(新课标人教版)山东省枣庄市薛城区2019-2020学年九年级下期中数学测试卷(附详细答案)

合集下载

山东省枣庄市薛城区2019届九年级下学期期中考试数学考试试题(无答案)

山东省枣庄市薛城区2019届九年级下学期期中考试数学考试试题(无答案)

期中诊断性测评九年级数学试题亲爱的同学: 2019.04请你认真仔细....审题,沉着..、静心..、尽心..、诚实..应答,相信你一定会有出色的表现! 请注意:1.选择题答案用铅笔涂在答题卡上,如不用答题卡,请将答案填在表格里.2.填空题、解答题不得用铅笔或红色笔填写.3.考试时,不允许使用科学计算器.4.试卷分值:120分.第Ⅰ卷(选择题:共36分)一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题3分,共36分. 1.13-的倒数是( )A.3B.3-C.13 D.13- 2.下列计算正确的是( )A.235a a a +=B.236a a a ⋅=C.()22a b a ab b -=-+D.()326a a =3.如图,在平行线1l 、2l 之间放置一块直角三角板,三角板的锐角顶点,A B 分别在直线1l 、2l 上,若165∠=︒,则2∠的度数是( )A.25︒B.35︒C.45︒D.65︒4.实数,,a b c 在数轴上的对应点的位置如图所示,则正确的结论是( )A.4a >B.0a b +>C.0c b ->D.0ac >5.()01k -有意义,则一次函数()11y k x k =-+-的图象可能是( ) A. B. C. D.6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60︒,90︒,210︒.让转盘自由转动,指针停止后落在黄色区域的概率是( )A.16B.14C.13D.7127.如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )A.()2222a b a ab b -=-+B.()2a ab a ab -=- C.()222a b a b -=- D.()()22a b a b a b -=-+ 8.如图,90ACB ∠=︒ ,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别是点,,3D E AD =,1BE =,则DE 的长是( )A.32B.2C.9.如果a b =+222a b a b a a b⎛⎫+-⋅ ⎪-⎝⎭的值为( )B. C. D.10.如图,O e 的半径为5,AB 为弦,点C 为¶AB 的中点,若30ABC ∠=︒,则弦AB 的长为( )A.12B.5C.2D.11.如图,将矩形ABCD 的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH ,12EH cm =,16EF cm =,则边AD 的长是( )A.12cmB.16cmC.20cmD.28cm 12.如图是二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)图象的一部分,与x 轴的交点A 在点()2,0和()3,0之间,对称轴是1x =.对于下列说法:①0ab <;②20a b +=;③30a c +>;④()a b m am b +≥+(m 为实数);⑤当13x -<<时,0y >,其中正确的是( )A.②③④B.①②⑤C.①②④D.③④⑤第Ⅱ卷(共84分)二、填空题(每小题4分,共24分)13.因式分解3222a a b ab -+= .14.已知关于x 的分式方程211m x -=+的解是非正数,则m 的取值范围是 . 15.如图,ABCDEF 为O e 的内接正六边形,2AB =,则图中阴影部分的面积是 .16.将全体正奇数排成一个三角形数阵13 513 15 17 1921 23 25 27 29… … … … … …根据以上排列规律,数阵中第25行的第20个数是 .17.已知正方形ABCD 的边长为5,点,E F 分别在,AD DC 上,2AE DF ==,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 .18.如图1,点F 从菱形ABCD 的顶点A 出发,沿A D B →→以1/cm s 的速度匀速运动到点B ,图2是点F 运动时,FBC V 的面积()2y cm 随时间()x s 变化的关系图象,则a 的值为 .三、解答题(共7道大题,满分60分)19.1122cos603-⎛⎫--︒+- ⎪⎝⎭ 20.在平面直角坐标系xOy 中,点()00,P x y 到直线()2200Ax By C A B ++=+≠的距离公式为:d =.例如,求点()1,3P 到直线4330x y +-=的距离.解:由直线4330x y +-=知:4A =,3B =,3C =-所以()1,3P 到直线4330x y +-=的距离为:2d ==根据以上材料,解决下列问题:(1)求点()10,0P 到直线3450x y --=的距离.(2)若点()21,0P 到直线0x y C ++=,求实数C 的值. 21.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有 人;(2)扇形统计图中,扇形E 的圆心角度数是 ;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.22.如图,在平面直角坐标系中,Rt AOB △的斜边OA 在x 轴的正半轴上,90OBA ∠=︒,且1tan 2AOB =∠,OB =k y x=的图象经过点B .(1)求反比例函数的表达式;(2)若AMB △与AOB △关于直线AB 对称,一次函数y mx n =+的图象过点M 、A ,求一次函数的表达式.23.如图,AB 是O e 的直径,4AB =,点,F C 是O e 上两点,连接,,AC AF OC ,弦AC 平分FAB ∠,60BOC ∠=︒,过点C 作CD AF ⊥交AF 的延长线于点D ,垂足为点D .(1)求扇形OBC 的面积(结果保留2个有效数字);(2)求证:CD 是O e 的切线.24.一节数学课上,老师提出了这样一个问题:如图1,点P 是正方形ABCD 内一点,1PA =,2PB =,3PC =.你能求出APB ∠的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将BPC △绕点B 逆时针旋转90︒,得到BP A '△,连接PP ',求出APB ∠的度数;思路二:将APB △绕点B 顺时针旋转90︒,得到CP B '△,连接PP ',求出APB ∠的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P 是正方形ABCD 外一点,3PA =,1PB =,PC =APB ∠的度数.25.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++≠与y 轴交与点()0,3C ,与x 轴交于A 、B 两点,点B 坐标为()4,0,抛物线的对称轴方程为1x =.(1)求抛物线的解析式; (2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,设MBN △的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值;(3)在点M 运动过程中,是否存在某一时刻t ,使MBN △为直角三角形?若存在,求出t 值;若不存在,请说明理由.。

山东省枣庄市九年级下学期期中数学试卷

山东省枣庄市九年级下学期期中数学试卷

山东省枣庄市九年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2020八下·东台月考) 在式子,,,), 和中,是二次根式的有()A . 3个B . 4个C . 5个D . 6个2. (2分)如图圆锥的高AO为12,母线AB长为13,则该圆锥的侧面积等于()A . 32.5πB . 60πC . 65πD . 156π3. (2分) (2019八下·大连月考) 如图,在平行四边形ABCD中,∠A:∠B=3:2,则∠D的度数为()A . 60B . 72°C . 80°D . 108°4. (2分)(2020·三门模拟) 如图,在平行四边形ABCD中,点E在AD上,∠ABE=20°,∠BED=∠BCD,则∠D的度数为()A . 70°B . 75°C . 80°D . 85°5. (2分)下列说法正确的是()A . 所有的整数都是正数B . 不是正数的数一定是负数C . 0是最小的有理数D . 整数和分数统称有理数6. (2分) (2019九下·温州模拟) 如图,矩形 OABC 的顶点 O 在坐标原点,顶点 A,C 分别在 x,y 轴的正半轴上,顶点 B 在反比例函数 y = (k 为常数,k>0,x>0)的图象上,将矩形 OABC 绕点 B 逆时针方向旋转90°得到矩形BC‘O’A‘,点 O 的对应点O'恰好落在此反比例函数图象上.延长A’O‘,交 x轴于点 D,若四边形C’ADO‘ 的面积为 2,则 k 的值为()A . +1B . -1C . 2 +2D . 2 -27. (2分) (2020八下·瑞安期末) “勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在中,,分别以的三条边为边向外作正方形,连结,,,分别与,相交于点P,Q.若,则的值为()A .B .C .D .8. (2分)(2020·通辽) 从下列命题中,随机抽取一个是真命题的概率是()⑴无理数都是无限小数;⑵因式分解;⑶棱长是的正方体的表面展开图的周长一定是;⑷弧长是,面积是的扇形的圆心角是.A .B .C .D . 19. (2分) (2017九上·郑州期中) 如果ab>0,a+b<0,那么下面各式:① ,② =1,③ ÷ =﹣b,其中正确的是()A . ①②B . ②③C . ①③D . ①②③10. (2分)下列命题,其中正确命题的个数为()(1)等边三角形是中心对称图形;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)两条对角线互相垂直的矩形是正方形;(4)两条对角线互相垂直的四边形是菱形.A . 1个B . 2个C . 3个D . 4个11. (2分)如图,△ABC内接于⊙O,∠A=60°,BC=6 ,则的长为()A . 2πB . 4πC . 8πD . 12π12. (2分)(2020·河北模拟) 如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH交于点G,则下列结论:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△CHD;④∠AHB=∠EHD。

