则P(A⋃B)= ;P(B|A)= 。
4、设随机变量X的数学期望E(X)=1,方差D(X)=4,则E(2X-1)= ;D(2X-1) = 。
5、设随机变量X服从正态分布N(2,1),Y服从正态分布N(1,4),且X,Y相互独立,则随机变量X+Y服从
正态分布;X-Y服从正态分布。
二、一袋中有6个黑球与4个白球,任取3个球,求
1)有2个白球的概率;2)有黑球的概率。
三、某人投篮命中率为p(0<p<1),共投篮5次,设X表示投篮命中的次数,求X的概率分布。
四、发报机分别以0.6与0.4的概率发出信号“•”与“-”。
当发报机发出信号“•”时,接收机分别以0.9
与0.1的概率收到信号“•”与“-”;当发报机发出信号“-”时,接收机分别以0.8与0.2的概率收到信号“-”与“•”。
求
1)接收机收到信号“•”的概率;2)当接收机收到信号“•”时,发报机确实发出信号是“•”的概率。
五、设随机变量X的密度函数
,01 ()
0,
kx x
f x
<≤
⎧
=⎨
⎩其它
,求
1)常数k;2)随机变量X的数学期望E(X)与方差D(X);3)随机变量X的分布函数;4)随机变量Y=X3的概率密度函数。
六、设二维随机变量(X,Y)的密度函数
1
(24),01,01 (,)3
0,
x y x y
f x y
⎧
+≤≤≤≤
⎪
=⎨
⎪⎩其它
,求
1)P(X+Y≤1);2)随机变量X与Y的边缘概率密度函数;3)随机变量X与Y是否独立。
七、设总体X服从泊松分布P(λ),X1,X2,…,X n是取自总体X的n个样本,求未知参数λ的极大似然估计量。
八、用自动包装机包装食糖,每袋为1000克。
设每袋食糖的重量X服从正态分布,为了检验包装机的工
作是否正常,随机抽取10袋包装机自动包装的面粉检验,称其重量,样本平均值1002
X=,样本方
差221.1
n
S=,问该自动包装机是否正常工作(取α=0.05)。
{t0.025(10)=2.2281;t0.025(9)=2.2622;t0.05(10)=1.8125;t0.05(9)=1.8331}
一、填充题
1、设A 、B 、C 表示三个随机事件,用A 、B 、C 及其运算符号可将事件“事件A 、B 、C 中至少有两个事件发生”表示为 ;“A 、B 、C 中恰有一个事件不发生表示为 。
2、一袋中有6个黑球与4个白球,任取3个球,则有2个黑球的概率为 ;至少有1个白球概率为 。
3、设P (A )=0.6,P (B |A )=0.7,则P (AB ) = ;P (A -B ) = 。
4、设随机变量X 与Y 独立,已知E (X )=1,E (Y )=3,D (X )=2,D (Y )=1,则E (3X -Y+1) = ;D (3X -Y+1)= 。
5、设随机变量X 服从正态分布N (1,2),Y 服从正态分布N (-2,1),且X ,Y 相互独立,则随机变量X +Y 服从正态分布 ;X -Y 服从正态分布 。
二、一套书有6册,随机安放在书架上,求
1)第1册与第2册相邻的概率;2)第1册与第2册不在两边的概率。
三、一袋中有6个黑球与4个白球,任取5个球,设X 表示取到的白球数,求X 的概率分布。
四、某公司有甲乙两个产品加工厂,产量分别为60%与40%,甲厂的次品率为2%,乙厂的次品率为1%,
现一顾客在商场买该公司一产品。
求
1)这一产品是次品的概率;2)当这一产品是次品时,这一次品是由甲厂生产的概率。
五、设随机变量X 的密度函数2(1),01()0
,C x x f x ⎧-<≤=⎨⎩其它,求 1)常数C ;2)随机变量X 的数学期望E (X )与方差D (X );3)随机变量X 的分布函数。
六、设二维随机变量(X ,Y )的密度函数4,01,01(,)0,xy x y f x y ≤≤≤≤⎧=⎨⎩其它
,求
1)P (X +Y ≤1);2)随机变量X 与Y 的边缘概率密度函数;3)随机变量X 与Y 是否独立。
七、设总体X 服从指数分布e (λ),X 1,X 2,…,X n 是取自总体X 的n 个样本,求未知参数λ的矩估计量。
八、设某一食品每公斤维生素C 含量X 服从正态分布,现抽查10包该食品(每包1公斤)检查维生素C
含量,得到维生素C 含量的样本平均值11.2X =克,样本方差2
26.2S =,求维生素C 含量的置信度为0.95的置信区间。
(10分)
{t 0.025(10)=2.2281;t 0.025(9)=2.2622;t 0.05(10)=1.8125;t 0.05(9)= 1.8331}。