2019-2020学年山东省枣庄市薛城区九年级上学期期末考试数学试卷及答案解析

合集下载

山东省枣庄市薛城区上学期期末考试九年级数学试卷(含答案)

山东省枣庄市薛城区上学期期末考试九年级数学试卷(含答案)

山东省枣庄市薛城区上学期期末考试九年级数学试卷(含答案)山东省枣庄市薛城区2019-2019学年上学期期末考试九年级数学试卷一、选择题(每小题3分,共36分)1.(3分)一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=32.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)3.(3分)如图,⊙O的直径AB=8,点C在⊙O 上,∠ABC=30°,则AC的长是()A.2 B.2 C.2 D.44.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A. B.C. D.5.(3分)下列命题为真命题的是()A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相13.(4分)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为m.15.(4分)如图,O是坐标原点,菱形OABC 的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为.16.(4分)将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是.17.(4分)如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=.18.(4分)如图,沿AE折叠矩形纸片ABCD,使点D落在BC边上的点F处,已知AB=8,BC=10,则cos∠EFC的值为.三、解答题(共7道大题,满分60分)19.(6分)计算:|1﹣|﹣2sin45°+(π﹣3.14)0+2﹣2.20.(10分)如图,根据图中数据完成填空,再按要求答题:sin2A1+sin2B1=;sin2A2+sin2B2=;sin2A3+sin2B3=.(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=.(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA=,求sinB.21.(8分)如图,∠BAC=60°,AD平分∠BAC 交⊙O于点D,连接OB、OC、BD、CD.(1)求证:四边形OBDC是菱形;(2)当∠BAC为多少度时,四边形OBDC是正方形?22.(8分)工人师傅用一块长为10dm,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?23.(8分)如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.24.(10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1月的利润为200万元.设2009年1月为第1个月,第x个月的利润为y万元.由于排污超标,该从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)求C、D两点坐标及△BCD的面积;(3)若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.参考答案1-10、AADAC BDCAA 11-12、AB13、m>914、15、-3216、y=2(x-1)2+117、15°18、19、20、21、证明:(1)连接OD,∵∠BAC=60°,∴∠BOC=120°,∵AD平分∠BAC交⊙O于点D,∴∠BAD=∠CAD,∴∠BOD=∠COD=60°,∵OB=OD=OC,∴△BOD和△COD都是等边三角形,∴OB=BD=DC=OC,∴四边形OBDC是菱形;(2)当∠BAC为45度时,四边形OBDC是正方形,理由是:∵∠BAC=45°,∴∠BOC=90°,∴四边形OBDC是正方形.22、解:(1)如图所示:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2;(2)∵长不大于宽的五倍,∴10-2x≤5(6-2x),解得0<x≤2.5,设总费用为w元,由题意可知w=[0.5×2x(16-4x)+2(10-2x)(6-2x)]=4x2-48x+120=4(x-6)2-24,∵对称轴为x=6,开口向上,∴当0<x≤2.5时,w随x的增大而减小,∴当x=2.5时,w有最小值,最小值为25元,答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.23、(1)证明:∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°,∵AC=AD,∴∠ACD=∠ADC,∴∠ADC+∠BDC=90°,∵PD⊥AD,∴∠ADC+∠PDC=90°,∴∠BDC=∠PDC;(2)解:过点C作CM⊥PD于点M,∵∠BDC=∠PDC,∴CE=CM,∵∠CMP=∠ADP=90°,∠P=∠P,∴△CPM∽△APD,24、解:(1)根据图象,反比例函数图象经过(1,200),当x=5时,y=40,设改造工程完工后函数解析式为y=20x+b,则20×5+b=40,解得b=-60,∴改造工程完工后函数解析式为y=20x-60(x >5且x取整数);(2)当y=200时,20x-60=200,解得x=13.13-5=8.∴经过8个月,该厂利润才能达到200万元;20x-60=100,解得x=8,∴月利润少于100万元有:3,4,5,6,7月份.故该厂资金紧张期共有5个月.25、。

枣庄市九年级上学期数学期末考试试卷A卷

枣庄市九年级上学期数学期末考试试卷A卷

枣庄市九年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·遂宁期中) 已知方程组的解满足x﹣y=m﹣1,则m的值为()A . ﹣1B . ﹣2C . 1D . 22. (2分)(2017·昌乐模拟) α为锐角,且关于x的一元二次方程有两个相等的实数根,则α=()A . 30°B . 45°C . 30°或150°D . 60°3. (2分) (2011七下·广东竞赛) 将点B(5,-1)向上平移2个单位得到点A(a+b, a-b)。

则()A . a=2, b=3B . a=3, b=2C . a=-3, b=-2D . a=- 2, b=-34. (2分) (2019九上·宝安期末) 下列说法正确的是A . 两条对角线互相垂直且相等的四边形是正方形B . 任意两个等腰三角形相似C . 一元二次方程,无论a取何值,一定有两个不相等的实数根D . 关于反比例函数,y的值随x值的增大而减小5. (2分) (2016九上·端州期末) 下列事件中是必然事件的是()A . 实心铁球投入水中会沉入水底B . 抛出一枚硬币,落地后正面向上C . 明天太阳从西边升起D . NBA篮球队员在罚球线投篮2次,至少投中一次6. (2分) (2016九上·端州期末) 用配方法解方程x2-4x+2=0,下列配方正确的是:()A . (x-1)2=-2B . (x-2)2=2C . (x+2)2=2D . (x-2)2=67. (2分) (2016九上·端州期末) 下列说法正确的是()A . 三点确定一个圆B . 平分弦的直径垂直于弦,并且平分弦所对的两条弧C . 与直径垂直的直线是圆的切线D . 能够互相重合的弧是等弧8. (2分) (2016九上·端州期末) 如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6cm,OD=4cm。

2019-2020学年度第一学期九年级数学期末试卷试题(含答案)

2019-2020学年度第一学期九年级数学期末试卷试题(含答案)