山东省枣庄市市中区2020届九年级下学期期中网络教学质量检测数学试题

山东省枣庄市市中区2020届九年级下学期期中网络教学质量检测数学试题
13.-1;14.37;15. ;16.8;17.5;18. .
三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程和演算步骤.
19.解:原式
解不等式组得:
整数解为:
当 ,原式
20.解:(1)6;(2)144;(3)100;
(4) 的两名同学用 表示, 的两名同学用 表示(小明用 表示),
23.如图,在四边形 中, , ,对角线 交于点 , 平分 ,过点 作 交 延长线于点 ,连接 .
(1)求证:四边形 是菱形;(2)若 ,求 的长.
24.如图所示,以 的边 为直径作 ,点 在 上, 是 的弦, ,过点 作 于点 ,交 于点 ,过点 作 交 的延长线于点 .
(1)求证: 是 的切线;(2)求证: ;
15.如图, 内接 , 的角平分线交 于 .若 ,则 的长为.
16.若关于 的一元一次不等式组 有2个负整数解,则 的取值范围是.
17.在平面直角坐标系中,四边形 为矩形,且点 坐标为 , 为 中点,反比例函数 ( 是常数, )的图象经过点 ,交 于点 ,则 的长度是.
18.如图,在平面直角坐标系 中,菱形 的边长为2,点 在第一象限,点 在 轴正半轴上, ,若将菱形 绕点 顺时针旋转75°,得到四边形 ,则点 的对应点 的坐标为.
①当四边形 为菱形时,求点 的坐标;
②点 的横坐标为 ,当 为何值时,四边形 的面积最大,请说明理由.
九年级数学试卷答案
一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题3分,共36分.
题号
1
2
3
4
5
6
7
8
9
10

2019-2020年九年级(下)期中数学试卷(I)

2019-2020年九年级(下)期中数学试卷(I)