2019~2020学年度第一学期期末检测九年级数学评分标准(其他解法参照给分)一、选择题(本大题共8小题,每小题3分,共24分.)二、填空题(本大题共10小题,每小题3分,共30分)9.12; 10.1:4; 11.2; 12.>; 13.110;14.不具有; 15. 16.4; 17.16; 18.2+三、解答题(本大题共10小题,共86分.)19.(本题共2小题,每题5分,共10分)(1)(1)计算:1032sin302020-+︒-解:原式11=2132+⨯-…………………………………………………3分 1113=+-……………………………………………………4分 13=…………………………………………………………5分 (2)解方程:2340x x +-=(解法不唯一)解:()()410x x +-=,……………………………………………………7分40x +=,10x -=…………………………………………………9分 1241x x =-=,………………………………………………………10分20.(本小题7分)解:………………………………………………………………………………………5分 P (两次取球得分的总分不小于5分)=13…………………………………………7分21.(本小题7分)(1)816%=50÷,5010148612m =----=;…………………………2分(2)本次抽查的学生文章阅读篇数的中位数为5,众数为4;………………4分(3)14120033650⨯=,………………………………………………………6分 答:估计该校学生在这一周内文章阅读的篇数为4篇的人数为336人.………7分22.(本小题8分)(1)△ABC 的面积是 12 ;…2分(2)如图所示………6分(3)若P (a ,b )为线段BC 上的任一 点,则变换后点P 的对应点'P 的坐标为 (,)22a b .………8分23.(本小题8分)解:设市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x .…1分 根据题意得,28(1)11.52x +=.…………………………………………………4分解这个方程,得 1220% 2.2x x ==-,(不合题意,舍去)……………………7分答:市政府从2017年到2019年对校舍建设投入资金的年平均增长率为20%…8分24.(本小题8分)解:(1)分别过点E 作EF ⊥AC ,EG ⊥AO,垂足为F 、G.∵至DE 处,测得顶点A 的仰角为75°, ∴∠AEG=75°……………1分∵在BC 处测得直立于地面的AO 顶点A 的仰角为30°,∴∠ACE=30°, ……2分 ∴∠CAE=∠AEG -∠ACE=45°……………………………………………3分(2)在Rt △CFE 中,CE=40,∴1sin 3040202EF CE =︒=⨯=………4分 在Rt △AFE 中,∠CAE =45°,AF=FE=20………5分∴sin 452EF AE ===︒…………………………………………6分(第24题)(3)20AC AF CF =+=在Rt △AFE 中,1sin 3020272AG AC =︒=⨯≈()……7分 ∴27 1.529AO AG OG =+=+≈……………………………8分25.(本小题9分)26.(本小题9分)m.…1分解:(1)设矩形生物园的长为xm,则宽为(8-x)m,小兔的活动范围的面积为y227.(本小题10分)(1)证明:如图1中,AE AD ⊥ ,90DAE ∴∠=︒,90E ADE ∠=︒-∠,…………1分AD 平分BAC ∠,12BAD BAC ∴∠=∠,同理12ABD ABC ∠=∠,…………………2分 ADE BAD DBA ∠=∠+∠ ,180BAC ABC C ∠+∠=︒-∠,11()9022ADE ABC BAC C ∴∠=∠+∠=︒-∠,(2)延长AD 交BC 于点F .AB AE = ,ABE E ∴∠=∠,BE 平分ABC ∠,ABE EBC ∴∠=∠,………………………4分E CBE ∴∠=∠,//AE BC ∴,……………………………………5分90AFB EAD ∴∠=∠=︒,BF BD AF DE=, :2:3BD DE = ,(3)ABC 与ADE 相似,90DAE ∠=︒,ABC ∴∠中必有一个内角为90︒ABC ∠ 是锐角,90ABC ∴∠≠︒.………………………………………………………7分 ①当90BAC DAE ∠=∠=︒时,12E C ∠=∠ , 12ABC E C ∴∠=∠=∠, 90ABC C ∠+∠=︒ ,30ABC ∴∠=︒,此时2ABC ADES S =V V .………………………………………8分 ②当90C DAE ∠=∠=︒时,1452E C ∠=∠=︒, 45EDA ∴∠=︒,ABC 与ADE 相似,45ABC ∴∠=︒,此时ABC ADE S S =V V .………………………………………9分28.(本小题10分) 解:(1)由抛物线2y ax bx c =++交x 轴于A 、B 两点,OA =1,OB =3,得点A 坐标为(1,0)-,点B 的坐标为(3,0);…………………………………2分 Q。

2020-2021学年枣庄市薛城区九年级上学期期末数学试卷(含答案解析)

2020-2021学年枣庄市薛城区九年级上学期期末数学试卷(含答案解析)

2020-2021学年枣庄市薛城区九年级上学期期末数学试卷一、选择题(本大题共12小题,共36.0分)1.关于x的一元二次方程x2−5x+p2−2p+1=0的一个根为0,则实数p的值是()A. 1B. −1C. 0或2D. 42.下列物体的主视图、俯视图和左视图不全是圆的是()A. 橄榄球B. 兵乓球C. 篮球D. 排球3.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A. 2B. 3C. 4D. 54.不解方程,判别方程5x2−7x+5=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根5.如图,在平面直角坐标系中,Rt△ABC的顶点A、C的坐标分别是(0,3)、(k>0,x>0)的图象经过点B,(3,0).∠ACB=90°,AC=2BC,则函数y=kx则k的值为()A. 92B. 9C. 278D. 2746.如图,A、D是⊙O的两点,BC是⊙O的直径,若∠D=35°,∠OAC=()A. 70°B. 65°C. 55°7.王老师有一个装文具用的盒子,它的三视图如图所示,这个盒子类似于()A. 圆锥B. 圆柱C. 长方体D. 三棱柱8.正方形ABCD在直角坐标系中的位置如下图表示,将正方形ABCD绕点A顺时针方向旋转180°后,C点的坐标是()A. (2,0)B. (3,0)C. (2,−1)D. (2,1)9.把二次函数y=5x2的图象先向左平移3个单位,再向下平移2个单位后,所得二次函数图象的解析式是()A. y=5(x+3)2−2B. y=5(x+3)2+2C. y=5(x−3)2−2D. y=5(x−3)2−210.如图所示,是反比例函数y=3x 与y=−7x在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB//x轴分别交这两个图象于A点和B点,P和Q在x轴上,且四边形ABPQ为平行四边形,则四边形ABPQ的面积等于()A. 20B. 15C. 10D. 511.若一个正方形的面积为8,则这个正方形的边长为()A. 4B. 2√2C. √2D. 812.已知二次函数的图象如图所示,有下列4个结论:①;②;③;④,其中正确的结论有B. 3个C. 2个D. 1个二、填空题(本大题共8小题,共32.0分)13.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度为i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及所在位置点P的铅直高度.14.如图:P是反比例函数y=k的图象上的点,过点P作x轴、y轴的垂线,x垂足分别为A、B,且四边形PAOB的面积为4,则y与x的函数关系式是______ .15.已知二次函数y=2x2−2(a+b)x+a2+b2,a,b为常数,当y达到最小值时,x的值为______16.斜边的边长为5cm,一条直角边长为4cm的直角三角形的面积是______cm2.17.等腰三角形的腰长为1cm,底边长为√3cm,则它的底角的正切值为______.18.若正方形的面积为16cm2,则正方形对角线长为______cm.19.12.已知点O(0,0),B(1,2),点A在y轴上,且的面积为2,则满足条件的点A的坐标为。

九年级上册枣庄数学期末试卷测试与练习(word解析版)

九年级上册枣庄数学期末试卷测试与练习(word解析版)

九年级上册枣庄数学期末试卷测试与练习(word 解析版)一、选择题1.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个2.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠03.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( ) A .1010B .310C .13D .1034.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差 B .平均数C .众数D .中位数5.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .166.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>7.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A.4个B.3个C.2个D.1个8.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A.点B.点C.点D.点9.如图所示的网格是正方形网格,则sin A的值为()A.12B.22C.35D.4510.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣12121322523…y…2m﹣1﹣74﹣2﹣74﹣1142…可以推断m的值为()A.﹣2 B.0 C.14D.211.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A .4233π- B .8433π- C .8233π- D .843π- 12.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离B .相切C .相交D .无法判断二、填空题13.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.14.如图,二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1,则方程ax 2+bx +c =0的根为____.15.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 16.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.17.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 18.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .19..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.20.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin BAC B ∠=∠=OC 的最大值为_____.21.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).22.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.23.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.24.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.三、解答题25.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______; ②若3BE BQ ==,求BP 的长; (2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径:②若O 与矩形ABCD 的一边相切,求O 的半径.26.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点F 是AD 上一点,连接AF 交CD 的延长线于点E .(1)求证:△AFC ∽△ACE ;(2)若AC =5,DC =6,当点F 为AD 的中点时,求AF 的值. 27.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP 绕着端点O 旋转1周,端点P 运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义 ;(2)已知OB =2 cm ,SB =3 cm , ①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是 . A .6 cm×4 cm B .6 cm×4.5 cm C .7 cm×4 cm D .7 cm×4.5 cm28.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD 、CE 是△ABC 的高,M 是BC 的中点,点B 、C 、D 、E 是否在以点M 为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B 、C 、D 、E 在以点M 为圆心的同一个圆上”,在连接MD 、ME 的基础上,只需证明 .(2)初步思考:如图②,BD 、CE 是锐角△ABC 的高,连接DE .求证:∠ADE =∠ABC ,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD 、CE 、AF 是锐角△ABC 的高,三条高的交点G 叫做△ABC 的垂心,连接DE 、EF 、FD ,求证:点G 是△DEF 的内心.29.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的a ,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的b ,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y 轴右侧的概率.30.如图,已知抛物线2y x bx c =++经过(10)A -,、(30)B ,两点,与y 轴相交于点C . (1)求抛物线的解析式;(2)点P 是对称轴上的一个动点,当PAC 的周长最小时,直接写出点P 的坐标和周长最小值;S ,求出此时点Q的坐标.(3)点Q为抛物线上一点,若8QAB31.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?32.某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价-进价)(1)①求y关于x的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断. 【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误. 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.2.D解析:D 【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=b 2﹣4ac=4+4k >0,且k≠0. 解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.3.A解析:A 【解析】 【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可. 【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sinBC A AB ===. 故选:A. 【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键.4.A解析:A 【解析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差. 【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差 故选A 考点:方差5.D解析:D 【解析】 【分析】直接利用三角形中位线定理得出DE ∥BC ,DE=12BC ,再利用相似三角形的判定与性质得出答案. 【详解】解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12, ∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4, ∴△ABC 的面积为:16, 故选D . 【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.6.D解析:D 【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D . 考点:二次函数图象上点的坐标特征.7.C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.8.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.9.C解析:C 【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵224225AC BC=+==,BC=22,AD=2232AC CD+=,∵S△ABC=12AB•CE=12BC•AD,∴CE=223265525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.10.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.11.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.12.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题13.点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=22+=厘米,3534∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.14.【解析】【分析】根据点A的坐标及抛物线的对称轴可得抛物线与x轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.15.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 16.