2019-2020年九年级(下)期中数学试卷(I)一、选择题(共8小题,每小题3分,满分24分)1.的相反数是()A. B.xx C.﹣D.﹣xx2.计算(﹣3)2的结果是()A.﹣6 B.6 C.﹣9 D.93.下列计算正确的是()A.a2+a2=a4B.(a2)3=a5 C.2a﹣a=2 D.(ab)2=a2b24.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A.B. C.D.5.以下图形既是轴对称图形,又是中心对称图形的是()A.等腰三角形B.平行四边形C.矩形 D.等腰梯形6.已知圆锥的母线长为3,底面的半径为2,则圆锥的侧面积是()A.4πB.6πC.10πD.12π7.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是()A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.48.如图,在矩形ABCD中,AB=3,将△ABD沿对角线BD对折,得到△EBD,DE与BC 交于点F,∠ADB=30°,则EF=()A. B.2 C.3 D.3二、填空题.(共8小题,每小题3分,满分24分)9.根据相关部门统计,xx年我国共有9390000名学生参加高考,9390000用科学记数法表示为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m n(填“>”“<”或“=”号).11.分解因式:2x2﹣2=.12.函数中自变量x的取值范围是.13.如图,在△ABC中,若E是AB的中点,F是AC的中点,∠B=50°,则∠AEF=.14.如图,已知A、B、C三点都在⊙O上,∠AOB=60°,∠ACB=.15.在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为.16.如图,按此规律,第6行最后一个数字是,第行最后一个数是xx.三、解答题(17~19每题6分,20~23每题8分,24~25每题10分,26题12分,共82分)17.计算:(1﹣)0+(﹣1)xx﹣tan30°+()﹣2.18.解方程组.19.在13×13的网格图中,已知△ABC和点M(1,2).(1)以点M为位似中心,位似比为2,画出△ABC的位似图形△A′B′C′;(2)写出△A′B′C′的各顶点坐标.20.林城市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)请将条形统计图补充完整;(3)如果全市有16万名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?21.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型81380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.22.某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援.当飞机到达距离海面3000米的高空C处,测得A处渔政船的俯角为60°,测得B处发生险情渔船的俯角为30°,请问:此时渔政船和渔船相距多远?(结果保留根号)23.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.24.先阅读,后解答:===3+像上述解题过程中,﹣与+相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是;+2的有理化因式是.(2)将下列式子进行分母有理化:=;=.(3)已知a=,b=2﹣,比较a与b的大小关系.25.如图,已知抛物线经过点A(4,0),B(0,4),C(6,6).(1)求抛物线的表达式;(2)证明:四边形AOBC的两条对角线互相垂直;(3)在四边形AOBC的内部能否截出面积最大的▱DEFG?(顶点D,E,F,G分别在线段AO,OB,BC,CA上,且不与四边形AOBC的顶点重合)若能,求出▱DEFG的最大面积,并求出此时点D的坐标;若不能,请说明理由.26.如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:(1)当t为何值时,P,Q两点同时停止运动?(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;(3)当△PQB为等腰三角形时,求t的值.xx学年湖南省郴州市湘南中学九年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.的相反数是()A. B.xx C.﹣D.﹣xx【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:的相反数是﹣,故选:C.2.计算(﹣3)2的结果是()A.﹣6 B.6 C.﹣9 D.9【考点】有理数的乘方.【分析】根据有理数的乘方运算,乘方的运算可以利用乘法的运算来进行.【解答】解:(﹣3)2=(﹣3)×(﹣3)=9.故选:D.3.下列计算正确的是()A.a2+a2=a4B.(a2)3=a5 C.2a﹣a=2 D.(ab)2=a2b2【考点】幂的乘方与积的乘方;合并同类项.【分析】结合选项分别进行幂的乘方和积的乘方、合并同类项等运算,然后选择正确选项.【解答】解:A、a2+a2=2a2,原式错误,故本选项错误;B、(a2)3=a6,原式错误,故本选项错误;C、2a﹣a=a,原式错误,故本选项错误;D、(ab)2=a2b2,原式正确,故本选项正确.故选D.4.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A.B. C.D.【考点】简单几何体的三视图.【分析】分别分析四个选项的主视图、左视图、俯视图,从而得出都是正方体的几何体.【解答】解:A、正方体的主视图、左视图、俯视图都正方形,符合题意;B、圆柱的主视图、左视图都是矩形、俯视图是圆,不符合题意;C、圆锥主视图、左视图都是等腰三角形,俯视图是圆和圆中间一点,不符合题意;D、球的主视图、左视图、俯视图都是圆,不符合题意.故选A.5.以下图形既是轴对称图形,又是中心对称图形的是()A.等腰三角形B.平行四边形C.矩形 D.等腰梯形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,也是轴对称图形;D、不是中心对称图形,是轴对称图形.故选:C.6.已知圆锥的母线长为3,底面的半径为2,则圆锥的侧面积是()A.4πB.6πC.10πD.12π【考点】圆锥的计算.【分析】根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【解答】解:圆锥的侧面积=•2π•2•3=6π.故选:B.7.某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是()A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.4【考点】中位数;算术平均数.【分析】根据平均数公式求解即可,即用所有数据的和除以5即可;5个数据的中位数是排序后的第三个数.【解答】解:8,9,8,7,10的平均数为×(8+9+8+7+10)=8.4.8,9,8,7,10排序后为7,8,8,9,10,故中位数为8.故选B.8.如图,在矩形ABCD中,AB=3,将△ABD沿对角线BD对折,得到△EBD,DE与BC 交于点F,∠ADB=30°,则EF=()A. B.2 C.3 D.3【考点】翻折变换(折叠问题).【分析】利用翻折变换的性质得出:∠1=∠2=30°,进而结合锐角三角函数关系求出FE的长.【解答】解:如图所示:由题意可得:∠1=∠2=30°,则∠3=30°,可得∠4=∠5=60°,∵AB=DC=BE=3,∴tan60°===,解得:EF=.故选:A.二、填空题.(共8小题,每小题3分,满分24分)9.根据相关部门统计,xx年我国共有9390000名学生参加高考,9390000用科学记数法表示为9.39×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9390000用科学记数法表示为9.39×106,故答案为:9.39×106.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m<n(填“>”“<”或“=”号).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到﹣1•m=k,﹣2•n=k,解得m=﹣k,n=﹣,然后利用k>0比较m、n的大小.【解答】解:∵P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,∴﹣1•m=k,﹣2•n=k,∴m=﹣k,n=﹣,而k>0,∴m<n.故答案为:<.11.分解因式:2x2﹣2=2(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).12.函数中自变量x的取值范围是x≥2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.如图,在△ABC中,若E是AB的中点,F是AC的中点,∠B=50°,则∠AEF=50°.【考点】三角形中位线定理.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC,再根据两直线平行,同位角相等可得∠AEF=∠B.【解答】解:∵E是AB的中点,F是AC的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠AEF=∠B=50°.故答案为:50°.14.如图,已知A、B、C三点都在⊙O上,∠AOB=60°,∠ACB=30°.【考点】圆周角定理.【分析】由∠ACB是⊙O的圆周角,∠AOB是圆心角,且∠AOB=60°,根据圆周角定理,即可求得圆周角∠ACB的度数.【解答】解:如图,∵∠AOB=60°,∴∠ACB=∠AOB=30°.故答案是:30°.15.在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为.【考点】列表法与树状图法;完全平方式.【分析】先画树状图展示所有四种等可能的结果数,再根据完全平方式的定义得到“++”和“﹣+”能使所得的代数式为完全平方式,然后根据概率公式求解.【解答】解:画树状图为:共有四种等可能的结果数,其中“++”和“﹣+”能使所得的代数式为完全平方式,所以所得的代数式为完全平方式的概率==.故答案为.16.如图,按此规律,第6行最后一个数字是16,第672行最后一个数是xx.【考点】规律型:数字的变化类.【分析】每一行的最后一个数字分别是1,4,7,10…,易得第n行的最后一个数字为1+3(n﹣1)=3n﹣2,由此求得第6行最后一个数字,建立方程求得最后一个数是xx在哪一行.【解答】解:每一行的最后一个数分别是1,4,7,10…,第n行的最后一个数字为1+3(n﹣1)=3n﹣2,∴第6行最后一个数字是3×6﹣2=16;3n﹣2=xx解得n=672.因此第6行最后一个数字是16,第672行最后一个数是xx.故答案为:16,672.三、解答题(17~19每题6分,20~23每题8分,24~25每题10分,26题12分,共82分)17.计算:(1﹣)0+(﹣1)xx﹣tan30°+()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,乘方的意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+1﹣1+9=10.18.解方程组.【考点】解二元一次方程组.【分析】根据y的系数互为相反数,利用加减消元法求解即可.【解答】解:,①+②得,4x=20,解得x=5,把x=5代入①得,5﹣y=8,解得y=﹣3,所以方程组的解是.19.在13×13的网格图中,已知△ABC和点M(1,2).(1)以点M为位似中心,位似比为2,画出△ABC的位似图形△A′B′C′;(2)写出△A′B′C′的各顶点坐标.【考点】作图-位似变换.【分析】(1)利用位似图形的性质即可位似比为2,进而得出各对应点位置;(2)利用所画图形得出对应点坐标即可.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)△A′B′C′的各顶点坐标分别为:A′(3,6),B′(5,2),C′(11,4).20.林城市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)请将条形统计图补充完整;(3)如果全市有16万名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据扇形统计图专注听讲的百分比与条形统计图中专注听讲的人数,列式计算即可;(2)用被抽查的学生人数减去主动质疑、独立思考、专注听讲的人数,求出讲解题目的人数,然后补全统计图即可;(3)用独立思考的学生的百分比乘以16万,进行计算即可得解.【解答】解:(1)224÷40%=560名;(2)讲解题目的学生数为:560﹣84﹣168﹣224=560﹣476=84,补全统计图如图;(3)×16=4.8万,答:在试卷讲评课中,“独立思考”的学生约有4.8万人.21.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型81380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.【考点】一元一次不等式组的应用.【分析】(1)设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据企业最多支出89万元购买设备,要求月处理污水能力不低于1380吨,列出不等式组,然后找出最合适的方案即可.(2)计算出每一方案的花费,通过比较即可得到答案.【解答】解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,解这个不等式组,得:2.5≤x≤4.5.∵x是整数,∴x=3或x=4.当x=3时,8﹣x=5;当x=4时,8﹣x=4.答:有2种购买方案:第一种是购买3台A型污水处理设备,5台B型污水处理设备;第二种是购买4台A型污水处理设备,4台B型污水处理设备;(2)当x=3时,购买资金为12×3+10×5=86(万元),当x=4时,购买资金为12×4+10×4=88(万元).因为88>86,所以为了节约资金,应购污水处理设备A型号3台,B型号5台.答:购买3台A型污水处理设备,5台B型污水处理设备更省钱.22.某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援.当飞机到达距离海面3000米的高空C处,测得A处渔政船的俯角为60°,测得B处发生险情渔船的俯角为30°,请问:此时渔政船和渔船相距多远?(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△CDB中求出BD,在Rt△CDA中求出AD,继而可得AB,也即此时渔政船和渔船的距离.【解答】解:在Rt△CDA中,∠ACD=30°,CD=3000米,∴AD=CDtan∠ACD=1000米,在Rt△CDB中,∠BCD=60°,∴BD=CDtan∠BCD=3000米,∴AB=BD﹣AD=xx米.答:此时渔政船和渔船相距xx米.23.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【考点】全等三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的对边相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠ABD=∠CDB,然后求出∠ABE=∠CDF,再利用“边角边”证明△ABE和△CDF 全等,根据全等三角形对应边相等证明即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.24.先阅读,后解答:===3+像上述解题过程中,﹣与+相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是;+2的有理化因式是﹣2.(2)将下列式子进行分母有理化:=;=1﹣.(3)已知a=,b=2﹣,比较a与b的大小关系.【考点】分母有理化;实数大小比较.【分析】(1)根据题意找出各式的有理化因式即可;(2)各式分母有理化即可;(3)把a分母有理化,比较即可.【解答】解:(1)的有理化因式是, +2的有理化因式是﹣2;故答案为:;﹣2;(2)原式=;原式==1﹣;故答案为:;1﹣;(3)a==2﹣=b.25.如图,已知抛物线经过点A(4,0),B(0,4),C(6,6).(1)求抛物线的表达式;(2)证明:四边形AOBC的两条对角线互相垂直;(3)在四边形AOBC的内部能否截出面积最大的▱DEFG?(顶点D,E,F,G分别在线段AO,OB,BC,CA上,且不与四边形AOBC的顶点重合)若能,求出▱DEFG的最大面积,并求出此时点D的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线经过点A(4,0),B(0,4),C(6,6),利用待定系数法,求出抛物线的表达式即可;(2)利用两点间的距离公式分别计算出OA=4,OB=4,CB=2,CA=2,则OA=OB,CA=CB,根据线段垂直平分线定理的逆定理得到OC垂直平分AB,所以四边形AOBC的两条对角线互相垂直;(3)如图2,利用两点间的距离公式分别计算出AB=4,OC=6,设D(t,0),根据平行四边形的性质四边形DEFG为平行四边形得到EF∥DG,EF=DG,再由OC垂直平分AB得到△OBC与△OAC关于OC对称,则可判断EF和DG为对应线段,所以四边形DEFG为矩形,DG∥OC,则DE∥AB,于是可判断△ODE∽△OAB,利用相似比得DE=t,接着证明△ADG∽△AOC,利用相似比得DG=(4﹣t),所以矩形DEFG的面积=DE•DG=t•(4﹣t)=﹣3t2+12t,然后根据二次函数的性质求平行四边形DEFG的面积的最大值,从而得到此时D点坐标.【解答】解:(1)设该抛物线的解析式为y=ax2+bx+c,根据题意得,解得,∴抛物线的表达式为y=x2﹣x+4;(2)如图1,连结AB、OC,∵A(4,0),B(0,4),C(6,6),∴OA=4,OB=4,CB==2,CA==2,∴OA=OB,CA=CB,∴OC垂直平分AB,即四边形AOBC的两条对角线互相垂直;(3)能.如图2,AB==4,OC==6,设D(t,0),∵四边形DEFG为平行四边形,∴EF∥DG,EF=DG,∵OC垂直平分AB,∴△OBC与△OAC关于OC对称,∴EF和DG为对应线段,∴四边形DEFG为矩形,DG∥OC,∴DE∥AB,∴△ODE∽△OAB,∴=,即=,解得DE=t,∵DG∥OC,∴△ADG∽△AOC,∴=,即=,解得DG=(4﹣t),∴矩形DEFG的面积=DE•DG=t•(4﹣t)=﹣3t2+12t=﹣3(t﹣2)2+12,当t=2时,平行四边形DEFG的面积最大,最大值为12,此时D点坐标为(2,0).26.如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:(1)当t为何值时,P,Q两点同时停止运动?(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;(3)当△PQB为等腰三角形时,求t的值.【考点】四边形综合题.【分析】(1)通过比较线段AB,BC的大小,找出较短的线段,根据速度公式可以直接求得;(2)由已知条件,把△PQB的边QB用含t的代数式表示出来,三角形的高可由相似三角形的性质也用含t的代数式表示出来,代入三角形的面积公式可得到一个二次函数,即可求出S的最值;(3)根据等腰三角形的性质和余弦公式列出等式求解,即可求的结论.【解答】解:(1)作CE⊥AB于E,∵DC∥AB,DA⊥AB,∴四边形AECD是矩形,∴AE=CD=5,CE=AD=4,∴BE=3,∴BC=,∴BC<AB,∴P到C时,P、Q同时停止运动,∴t=(秒),即t=5秒时,P,Q两点同时停止运动.(2)由题意知,AQ=BP=t,∴QB=8﹣t,作PF⊥QB于F,则△BPF~△BCE,∴,即,∴BF=,∴S=QB•PF=×(8﹣t)==﹣(t﹣4)2+(0<t≤5),∵﹣<0,∴S有最大值,当t=4时,S的最大值是;(3)∵cos∠B=,①当PQ=PB时(如图2所示),则BG=BQ,==,解得t=s,②当PQ=BQ时(如图3所示),则BG=PB,==,解得t=s,③当BP=BQ时(如图4所示),则8﹣t=t,解得:t=4.综上所述:当t=s,s或t=4s时,△PQB为等腰三角形.xx年11月23日。