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根解析:24【解析】【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9,∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5∵EK ∥AC ,∴△BEK ∽△BHC , ∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB , 故EF FG BC AC =,即6912FG = 解得FG=8 ∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.17.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.18.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm ∴较小的三角形的周长为643484cm ⨯= 故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键. 19.甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差解析:甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴2222甲乙丁丙<<<S S S S ,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.20.【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.解析:833+【解析】【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明ABC AEO∆∆,由三角函数可得出23AOAE=,进而求得6AE=,再通过证明AEB AOC∆∆,可得出23OC BE=,根据三角形三边关系可得:BE OE OB≤+,由勾股定理可得213OE=,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵OAE BACAEO ABC∠=∠⎧⎨∠=∠⎩,∴ABC AEO∆∆,∴tanAC AOBAB AE∠==,∵213sin B∠=,∴2213313cos11313B⎛⎫∠=-=⎪⎪⎝⎭,∴213sin213tancos3313BBn B∠∠===∠,∴23AOAE=,又∵4AO=,∴6AE=,∵90,90EAB BAO OAC BAO∠+∠=︒∠+∠=︒,∴=EAB OAC∠∠,又∵AC AOAB AE=,∴AEB AOC∆∆,∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,∵OE ===,∴4OE OB +=,∴BE 的最大值为:4,∴OC 的最大值为:()28433=. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 21.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm ,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm ,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm 2). 故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l •R ,(l 为弧长). 22.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.23.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF ∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r13同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.24.【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然解析:【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x2=3,则A1(3,0),∵将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A 3;……∴OA 1=A 1A 2=A 2A 3=…=A 673A 674=3,∴抛物线C 764的解析式为y =﹣(x ﹣2019)(x ﹣2022),把P (2020,m )代入得m =﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题25.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、255,35630、5. 【解析】【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ 是直径,E 在圆上,∴∠PEQ=90°,∴PE ⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP ,∵∠QPB=2∠AQP . \②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴BP BQ BQ BA,∴3 36 BP,∴BP=1.5;(2)①如图, BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,2222223331x x yx x y,解得125 23x (舍去),225 23x,∴ON=25 53,∴O半径为25 5.如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y, 则OM=OP=OQ=4-1-y=3-y,由勾股定理得,2222223331y x yy x y,解得163032x(舍去),263032x,∴OM=35630,∴O半径为35630.如图4,当O与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴O半径为5.综上所述,若O与矩形ABCD的一边相切,为O的半径53,255,35630,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.26.(1)见解析;(2【解析】【分析】(1)根据条件得出AD=AC,推出∠AFC=∠ACD,结合公共角得出三角形相似;(2)根据已知条件证明△ACF≌△DEF,得出AC=DE,利用勾股定理计算出AE的长度,再根据(1)中△AFC∽△ACE,得出AFAC=ACAE,从而计算出AF的长度.【详解】(1)∵CD⊥AB,AB是⊙O的直径∴AD=AC∴∠AFC=∠ACD.∵在△ACF和△AEC中,∠AFC=∠ACD,∠CAF=∠EAC∴△AFC ∽△ACE(2)∵四边形ACDF内接于⊙O∴∠AFD+∠ACD=180°∵∠AFD+∠DFE=180°∴∠DFE=∠ACD∵∠AFC=∠ACD∴∠AFC=∠DFE.∵△AFC∽△ACE∴∠ACF=∠DEF.∵F为AC的中点∴AF=DF.∵在△ACF和△DEF中,∠ACF=∠DEF,∠AFC=∠DFE,AF=DF ∴△ACF≌△DEF.∴AC=DE=5.∵CD⊥AB,AB是⊙O的直径∴CH=DH=3.∴EH=8在Rt△AHC中,AH2=AC2-CH2=16,在Rt△AHE中,AE2=AH2+EH2=80,∴AE=∵△AFC∽△ACE∴AF AC =AC AE,即5AF =45, ∴AF =55. 【点睛】本题属于圆与相似三角形的综合,涉及了圆内接四边形的性质,勾股定理,等弧所对的圆周角相等,相似三角形的判定定理等,解题的关键是灵活运用所学知识,正确寻找全等三角形.27.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【解析】【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴==23=6S rl πππ⨯⨯母侧即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n 度,则2π×2=3180n π⨯ 解得:n=240°,如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm ,宽为4.5cm ,故选:B .【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.28.(1)ME =MD =MB =MC ;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)要证四个点在同一圆上,即证明四个点到定点距离相等.(2)由“直角三角形斜边上的中线等于斜边的一半”,即能证ME=MD=MB=MC,得到四边形BCDE为圆内接四边形,故有对角互补.(3)根据内心定义,需证明DG、EG、FG分别平分∠EDF、∠DEF、∠DFE.由点B、C、D、E 四点共圆,可得同弧所对的圆周角∠CBD=∠CED.又因为∠BEG=∠BFG=90°,根据(2)易证点B、F、G、E也四点共圆,有同弧所对的圆周角∠FBG=∠FEG,等量代换有∠CED=∠FEG,同理可证其余两个内角的平分线.【详解】解:(1)根据圆的定义可知,当点B、C、D、E到点M距离相等时,即他们在圆M上故答案为:ME=MD=MB=MC(2)证明:连接MD、ME∵BD、CE是△ABC的高∴BD⊥AC,CE⊥AB∴∠BDC=∠CEB=90°∵M为BC的中点∴ME=MD=12BC=MB=MC∴点B、C、D、E在以点M为圆心的同一个圆上∴∠ABC+CDE=180°∵∠ADE+∠CDE=180°∴∠ADE=∠ABC(3)证明:取BG中点N,连接EN、FN∵CE、AF是△ABC的高∴∠BEG=∠BFG=90°∴EN=FN=12BG=BN=NG∴点B、F、G、E在以点N为圆心的同一个圆上∴∠FBG=∠FEG∵由(2)证得点B、C、D、E在同一个圆上∴∠FBG=∠CED∴∠FEG=∠CED同理可证:∠EFG=∠AFD,∠EDG=∠FDG∴点G是△DEF的内心【点睛】本题考查了直角三角形斜边中线定理、中点的性质、三角形内心的判定、圆周角定理、角平分线的定义,综合性较强,解决本题的关键是熟练掌握三角形斜边中线定理、圆周角定理,能够根据题意熟练掌握各个角之间的内在联系.29.(1)12;(2)23.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次函数的性质,找出a、b异号的结果数,然后根据概率公式求解.【详解】(1)∵共由4种可能,抽到的数字大于0的有2种,∴从中任意抽取1张,抽到的数字大于0的概率是12,故答案为:1 2(2)画树状图为:共有12种等可能的结果数,其中a、b异号有8种结果,∴这个二次函数的图象的对称轴在y轴右侧的概率为812=23.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的。

2020-2021学年山东省枣庄市薛城区九年级(上)期末数学试卷(解析版)

2020-2021学年山东省枣庄市薛城区九年级(上)期末数学试卷(解析版)

2020-2021学年山东省枣庄市薛城区九年级第一学期期末数学试卷一、选择题(每题3分,共36分)1.若关于x的一元二次方程ax2+bx+6=0(a≠0)的其中一个解是x=1,则2021﹣a﹣b的值是()A.2022B.2025C.2027D.20282.如图,空心圆柱的左视图是()A.B.C.D.3.平行四边形ABCD的对角线AC和BD交于点O,添加一个条件不能使平行四边形ABCD 变为矩形的是()A.OD=OC B.∠DAB=90°C.∠ODA=∠OAD D.AC⊥BD4.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°5.在函数y=(a为常数)的图象上有三点(﹣3,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y36.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=20°,则∠BAD为()A.40°B.50°C.60°D.70°7.由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5B.6C.7D.88.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6B.8C.10D.129.把函数y=(x﹣1)2+2图象向左平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3 10.已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.11.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣812.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根二、填空题(每题4分,共24分)13.小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了m.14.如图,设点P在函数的图象上,PC⊥x轴于点C,交函数y=的图象于点A,PD ⊥y轴于点D,交函数y=的图象于点B,则四边形PAOB的面积为.15.若二次函数:y=ax2+bx+c的x与y的部分对应值如表,则当x=1时,y的值为.x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353 16.如图,弦CD垂直于⊙O的直径AB,垂足为H,且OB=13,CD=24,则OH的长是.17.在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是.18.如图,在边长为6的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为.三、解答题(本题共7道大题满分60分)19.计算:4sin60°﹣|﹣2|+20210﹣+()﹣1.20.如图,AB是公园的一圆形桌面的主视图,MN表示该桌面在路灯下的影子;CD则表示一个圆形的凳子.(1)请你在图中标出路灯O的位置,并画出CD的影子PQ(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度MN为2m,求路灯O与地面的距离.21.如图,直线l:y=x﹣1与反比例函数y=相交于点A、B两点,过点A作AC⊥x轴,垂足为点C,且AC=1.(1)求反比例函数y=的解析式;(2)观察图象,直接写出不等式x﹣>1的解集.22.枣庄某学校为了解全校学生线上学习情况,随机选取该校部分学生,调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:频数分布表学习时间分组频数频率A组(0≤x<1)9mB组(1≤x<2)180.3C组(2≤x<3)180.3D组(3≤x<4)n0.2E组(4≤x<5)30.05(1)频数分布表中m=,n=,并将频数分布直方图补充完整;(2)若该校有学生1000名,现要对每天学习时间低于2小时的学生进行提醒,根据调查结果,估计全校需要提醒的学生有名.(3)已知调查的E组学生中有2名男生1名女生,老师随机从中选取2名学生进一步了解学生居家学习情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率.23.如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?24.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A,D,G 在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.25.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式;(2)根据图象直接写出﹣+bx+c>4时自变量x的取值范围;(3)求此抛物线顶点D的坐标和四边形ABDC的面积.四、能力拓展题(满分20分)26.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,P1绕点B旋转180°得到点P2,P2绕点C旋转180°得到点P3,P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2021的坐标为.27.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN =45°,下列四个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC =90°;③△MNC的周长不变;④∠AMN﹣∠AMB=60°.其中正确结论的序号是.28.阅读以下材料:如果两个正数a,b,即a>0,b>0,则有下面的不等式:≥,当且仅当a=b 时取到等号,我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具,下面举一例子:例:已知x>0,求函数y=x+的最小值.解:令a=x,b=,则由a+b≥2,得y=x+≥2=4,当且仅当x=时,即x=2时,函数有最小值,最小值为4.根据上面回答下列问题:①已知x>0,则当x=时,函数y=2x+取到最小值,最小值为;②已知x>0,则自变量x取何值时,函数y=有最大值,并求出最大值.参考答案一、选择题(每题3分,共36分)1.若关于x的一元二次方程ax2+bx+6=0(a≠0)的其中一个解是x=1,则2021﹣a﹣b的值是()A.2022B.2025C.2027D.2028解:∵关于x的一元二次方程ax2+bx+6=0(a≠0)的一个解是x=1,∴a+b+6=0,∴a+b=﹣6,∴2021﹣a﹣b=2021﹣(a+b)=2021﹣(﹣6)=2021+6=2027,故选:C.2.如图,空心圆柱的左视图是()A.B.C.D.解:圆柱的左视图是矩形,里面有两条用虚线表示的看不到的棱,故选:C.3.平行四边形ABCD的对角线AC和BD交于点O,添加一个条件不能使平行四边形ABCD 变为矩形的是()A.OD=OC B.∠DAB=90°C.∠ODA=∠OAD D.AC⊥BD解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,A、OD=OC时,AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B、四边形ABCD是平行四边形,∠DAB=90°,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵∠ODA=∠OAD,∴OA=OD,∴AC=BD,∴平行四边形ABCD是矩形,故选项C不符合题意;D、四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故选项D符合题意;故选:D.4.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°解:∵关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,∴△=﹣4sinα=2﹣4sinα=0,解得:sinα=,∵α为锐角,∴α=30°.故选:B.5.在函数y=(a为常数)的图象上有三点(﹣3,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3解:∵﹣a2﹣1<0,∴函数y=(a为常数)的图象在二、四象限,且在每一象限内y随x的增大而增大,∵﹣3<﹣1<0,∴点(﹣3,y1),(﹣1,y2)在第二象限,∴y2>y1>0,∵2>0,∴点(2,y3)在第四象限,∴y3<0,∴y3<y1<y2.故选:A.6.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=20°,则∠BAD为()A.40°B.50°C.60°D.70°解:连接BD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=20°,∴∠BAD=90°﹣∠B=70°.故选:D.7.由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5B.6C.7D.8解:由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.8.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6B.8C.10D.12解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.9.把函数y=(x﹣1)2+2图象向左平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3解:∵原抛物线的顶点为(1,2),∴向左平移1个单位后,得到的顶点为(0,2),∴平移后图象的函数解析式为y=x2+2.故选:A.10.已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.解:∵抛物线y=x2+2x+k+1与x轴有两个不同的交点,∴△=4﹣4(k+1)>0,解得k<0,∴一次函数y=kx﹣k的图象经过第一二四象限,反比例函数y=的图象在第二四象限,故选:D.11.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣8解:作DM⊥x轴于M,BN⊥x轴于N,如图,∵点A的坐标为(﹣1,0),∴OA=1,∵AE=BE,BN∥y轴,∴OA=ON=1,∴AN=2,B的横坐标为1,把x=1代入y=,得y=2,∴B(1,2),∴BN=2,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM,在△ADM和△BAN中,∴△ADM≌△BAN(AAS),∴DM=AN=2,AM=BN=2,∴OM=OA+AM=1+2=3,∴D(﹣3,2),∵点D在反比例函数y=的图象上,∴m=﹣3×2=﹣6,故选:C.12.