山东省枣庄市九年级下学期期中数学试卷

山东省枣庄市九年级下学期期中数学试卷

山东省枣庄市九年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2020七下·景县期中) 下列说法中错误的有()①一个无理数与一个有理数的和是无理数②一个无理数与一个有理数的积是无理数③两个无理数和是无理数④两个无理数积是无理数.A . 1个B . 2个C . 3个D . 4个2. (2分)下列由左到右变形,属于因式分解的是()A . (2x+3)(2x﹣3)=4x2﹣9B . 4x2+18x﹣1=4x(x+2)﹣1C . (a﹣b)2﹣9=(a﹣b+3)(a﹣b﹣3)D . (x﹣2y)2=x2﹣4xy+4y23. (2分)(2011·义乌) 下列图形中,中心对称图形有()A . 4个B . 3个C . 2个D . 1个4. (2分)如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()A . 6cmB . 8cmC . 10cmD . 12cm5. (2分)(2020·鹤岗) 已知是关于的一元二次方程的一个实数根,则实数的值是()A . 0B . 1C . −3D . −16. (2分) (2019八下·三原期末) 如图,在中,,,,延长到点E,使,交于点F,在上取一点G,使,连接 .有以下结论:① 平分;② ;③ 是等边三角形;④,则正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共7分)7. (1分) (2018九上·渝中开学考) 若,则的值为________.8. (1分) (2017八上·李沧期末) 市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合适的人选是________.甲乙丙丁平均数8.28.08.08.2方差 2.1 1.8 1.6 1.49. (1分) (2017九上·天门期中) 已知抛物线y=ax2-3x+c(a≠0)经过点(-2,4),则4a+c-1=________.10. (1分) (2019九上·成都月考) 在如图所示的正方形网格中,A、B、C都是小正方形的顶点,经过点A 作射线CD,则cos∠DAB的值等于________.11. (2分) (2019七上·南浔月考) 下图中的程序表示,输入一个整数便会按程序进行计算.设输入的值为,那么根据程序,第次计算的结果是;第次计算的结果是,这样下去第5次计算的结果是________,第2019次计算的结果是________.12. (1分) (2017八上·乐清期中) 把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是________cm2 .三、解答题 (共11题;共93分)13. (5分) (2020七上·乾安期中) 已知a、b互为相反数,c、d互为倒数,m的绝对值是,求:的值.14. (5分) (2020八下·邯郸月考) 当时,求代数式的值.15. (5分)(2017·仪征模拟) 甲、乙两个公司为某敬老院各捐款300000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐款20元.则甲、乙两公司各有多少元?16. (5分)(2020·广州模拟) 如图,在△ABC中,AB=BC,点E为AC的中点,且∠DCA=∠ACB,DE的延长线交AB于点F.求证:ED=EF.17. (5分)小明和小红在讨论两个事件,小明说“中央电视台天气预报说明天小雨,明天一定会下雨”,而小红却说不一定,同时她还认为“‘供电局通知,明天电路检修,某小区停电’该小区明天一定会停电”他们俩意见不统一,各执己见,他们说得对吗?你能说说你的看法吗?18. (10分)(2020·徽县模拟) 如图,某数学兴趣小组为测量一颗古树和教学楼的高,先在A处用高15米的测角仪测得古树顶端的仰角为45°,此时教学楼顶端恰好在视线上,再向前走10米到达处,又测得教学楼顶端的仰角为60°,点、、三点在同一水平线上.(1)求古树的高;(2)求教学楼的高.(参考数据:,)19. (8分) (2020八下·张家港期末) 为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了________名中学生,其中课外阅读时长“2~4小时”的有________人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为________°;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.20. (15分) (2020八下·滨州月考) 为了积极助力脱贫攻坚工作,如期打赢脱贫攻坚战,某驻村干部带领村民种植草莓,在每年成熟期都会吸引很多人到果园去采摘。