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.二、填空题(每题4分,共24分)13.小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了25m.解:如图,过点B作BE⊥AC于点E,∵坡度:i=1:,∴tan∠A=1:=,∴∠A=30°,∵AB=50m,∴BE=AB=25(m).∴他升高了25m.故答案为:25.14.如图,设点P在函数的图象上,PC⊥x轴于点C,交函数y=的图象于点A,PD ⊥y轴于点D,交函数y=的图象于点B,则四边形PAOB的面积为3.解:根据题意,S四边形PCOD=PC•PD=5,S△OBD=S△OAC=×2=1,所以,四边形PAOB的面积=S四边形PCOD﹣S△OBD﹣S△OAC=5﹣1﹣1=3.故答案为:3.15.若二次函数:y=ax2+bx+c的x与y的部分对应值如表,则当x=1时,y的值为﹣27.x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353解:由表中数据当x=﹣2,﹣4时对应的y值相等,故对称轴为直线x=﹣3,则x=1时与x=﹣7时对应的y的值相等,故当x=1时,y的值为﹣27.故答案为:﹣27.16.如图,弦CD垂直于⊙O的直径AB,垂足为H,且OB=13,CD=24,则OH的长是5.解:连接OC,如图所示:∵AB是⊙O的直径,CD⊥AB,∴CH=CD=12,在Rt△OCH中,OH===5,故答案为:5.17.在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是2.解:设菱形ABCD边长为t,∵BE=2,∴AE=t﹣2,∵cos A=,∴,∴=,∴t=5,∴AE=5﹣2=3,∴DE==4,∴tan∠DBE===2.故答案为:2.18.如图,在边长为6的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为3.解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F,∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC=×6=3,∴EF的最小值为3;故答案为:3.三、解答题(本题共7道大题满分60分)19.计算:4sin60°﹣|﹣2|+20210﹣+()﹣1.解:原式=4×﹣(2﹣)+1﹣2+4=2﹣2++1﹣2+4=+3.20.如图,AB是公园的一圆形桌面的主视图,MN表示该桌面在路灯下的影子;CD则表示一个圆形的凳子.(1)请你在图中标出路灯O的位置,并画出CD的影子PQ(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度MN为2m,求路灯O与地面的距离.解:(1)如图,延长MA、NB,它们的交点为O的,再连接OC、OD,并延长交地面与P、Q点,则PQ为CD的影子,所以点O和PQ为所作;(2)作OF⊥MN交AB于E,如图,AB=1.2m,EF=1.2m,MN=2m,∵AB∥MN,∴△OAB∽△OMN,∴AB:MN=OE:OF,即1.2:2=(OF﹣1.2):OF,解得OF=3(m).答:路灯O与地面的距离为3m.21.如图,直线l:y=x﹣1与反比例函数y=相交于点A、B两点,过点A作AC⊥x轴,垂足为点C,且AC=1.(1)求反比例函数y=的解析式;(2)观察图象,直接写出不等式x﹣>1的解集.解:(1)∵AC=1,故点A的纵坐标为1,则x﹣1=1,解得x=3,故点A(3,1),将点A的坐标代入y=得,1=,解得k=3,故反比例函数表达式为y=;(2)观察函数图象知,不等式x﹣>1的解集为﹣<x<0或x>3.22.枣庄某学校为了解全校学生线上学习情况,随机选取该校部分学生,调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:频数分布表学习时间分组频数频率A组(0≤x<1)9mB组(1≤x<2)180.3C组(2≤x<3)180.3D组(3≤x<4)n0.2E组(4≤x<5)30.05(1)频数分布表中m=0.15,n=12,并将频数分布直方图补充完整;(2)若该校有学生1000名,现要对每天学习时间低于2小时的学生进行提醒,根据调查结果,估计全校需要提醒的学生有450名.(3)已知调查的E组学生中有2名男生1名女生,老师随机从中选取2名学生进一步了解学生居家学习情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率.解:(1)根据频数分布表可知:m=1﹣0.3﹣0.3﹣0.2﹣0.05=0.15,∵18÷0.3=60(人),∴n=60﹣9﹣18﹣18﹣3=12(人),补充完整的频数分布直方图如下:故答案为:0.15,12;(2)根据题意可知:1000×(0.15+0.3)=450(名),答:估计全校需要提醒的学生有450名;(3)设2名男生用A,B表示,1名女生用C表示,根据题意,画出树状图如下:根据树状图可知:等可能的结果共有6种,符合条件的有4种,所以所选2名学生恰为一男生一女生的概率为=.23.如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?解:(1)设加热过程中一次函数表达式为y=kx+b(k≠0),该函数图象经过点(0,15),(5,60),即,∴一次函数的表达式为y=9x+15(0≤x≤5),设加热停止后反比例函数表达式为y=(a≠0),该函数图象经过点(5,60),即=60,解得:a=300,所以反比例函数表达式为y=(x≥5);(2)由题意得:,解得x1=,,解得x2=10,则x2﹣x1=10﹣=,所以对该材料进行特殊处理所用的时间为分钟.24.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A,D,G 在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.解:(1)作EM⊥AC于M.∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC=3,∠DCA=45°,∴在RT△ADE中,∵∠ADE=90°,AD=3,DE=1,∴AE==,在RT△EMC中,∵∠EMC=90°,∠ECM=45°,EC=2,∴EM=CM=,∴在RT△AEM中,sin∠EAM===.(2)在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,GC=AE=,∵∠DAE+∠AED=90°,∠DEA=∠CEH,∴∠DCG+∠HEC=90°,∴∠EHC=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.25.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式;(2)根据图象直接写出﹣+bx+c>4时自变量x的取值范围;(3)求此抛物线顶点D的坐标和四边形ABDC的面积.解:(1)∵正方形OABC的边长为4,∴OC=BC=AB=OA=4,∴C(0,4),B(4,4),∵抛物线y=﹣x2+bx+c经过B,C两点,∴,解得,∴抛物线解析式为y=﹣x2+2x+4;(2)由图象可知,﹣+bx+c>4时自变量x的取值范围是0<x<4;(3)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴D(2,6),∴D到BC的距离为6﹣4=2,∴S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=12.四、能力拓展题(满分20分)26.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,P1绕点B旋转180°得到点P2,P2绕点C旋转180°得到点P3,P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2021的坐标为(2,﹣2).解:画图可知:P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2),P5(2,﹣2),P6(0,2),∵6次一个循环,2021÷6=336…5,∴P2021(2,﹣2).故答案为:(2,﹣2).27.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN =45°,下列四个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC =90°;③△MNC的周长不变;④∠AMN﹣∠AMB=60°.其中正确结论的序号是①②③.解:①:∵正方形ABCD中,AB=AD,∠B=∠ADC=∠C=90°∴MN2=MC2+NC2当MN=MC时,MN2=2MC2,∴MC2=NC2,∴MC=NC,∴BM=DN,∴△ABM≌△ADN(SAS)∴∠BAM=∠DAN,∵∠MAN=45°,∴∠BAM=22.5°,故①正确;②:如图,将△ABM绕点A顺时针旋转90°得△ADE,则∠EAN=∠EAM﹣∠MAN=90°﹣45°=45°,则在△EAN和△MAN中,,∴△EAN≌△MAN(SAS)∴∠AMN=∠AED,∴∠AED+∠EAM+∠ENM+∠AMN=360°,∴2∠AMN+90°+(180°﹣∠MNC)=360°,∴2∠AMN﹣∠MNC=90°,故②正确;③:∵△EAN≌△MAN,∴MN=EN=DE+DN=BM+DN,∴△MNC的周长为:MC+NC+MN=(MC+BM)+(NC+DN)=DC+BC,∵DC和BC均为正方形ABCD的边长,故△MNC的周长不变.故③正确;④如图,将△ADN绕点A逆时针旋转90°得△ABF,∴∠MAF=90°﹣∠MAN=45°,∴∠MAN=∠MAF,在△MAN和△MAF中,,∴△MAN≌△MAF(SAS),∴∠AMN=∠AMB,故④错误.综上①②③正确.故答案为:①②③.28.阅读以下材料:如果两个正数a,b,即a>0,b>0,则有下面的不等式:≥,当且仅当a=b 时取到等号,我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具,下面举一例子:例:已知x>0,求函数y=x+的最小值.解:令a=x,b=,则由a+b≥2,得y=x+≥2=4,当且仅当x=时,即x=2时,函数有最小值,最小值为4.根据上面回答下列问题:①已知x>0,则当x=时,函数y=2x+取到最小值,最小值为2;②已知x>0,则自变量x取何值时,函数y=有最大值,并求出最大值.解:①∵x>0,则2x>0,>0,故y=2x+≥2=2,当且仅当2x=,即x=时,函数有最小值为2,故答案为,2;②设y′===x+﹣2,∵x>0,则>0,故y′===x+﹣2≥2﹣2=4,当且仅当x=,即x=3时,y′的最小值为4,则y的最大值为,故自变量x=3时,函数y=最大值是.。