2019-2020学年度第二学期期中检测九年级数学试题及答案

2019-2020学年度第二学期期中检测九年级数学试题及答案

2019—2020学年度第二学期期中考试初三数学试题(考试时间:120分钟 试卷分值:150分) 命题、校对:一、选择题(每题只有一个是正确的,每题3分,共18分) 1、-12 的相反数是( )A 、12B 、-2C 、-12D 、22、在一条东西向的跑道上,小亮先向东走了8米,记作“+8米”,又向西走了10米,此时他的位置可记作( )A 、+2米B 、-2米C 、+18米D 、-18米 3、在下列四个几何体中,主视图与俯视图都是圆的为( )4、一组数据3,4,x ,6,8的平均数是5,则这组数据的中位数是( )A 、4B 、5C 、6D 、7 5、如图,AB 、AC 是⊙O 的两条切线,B 、C 是切点,若∠A =70°, 则∠BOC 的度数为( )A 、130°B 、120°C 、110°D 、100°6.如图,在钝角△ABC 中,分别以AB 和AC 为斜边向△ABC 的外侧作等腰直角三角形ABE 和等腰直角三角形ACF ,EM 平分∠AEB 交AB 于点M ,取BC 中点D ,AC 中点N ,连接DN 、DE 、DF .下列结论: ①EM=DN ; ②S △CDN =31S 四边形ABDN ; ③DE=DF ; ④DE ⊥DF .其中正确的结论的个数是( )7、实数16的算术平方根是__________.8、在函数y = 1x -2中,自变量x 的取值范围是__________.9、今年一季度东台财政收入列江苏沿海各县市区财政收入前茅达3 230 000 000元,将这个数用科学计数法表示为________________________10、分解因式:2ax ax -= .11、抛物线y =x 2-bx +3的对称轴是直线x =1,则b 的值为__________. 12、已知圆锥的底面半径为3,高为4,则这个圆锥的侧面积为 . 13、如图,在2×2的网格中,每个小正方形的边长都是1,图中的阴影部分图案是由一个点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积为 .14、在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1), 将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的 坐标为(-2,2),则点N ′的坐标为 .15、质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子 一次,则向上一面的数字是偶数的概率为 . 16、如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =﹣x +4上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2019=. 三、解答题(共11大题,合计102分) 17、(8分)计算: 203(4)(π3)2|5|-+----18、(8分)解不等式组⎩⎨⎧-≥+>+14201x x x19、(8分) 化简)31(96922a a a a -÷++-,并选一个你喜欢的a 的值代入求值。

2019-2020年九年级数学下册期中考试试题(附答案)

2019-2020年九年级数学下册期中考试试题(附答案)

2019-2020年九年级数学下册期中考试试题(附答案) 一、选择题(每题4分,共40分.每小题有四个选项,其中只有一个选项是正确的,将正确选项的字母填入下表相应的题号下面.) 1.-2的绝对值是( )A .-2B .-21C .2D .21 2.在△ABC 中,若sinA =23,则∠A 为( ) A .30o B .45o C .60o D .90o 3.下列函数中,当x >0时,y 随x 的增大而减小的是( )A.y=2x 2B.y=2x -1C.y=x2- D.y=-2x 2 4.函数y=(m 2+m )122--m mx 是二次函数,则m 的值为( )A .2B .-1或3C .3D .-1±25.将抛物线y =-2(x -1)2-2向左平移1个单位,再向上平移1个单位,得到的抛物线的表达式为( )A .y =-2(x -2)2-3B .y =-2(x -2)2-1C .y =-2x 2-1D .y =-2x 2-3 6.下列抛物线的图象与x 轴没有交点的是( )A .42-=x yB .1312+-=x y C .2)2(22---=x y D .x x y 32+= 7.函数c ax y +=2与x acy =在同一直角坐标系中的图象大致是( ) yx x xA B C D8、⊙O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A . 相交B . 相切C . 相离D . 无法确定9、如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均相等的结果,那么,小球最终到达H 点的概率是( ).A .21B .41 C .61D .81 10.如图,菱形ABCD 中,∠A =600,AB =2,动点P 从点B 出发,以每秒1个单位长度的速度沿B →C →D 向终点D 运动.同时动点Q 从点A 出发,以相同的速度沿A→D →B 向终点B 运动,运动的时间为x 秒,当点P 到达点D 时,点P 、Q 同时停止运动,设△APQ 的面积为y ,则反映y 与x 的函数关系的图象是( )第9题A B C DA. B. C. D.二、填空题:(本大题6个小题,每小题4分,共24分)在每个小题中,请将每小题的正确答案填在下列方框内11.抛物线y=x 2-4x-5的顶点坐标为 ,对称轴为x= . 12.据记者日前从县财政局获得的消息,今年荣昌县地方财政收入完成330197万元,为年度预算的91.67%,同比增加增长91.68约为 元(保留两个有效数字)。

2019-2020学年人教版九年级数学下期中综合检测试卷含答案

2019-2020学年人教版九年级数学下期中综合检测试卷含答案

2019-2020学年人教版九年级数学下期中综合检测试卷含答案(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.已知点P(-12,2)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.-12B.2C.1D.-12.关于反比例函数y=4x的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称3.(·成都中考)如图所示,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1B.2C.3D.44.如图所示,平行四边形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则BF∶FD等于()A.2∶5B.3∶5C.2∶3D.5∶75.(·自贡中考)若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=-1x图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x16.已知反比例函数y=ax(a≠0)的图象在每一象限内,y的值随x值的增大而减小,则一次函数y=-ax+a的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图所示,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为()A.3B.4C.5D.68.(·浙江中考)如图所示,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=kx的图象经过点B,则k的值是()A.1B.2C.√3D.2√39.如图所示,这是圆桌正上方的灯泡(看成一个点)发出的光线照射到桌面后在地面上形成影子(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为 ( ) A.0.36π米2 B.0.81π米2 C.2π米2 D.3.24π米210.(·重庆中考)如图所示,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数y =3x的图象经过A ,B 两点,则菱形ABCD 的面积为 ( ) A.2 B.4 C.2√2 D.4√2二、填空题(每小题4分,共24分) 11.反比例函数y =(m -2)x 2m +1的函数值为13时,自变量x 的值是 .12.(·重庆中考)已知△ABC ∽△DEF ,且△ABC 与△DEF 的面积比为4∶1,则△ABC 与△DEF 对应边上的高之比为 .13.如图所示,平行四边形ABCD 中,点E 是AD 边的中点,BE 交对角线AC 于点F ,若AF =2,则对角线AC 的长为 .14.已知在反比例函数y =k -x图象的每一支上,y 都随x 的增大而减小,则k 的取值范围是 . 15.反比例函数y =k x的图象与一次函数y =2x +1的图象的一个交点是(1,k ),则反比例函数的解析式是 .16.如图所示,在△ABC 中,AB =6,AC =4,P 是AC 的中点,过P 点的直线交AB 于点Q ,若以A ,P ,Q 为顶点的三角形和以A ,B ,C 为顶点的三角形相似,则AQ 的长为 .三、解答题(共66分)17.(7分)反比例函数y =k x(k ≠0)与一次函数y =mx +b (m <0)交于点A (1,2k -1).(1)求反比例函数的解析式;(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.18.(7分)如图所示,将图中的△ABC作下列运动,画出相应的图形,并指出三个顶点的坐标所发生的变化.(1)向上平移4个单位长度得到△A1B1C1;(2)关于y轴对称得到△A2B2C2;(3)以点A为位似中心,将△ABC放大为原来的2倍得到△A3B3C3.19.(8分)(·泰安中考)如图所示,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.的图象相交于A(-1,4),B(2,n)两点,直线AB交x 20.(8分)(·泰安中考)一次函数y=kx+b与反比例函数y=mx轴于点D.(1)求一次函数与反比例函数的表达式;(2)如图所示,过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.21.(8分)如图所示,已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.的值;(1)求AEAC(2)若AB=18,FB=EC,求AC的长.22.(9分)某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(单位:元)与日销售;(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式.若物价局规定此贺卡的单价最高不能超过10元,请你求出当日销售单价x定为多少时,才能获得最大日销售利润.23.(9分)如图所示,在Rt△ABC中,∠ACB=90°,以AC为直径的☉O与AB边交于点D,过点D作☉O的切线,交BC于点E.(1)求证点E是边BC的中点;(2)若EC=3,BD=2√6,求☉O的直径AC的长;(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.24.(10分)(·成都中考)如图所示,一次函数y=-x+4的图象与反比例函数y=kx(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.【答案与解析】1.D(解析:将点P(-12,2)代入函数解析式,得k=-12×2=-1.故选D.)2.D(解析:把(1,1)代入,左边≠右边,故A错误;因为k=4>0,所以图象在第一、三象限,故B错误;沿x轴对折不重合,故C错误;两分支关于原点对称,故D正确.故选D.)3.B(解析:根据平行线分线段成比例,得ADDB =AEEC,即63=4EC,则EC=2.故选B.)4.A(解析:∵BE∶EC=2∶3,∴BE∶BC=2∶5,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴BE∶AD=2∶5,△ADF∽△EBF,∴BFFD =BEAD=25.故选A.)5.D(解析:∵k=-1<0,∴反比例函数图象在第二、四象限,且在每个象限内y随x的增大而增大,∵y1<0<y2<y3,∴x1>0,x2<x3<0,即x2<x3<x1.故选D.)6.C(解析:根据反比例函数的性质可知a>0,再根据一次函数的性质知y=-ax+a的图象经过第一、二、四象限,不经过第三象限.故选C.)7.C(解析:在△ABC中,∠C=90°,AC=8,BC=6,∴AB=√AC2+BC2=√82+62=10,又△ADE∽△ABC,则DE BC =ADAB,36=AD10,∴AD=3×106=5.故选C.)8.C(解析:如图所示,过B点作BD⊥x轴,垂足为D,∵△OAB是等边三角形,∴OB=OA=2,∴OD=1,BD=√3.∴点B 的坐标为(1,√3).∵反比例函数的图象经过点B,∴k=√3.故选C.)9.B(解析:设阴影部分的直径是x m,则1.2∶x=2∶3,解得x=1.8,所以地面上阴影部分的面积S=πr2=0.81π(米2).故选B.)10.D(解析:∵反比例函数的图象经过A,B两点,且A,B两点的纵坐标分别为3,1,∴点A的坐标为(1,3),点B的坐标为(3,1),过B作BE⊥AD,垂足为E,则AE=2,BE=2,根据勾股定理可得AB=2√2,又∵四边形ABCD为菱形,∴AD=AB=2√2,∴菱形ABCD的面积为AD·BE=2√2×2=4√2.故选D.)11.-9(解析:∵函数y =(m -2)x 2m+1是反比例函数,∴m -2≠0,且2m +1=-1,∴m =-1,∴y =-3x ,当y =13时,x =-9.故填-9.)12.2∶1(解析:∵△ABC 与△DEF 相似且面积比为4∶1,∴△ABC 与△DEF 的相似比为2∶1,∴△ABC 与△DEF 的对应边上的高之比为2∶1.故填2∶1.) 13.6(解析:∵四边形ABCD 是平行四边形,点E 是AD 边的中点,∴△AEF ∽△CBF ,∴AE BC =AF FC ,12=2FC,∴FC =4,∴AC =6.故填6.)14.k >(解析:反比例函数y =k x的性质:当k >0时,图象在第一、三象限,且在每一象限内,y 随x 的增大而减小;当k <0时,图象在第二、四象限,且在每一象限内,y 随x 的增大而增大.由题意得k ->0,解得k >.)15.y =3x(解析:将(1,k )代入一次函数解析式y =2x +1,得k =2+1=3,把(1,3)代入y =k x,得k =3,则反比例函数解析式为y =3x .故填y =3x .)16.3或43(解析:当△ABC ∽△AQP 时,AQ AB =AP AC ,即AQ 6=24,AQ =3;当△ABC ∽△APQ 时,AP AB =AQ AC ,即26=AQ 4,AQ =43.故填3或43.)17.解:(1)把A (1,2k -1)代入y =k x (k ≠0),得1×(2k -1)=k ,解得k =1,∴反比例函数的解析式为y =1x. (2)∵k =1,∴点A 坐标为(1,1),∵S △AOB =12OB ×1=3,∴OB =6,又m <0,∴点B 的坐标为(6,0),把(1,1),(6,0)代入y =mx +b ,得{m +b =1,6m +b =0,解得{m =-15,b =65.∴一次函数解析式为y =-15x +65. 18.解:如图所示.(1)平移后三个顶点的横坐标都不变,纵坐标都加4. (2)三个顶点的纵坐标不变,横坐标变为原来的相反数. (3)点A 的坐标不变,点B 的纵坐标不变,横坐标为原来横坐标加AB 的长,点C 的横坐标为原来横坐标加AB 的长,纵坐标为原来纵坐标加BC 的长.19.(1)证明:∵∠APC =∠BAP +∠B ,∠APC =∠APD +∠DPC ,∠APD =∠B ,∴∠BAP =∠DPC ,∵AB =AC ,∴∠B =∠C ,∴△ABP∽△PCD ,∴AB PC =BPCD,∴AB ·CD =CP ·BP ,即AC ·CD =CP ·BP. (2)解:∵PD ∥AB ,∴△PCD ∽△BCA ,由①得△ABP ∽△PCD ,∴△ABP ∽△BCA ,∴AB BC =PB AC ,∴1012=PB 10,∴PB =253.20.解:(1)把A (-1,4)代入反比例函数解析式y =m x ,得m =-1×4=-4,∴反比例函数的解析式为y =-4x;把B (2,n )代入y =-4x ,得2n =-4,解得n =-2,∴B 点坐标为(2,-2),将A (-1,4)和B (2,-2)代入y =kx +b ,得{-k +b =4,2k +b =-2,解得{k =-2,b =2,∴一次函数的解析式为y =-2x +2. (2)∵BC ⊥y 轴,垂足为C ,B (2,-2),∴C 点坐标为(0,-2),设直线AC 的解析式为y =px +q (p ≠0),∵A (-1,4),C (0,-2),∴{-p +q =4,q =-2,解得{p =-6,q =-2,∴直线AC 的解析式为y =-6x -2,当y =0时,-6x -2=0,解得x =-13,∴E 点坐标为(-13,0),∵直线AB 的解析式为y =-2x +2,∴直线AB 与x 轴交点D 的坐标为(1,0),∴DE =1-(-13)=43,∴△AED 的面积S =12×43×4=83.21.解:(1)如图所示,连接FC ,AD.∵点F 是AB 的中点,CD =BC ,∴FC 是△ADB 的中位线,∴FC ∥AD ,FC =12AD ,∴△EFC ∽△EDA ,∴AE CE =ADFC =2,∴AE AC =23. (2)∵点F 是AB 的中点,AB =18,FB =EC ,∴EC =12AB =9.