2019年枣庄市初三数学上期末模拟试题(附答案)

2019年枣庄市初三数学上期末模拟试题(附答案)

2019年枣庄市初三数学上期末模拟试题(附答案)一、选择题1.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1D.m<12.如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在的圆的圆心为图中的()A.M B.P C.Q D.R3.关于x的方程(m﹣3)x2﹣4x﹣2=0有两个不相等的实数根,则实数m的取值花围是()A.m≥1B.m>1C.m≥1且m≠3D.m>1且m≠3 4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣15.已知二次函数y=ax2+bx+c(a>0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x1,x2(0<x1<x2<4)时,对应的函数值是y1,y2,且y1=y2,设该函数图象的对称轴是x=m,则m的取值范围是()A.0<m<1B.1<m≤2C.2<m<4D.0<m<46.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6B.8C.10D.127.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.1128.用配方法解方程x2+2x﹣5=0时,原方程应变形为()A.(x﹣1)2=6 B.(x+1)2=6 C.(x+2)2=9 D.(x﹣2)2=9 9.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件 B.必然事件 C.不可能事件 D.不确定事件10.下列对二次函数y=x 2﹣x 的图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的 11.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( )A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 12.如图,AOB V 中,30B ∠=︒.将AOB V 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒二、填空题13.如图,将二次函数y =12 (x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.14.己知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一个动点,则△PMF 周长的最小值是__________.15.一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是_____cm 2.16.如图,Rt △ABC 中,∠C =90°,AC =30cm ,BC =40cm ,现利用该三角形裁剪一个最大的圆,则该圆半径是_____cm .17.一元二次方程22x 20-=的解是______.18.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A 2019的坐标为_______.19.如图,如果一只蚂蚁从圆锥底面上的点B 出发,沿表面爬到母线AC 的中点D 处,则最短路线长为_____.20.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是s =60t ﹣1.5t 2,飞机着陆后滑行_____米才能停下来.三、解答题21.用你喜欢的方法解方程(1)x 2﹣6x ﹣6=0(2)2x 2﹣x ﹣15=022.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y (吨)与销售价x (万元)之间的函数关系为y =-x +2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?23.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若草坪部分总面积为112m 2,求小路的宽.24.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元. (1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.25.如图,在平面直角坐标系xOy 中,A (﹣2,0),B (0,3),C (﹣4,1).以原点O 为旋转中心,将△ABC 顺时针旋转90°得到△A 'B 'C ',其中点A ,B ,C 旋转后的对应点分别为点A ',B ',C '.(1)画出△A 'B 'C ',并写出点A ',B ',C '的坐标;(2)求经过点B ',B ,A 三点的抛物线对应的函数解析式.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->V ,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.2.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB ,BC 的垂直平分线即可得到答案.【详解】解:作AB 的垂直平分线,作BC 的垂直平分线,如图,它们都经过Q ,所以点Q 为这条圆弧所在圆的圆心.故选:C .【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.3.D解析:D【解析】【分析】根据二次项系数非零及根的判别式列出关于m 的一元一次不等式组,然后方程组即可.【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩解得:m>1且m ≠3.故答案为D.【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.4.B解析:B【解析】【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B .【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.5.C解析:C【解析】【分析】根据二次函数图象上点的坐标特征即可求得.【详解】解:当a>0时,抛物线开口向上,则点(0,1)的对称点为(x0,1),∴x0>4,∴对称轴为x=m中2<m<4,故选C.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.6.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.7.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.8.B解析:B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故选B.9.D解析:D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D .考点:随机事件.10.C解析:C【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案.【详解】A 、∵a=1>0,∴抛物线开口向上,选项A 不正确;B 、∵﹣122b a =,∴抛物线的对称轴为直线x=12,选项B 不正确; C 、当x=0时,y=x 2﹣x=0,∴抛物线经过原点,选项C 正确; D 、∵a >0,抛物线的对称轴为直线x=12, ∴当x >12时,y 随x 值的增大而增大,选项D 不正确, 故选C .【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a≠0),对称轴直线x=-2b a,当a >0时,抛物线y=ax 2+bx+c (a≠0)的开口向上,当a <0时,抛物线y=ax 2+bx+c (a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键.11.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a ,b 的值.【详解】解:∵P (-b ,2)与点Q (3,2a )关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A .【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.12.D解析:D【解析】【分析】根据旋转的性质可得∠B ′=∠B =30°,∠BOB ′=52°,再由三角形外角的性质即可求得A CO ∠'的度数.【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.二、填空题13.