由(1)知AEEC =2,则AE9=2,∴AE =18,∴AC =AE +EC =18+9=27.21.解:(1)如图所示,连接FC ,AD.∵点F 是AB 的中点,CD =BC ,∴FC 是△ADB 的中位线,∴FC ∥AD ,FC =12AD ,∴△EFC ∽△EDA ,∴AE CE =AD FC =2,∴AE AC =23. (2)∵点F 是AB 的中点,AB =18,FB =EC ,∴EC =12AB =9.由(1)知AEEC =2,则AE9=2,∴AE =18,∴AC =AE +EC =18+9=27. 22.解:(1)设y =k x ,把点(3,20)代入得k =60,∴y =60x,其他组数据也满足此关系式,故y =60x ,图象略. (2)∵W =(x -2)y =60-120x,又∵x ≤10,∴当x =10时,日销售利润最大.23.(1)证明:如图所示,连接CD ,OD.∵DE 为切线,∴∠EDC +∠ODC =90°.∵∠ACB =90°,∴∠ECD +∠OCD =90°.又∵OD =OC ,∴∠ODC =∠OCD ,∴∠EDC =∠ECD ,∴ED =EC.∵AC 为直径,∴∠ADC =90°,∴∠BDE +∠EDC =90°,∠B +∠ECD =90°,∴∠B =∠BDE ,∴ED =EB ,∴EB =EC ,即点E 为边BC 的中点. (2)解:∵AC 为直径,∴∠ADC =∠ACB =90°,又∵∠B =∠B ,∴△ABC ∽△CBD ,∴AB BC =BCBD ,∴BC 2=BD ·BA.∴(2EC )2=BD ·BA ,即BA ·2√6=36,∴BA =3√6,在Rt △ABC 中,由勾股定理,得AC =√AB 2-BC 2=3√2. (3)解:△ABC 是等腰直角三角形.理由如下:∵四边形ODEC 为正方形,∴∠OCD =45°.∵AC 为直径,∴∠ADC =90°,∴∠CAD =90°-45°=45°,∴Rt△ABC 为等腰直角三角形.24.解:(1)由已知可得a =-1+4=3,k =1×a =1×3=3,∴反比例函数的表达式为y =3x ,联立{y =-x +4,y =3x,解得{x =3,y =1, 或{x =1,y =3.所以B (3,1). (2)如图所示,作B 点关于x 轴的对称点,得到B'(3,-1),连接AB'交x 轴于点P',连接P'B ,则有PA +PB =PA +PB'≥AB',当且仅当P 点和P'点重合时取等号.易得直线AB'的解析式为y =-2x +5,令y =0,得x =52,∴P'(52,0),即满足条件的P 的坐标为(52,0),设y =-x +4交x 轴于点C ,则C (4,0),∴S △PAB =S △APC -S △BPC =12×PC ×(y A -y B )=12×(4-52)×(3-1)=32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年山东省枣庄市薛城区九年级(下)期中数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里,每小题3分,共36分1.下列计算正确的是()A.a2+a2=a4B.2a2×a3=2 C.(a2)3=a6D.3a﹣2a=12.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于()A.40°B.50°C.60°D.70°3.一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5 B.6.5×10﹣6 C.6.5×10﹣7 D.65×10﹣64.由六个正方体摆成如图所示的模型,从各个不同的方向观察,不可能看到的视图是()A.B.C.D.5.不等式组的解在数轴上表示为()A.B.C.D.6.函数中自变量x的取值范围是()A.x≤2B.x=1 C.x<2且x≠1D.x≤2且x≠17.如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()A.B.C.D.8.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB9.若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=()A.3 B.4 C.5 D.610.如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A.R2﹣r2=a2 B.a=2Rsin36°C.a=2rtan36°D.r=Rcos36°11.有一张矩形纸片ABCD,AB=,AD=,将纸片折叠,使点D落在AB边上的D′处,折痕为AE,再将△AD′E以D′E为折痕向右折叠,使点A落在点A′处,设A′E与BC交于点F(如图),则A′F的长为()A.B. C.D.12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:每小题4分,共24分13.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为,1.14.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为.15.因式分解:x2(x﹣2)﹣16(x﹣2)= .16.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.17.若代数式和的值相等,则x= .18.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF 所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是.三、解答题:共7道大题,满分60分19.先化简,再求值:()÷,其中x=tan60°﹣2.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以M 点为位似中心,在网格中画出△A 1B 1C 1的位似图形△A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2:1;(3)若每一个方格的面积为1,则△A 2B 2C 2的面积为 .21.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了 名学生,两幅统计图中的m= ,n= . (2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?22.如图,台风中心位于点O 处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O 的正东方向,距离60千米的地方有一城市A .(1)问:A 市是否会受到此台风的影响,为什么?(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.23.如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.24.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.25.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP =4SBOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.2019-2020学年山东省枣庄市薛城区九年级(下)期中数学试卷参考答案与试题解析一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里,每小题3分,共36分1.下列计算正确的是()A.a2+a2=a4B.2a2×a3=2 C.(a2)3=a6D.3a﹣2a=1【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.【分析】根据单项式乘单项式、幂的乘方与积的乘方、合并同类项的法则,分别进行各项的判断即可.【解答】解:A、a2+a2=2a2,故本选项错误;B、2a2×a3=2a5,故本选项错误;C、(a2)3=a6,故本选项正确;D、3a﹣2a=a,故本选项错误;故选C.2.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】先根据平行线的性质求出∠1+∠2的度数,再由∠1=∠2得出∠2的度数,进而可得出结论.【解答】解:∵a∥b,∠3=40°,∴∠1+∠2=180°﹣40°=140°,∠2=∠4.∵∠1=∠2,∴∠2=×140°=70°,∴∠4=∠2=70°.故选D.3.一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5 B.6.5×10﹣6 C.6.5×10﹣7 D.65×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000065=6.5×10﹣6;故选:B.4.由六个正方体摆成如图所示的模型,从各个不同的方向观察,不可能看到的视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】分析实物的三视图,再做判断.【解答】解:B是俯视图,C是左视图,D是正视图.故选A.5.不等式组的解在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集,最后把不等式组的解集在数轴表示出来,即可选出答案.【解答】解:,∵解不等式①得:x>1,解不等式②得:x≥2,∴不等式组的解集为x≥2,在数轴上表示不等式组的解集为:,故选C.6.函数中自变量x的取值范围是()A.x≤2B.x=1 C.x<2且x≠1D.x≤2且x≠1【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,2﹣x≥0且x﹣1≠0,解得x≤2且x≠1.故选D.7.如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,根据等腰三角形的性质得∠B=∠C,BD=CD=m,当点F从点B运动到D时,如图1,利用正切定义即可得到y=tanB•t(0≤t≤m);当点F从点D运动到C时,如图2,利用正切定义可得y=tanC•CF=﹣tanB•t+2mtanB(m≤t≤2m),即y与t的函数关系为两个一次函数关系式,于是可对四个选项进行判断.【解答】解:作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,∵△ABC为等腰三角形,∴∠B=∠C,BD=CD,当点F从点B运动到D时,如图1,在Rt△BEF中,∵tanB=,∴y=tanB•t(0≤t≤m);当点F从点D运动到C时,如图2,在Rt△CEF中,∵tanC=,∴y=tanC•CF=tanC•(2m﹣t)=﹣tanB•t+2mtanB(m≤t≤2m).故选B.8.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB【考点】菱形的判定;垂径定理.【分析】利用对角线互相垂直且互相平分的四边形是菱形,进而求出即可.【解答】解:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,当DO=CD,则AD=BD,DO=CD,AB⊥CO,故四边形OACB为菱形.故选:B.9.若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=()A.3 B.4 C.5 D.6【考点】根与系数的关系.【分析】根据根与系数的关系得到,通过解该方程组可以求得a、b的值.【解答】解:∵关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别是2、b,∴由韦达定理,得,解得,.∴ab=1×4=4.故选:B.10.如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A.R2﹣r2=a2 B.a=2Rsin36°C.a=2rtan36°D.r=Rcos36°【考点】正多边形和圆;解直角三角形.【分析】根据圆内接正五边形的性质求出∠BOC,再根据垂径定理求出∠1=36°,然后利用勾股定理和解直角三角形对各选项分析判断即可得解.【解答】解:∵⊙O是正五边形ABCDE的外接圆,∴∠BOC=×360°=72°,∴∠1=∠BOC=×72°=36°,R2﹣r2=(a)2=a2,a=Rsin36°,a=2Rsin36°;a=rtan36°,a=2rtan36°,cos36°=,r=Rcos36°,所以,关系式错误的是R2﹣r2=a2.故选A.11.有一张矩形纸片ABCD,AB=,AD=,将纸片折叠,使点D落在AB边上的D′处,折痕为AE,再将△AD′E以D′E为折痕向右折叠,使点A落在点A′处,设A′E与BC交于点F(如图),则A′F的长为()A.B. C.D.【考点】翻折变换(折叠问题).【分析】利用折叠的性质,即可求得AD=AD′=A′D′=、BD′=AB﹣AD=﹣,A′E=AE=AD=2,又由相似三角形的对应边成比例,即可求得EF:A′F=EC:A′B,从而求得A′F的长度.【解答】解:根据折叠的性质知,AD=AD′=A′D′=、CE=CD﹣DE=﹣,.∵CE∥A′B,∴△ECF∽△A′BF,∴CE:BA′=EF:A′F(相似三角形的对应边成比例);又∵CE=CD﹣DE=﹣,BA′=AD﹣CE=2﹣,∴=;而A′E=AE=AD=2,∴A′F=4﹣.故选D.12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】根据抛物线开口方向,对称轴的位置,与x轴交点个数,以及x=﹣1,x=2对应y值的正负判断即可.【解答】解:由二次函数图象开口向上,得到a>0;与y轴交于负半轴,得到c<0,∵对称轴在y轴右侧,且﹣=1,即2a+b=0,∴a与b异号,即b<0,∴abc>0,选项①正确;∵二次函数图象与x轴有两个交点,∴△=b2﹣4ac>0,即b2>4ac,选项②错误;∵原点O与对称轴的对应点为(2,0),∴x=2时,y<0,即4a+2b+c<0,选项③错误;∵x=﹣1时,y>0,∴a﹣b+c>0,把b=﹣2a代入得:3a+c>0,选项④正确,故选B二、填空题:每小题4分,共24分13.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为,1.【考点】单项式;同类项.【分析】利用同类项的定义列出方程组,求出方程组的解即可得到a与b的值.【解答】解:∵单项式2x2y a+b与﹣x a﹣b y4是同类项,∴,解得:a=3,b=1.故答案为:3,1.14.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为.【考点】列表法与树状图法;三角形三边关系.【分析】先画树状图展示所有24种等可能的结果数,再根据三角形三边的关系找出能构成三角形的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有24种等可能的结果数,其中能构成三角形的结果数为6,所以能构成三角形的概率==.故答案为.15.因式分解:x2(x﹣2)﹣16(x﹣2)= (x﹣2)(x+4)(x﹣4).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=(x﹣2)(x2﹣16)=(x﹣2)(x+4)(x﹣4).故答案为:(x﹣2)(x+4)(x﹣4).16.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为(﹣1,).【考点】坐标与图形变化-旋转.【分析】在RT△AOB中,求出AO的长,根据旋转的性质可得AO=CD=4、OB=BD、△OBD是等边三角形,进而可得RT△COE中∠COE=60°、CO=2,由三角函数可得OE、CE.【解答】解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).17.若代数式和的值相等,则x= 7 .【考点】解分式方程.【分析】根据题意列出分式方程,求出分式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:根据题意得:=,去分母得:2x+1=3x﹣6,解得:x=7,经检验x=7是分式方程的解.故答案为:x=7.18.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF 所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是2﹣2 .【考点】翻折变换(折叠问题).【分析】当∠BFE=∠B'EF,点B′在DE上时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=2,即可求出B′D.【解答】解:如图所示:当∠BFE=∠B'EF,点B′在DE上时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AD=6,∴DE==2,∴B′D=2﹣2.三、解答题:共7道大题,满分60分19.先化简,再求值:()÷,其中x=tan60°﹣2.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式=•=﹣,当x=tan60°﹣2=﹣2时,原式=﹣=﹣.20.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (2,﹣4),B (3,﹣2),C (6,﹣3). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以M 点为位似中心,在网格中画出△A 1B 1C 1的位似图形△A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2:1;(3)若每一个方格的面积为1,则△A 2B 2C 2的面积为 14 .【考点】作图—相似变换;作图-轴对称变换.【分析】(1)直接利用关于x 轴对称点的性质得出对应点位置进而得出答案; (2)利用位似图形的性质得出对应点位置进而得出答案;(3)利用△A 2B 2C 2所在矩形的面积减去周围三角形面积进而得出答案. 【解答】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求;(3)△A 2B 2C 2的面积为:4×8﹣×2×4﹣×2×6﹣×2×8=14. 故答案为:14.21.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了 120 名学生,两幅统计图中的m= 48 ,n= 15 . (2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)用A类的人数和所占的百分比求出总人数,用总数减去A,C,D类的人数,即可求出m的值,用C类的人数除以总人数,即可得出n的值;(2)用该校喜欢阅读“A”类图书的学生人数=学校总人数×A类的百分比求解即可;(3)列出图形,即可得出答案.【解答】解:(1)这次调查的学生人数为42÷35%=120(人),m=120﹣42﹣18﹣12=48,18÷120=15%;所以n=15故答案为:120,48,15.(2)该校喜欢阅读“A”类图书的学生人数为:960×35%=336(人),(3)抽出的所有情况如图:两名参赛同学为1男1女的概率为:.22.如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离60千米的地方有一城市A.(1)问:A市是否会受到此台风的影响,为什么?(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.【考点】解直角三角形的应用-方向角问题.【分析】(1)过点A作AD⊥OD于点D,可求得AD的长为60km,由60>50可知,不会受到台风影响;(2)过点B作BG⊥OC于点G,可求得BG的长,由离台风中心50千米的区域内会受到台风的影响,即可知会受到影响,然后由勾股定理求得受影响的范围长,即可求得影响的时间.【解答】解:(1)作AD⊥OC,易知台风中心O与A市的最近距离为AD的长度,∵由题意得:∠DOA=45°,OA=60km,∴AD=DO=60÷=60km,∵60>50,∴A市不会受到此台风的影响;(2)作BG⊥OC于G,∵由题意得:∠BOC=30°,OB=80km,∴BG=OB=40km,∵40<50,∴会受到影响,如图:BE=BF=50km,由题意知,台风从E点开始影响B城市到F点影响结束,∴EG==30km,∴EF=2EG=60km,∵风速为40km/h,∴60÷40=1.5小时,∴影响时间约为1.5小时.23.如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先求出点A的坐标,进而即可求出反比例函数系数k的值;(2)联立反比例函数和一次函数解析式,求出交点B的坐标,结合图形即可求出x的取值范围.【解答】解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,∴n=4,∴点A坐标为(1,4),∵反比例函数y=(k≠0)过点A(1,4),∴k=4,∴反比例函数的解析式为y=;(2)联立,解得或,即点B的坐标(4,1),若一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值,则1<x<4.24.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接OD,利用AB=AC,OD=OC,证得OD∥AD,易证DF⊥OD,故DF为⊙O的切线;(2)证得△BED∽△BCA,求得BE,利用AC=AB=AE+BE求得答案即可.【解答】(1)证明:如图,连接OD.∵AB=AC,∴∠B=∠C,∵OD=OC,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴OD⊥DF,∵点D在⊙O上,∴直线DF与⊙O相切;(2)解:∵四边形ACDE是⊙O的内接四边形,∴∠AED+∠ACD=180°,∵∠AED+∠BED=180°,∴∠BED=∠ACD,∵∠B=∠B,∴△BED∽△BCA,∴=,∵OD∥AB,AO=CO,∴BD=CD=BC=3,又∵AE=7,∴=,∴BE=2,∴AC=AB=AE+BE=7+2=9.25.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP =4SBOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.【考点】二次函数综合题.【分析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设P点坐标为(x,﹣x2﹣2x+3),根据S△AOP =4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+3,再设Q点坐标为(x,x+3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.【解答】解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得,解得.故该抛物线的解析式为:y=﹣x2﹣2x+3.(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).∵S△AOP =4S△BOC,∴×3×|﹣x2﹣2x+3|=4××1×3.整理,得(x+1)2=0或x2+2x﹣7=0,解得x=﹣1或x=﹣1±2.则符合条件的点P的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.。

相关文档
最新文档