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B (4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x 轴交B′B的延长线于点解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.14.5【解析】【分析】过点M作ME⊥x轴于点EME与抛物线交于点P′由点P′在抛物线上可得出P′F=P′E结合点到直线之间垂线段最短及MF为定值即可得出当点P运动到点P′时△PMF周长取最小值【详解】解解析:5【解析】【分析】过点M作ME⊥x轴于点E,ME与抛物线交于点P′,由点P′在抛物线上可得出P′F=P′E,结合点到直线之间垂线段最短及MF为定值,即可得出当点P运动到点P′时,△PMF周长取最小值.【详解】解:过点M作ME⊥x轴于点E,ME与抛物线交于点P′,如图所示.∵点P′在抛物线上,∴P′F=P′E.又∵点到直线之间垂线段最短,22(30)(32)-+-=2,∴当点P运动到点P′时,△PMF周长取最小值,最小值为ME+MF=3+2=5.故答案为5.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征以及点到直线的距离,根据点到直线之间垂线段最短找出△PMF周长的取最小值时点P的位置是解题的关键. 15.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6解析:6π【解析】分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.详解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴135180Rπ⨯=3π,解得:R=4,所以此扇形的面积为21354180π⨯=6π(cm2),故答案为6π.点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.16.【解析】【分析】根据勾股定理求出的斜边AB再由等面积法即可求得内切圆的半径【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆设AC边上的切点为D连接OAOBOCOD∵∠ACB=90°AC解析:【解析】【分析】根据勾股定理求出的斜边AB,再由等面积法,即可求得内切圆的半径.【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆,设AC边上的切点为D,连接OA、OB、OC,OD,∵∠ACB=90°,AC=30cm,BC=40cm,∴AB223040+50cm,设半径OD=rcm,∴S△ACB=12AC BC⋅=111AC r BC r AB r222⋅+⋅+⋅,∴30×40=30r+40r+50r,∴r=10,则该圆半径是 10cm.故答案为:10.【点睛】本题考查内切圆、勾股定理和等面积法的问题,属中档题.17.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x1=1,x2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x2=1,开方得:x=±1,解得:x1=1,x2=﹣1.故答案为x1=1,x2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.18.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变解析:(-1010,10102)【解析】【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【详解】∵A点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2019(-1010,10102),故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.19.【解析】【分析】将圆锥侧面展开根据两点之间线段最短和勾股定理即可求得蚂蚁的最短路线长【详解】如图将圆锥侧面展开得到扇形ABB′则线段BF 为所求的最短路线设∠BAB′=n°∵∴n=120即∠BAB′=【解析】【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵64 180nππ⋅=,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF2263-=3,∴最短路线长为3.故答案为:3【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.20.600【解析】【分析】将函数解析式配方成顶点式求出s的最大值即可得【详解】∵s=60t﹣15t2=﹣t2+60t=﹣(t﹣20)2+600∴当t=20时s取得最大值6 00即飞机着陆后滑行600米才能解析:600【解析】【分析】将函数解析式配方成顶点式求出s的最大值即可得.【详解】∵s=60t﹣1.5t2,=﹣32t2+60t,=﹣32(t﹣20)2+600,∴当t=20时,s取得最大值600,即飞机着陆后滑行600米才能停下来,故答案为:600.【点睛】此题考查二次函数解析式的配方法,利用配方法将函数解析式化为顶点式由此得到函数的最值是一种很重要的解题方法.三、解答题21.(1)x1=x2=32)x1=﹣2.5,x2=3【解析】【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2﹣6x﹣6=0,∵a=1,b=-6,c=-6,∴b2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,x3=x1=x2=3(2)2x2﹣x﹣15=0,(2x+5)(x﹣3)=0,2x+5=0,x﹣3=0,x1=﹣2.5,x2=3.【点睛】此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.22.(1)当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【解析】【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y(x-0.4);(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w万元,由题意可得:w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,令w=0.96,则-x2+3x-1.04=0.96解得x1=1,x2=2,答:当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,当x=1.5时,w最大=1.21,∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.23.小路的宽为1m.【解析】【分析】如果设小路的宽度为xm,那么整个草坪的长为(16﹣2x)m,宽为(9﹣x)m,根据题意即可得出方程.【详解】设小路的宽度为xm,那么整个草坪的长为(16﹣2x)m,宽为(9﹣x)m.根据题意得:(16﹣2x)(9﹣x)=112解得:x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点睛】本题考查了一元二次方程的应用,弄清“整个草坪的长和宽”是解决本题的关键.24.10%;3327.5万元.【解析】试题分析:(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2500(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.(2)利用2016年的经费×(1+增长率)即可.试题解析:(1)设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)(1+x)万元.则2500(1+x)(1+x)=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费3327.5万元.25.(1)见解析;(2)抛物线的解析式为y=﹣12x2+12x+3.【解析】【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)设抛物线的解析式为y=a(x+2)(x﹣3),把B(0,3)代入求出a即可.【详解】解:(1)如图△A'B'C'即为所求.A′(0,2),B′(3,0),C′(1,4)(2)设抛物线的解析式为y=a(x+2)(x﹣3),把B(0,3)代入得到a=﹣12,∴抛物线的解析式为y=﹣12x2+12x+3.【点睛】本题考查的知识点是求抛物线解析式以及图形的旋转变换,根据旋转的性质得出A′,B′,C′的坐标是解此题的关键.。

山东省枣庄薛城区五校联考2024届九年级数学第一学期期末统考模拟试题含解析

山东省枣庄薛城区五校联考2024届九年级数学第一学期期末统考模拟试题含解析

山东省枣庄薛城区五校联考2024届九年级数学第一学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题4分,共48分)1.如图,点G 是△ABC 的重心,下列结论中正确的个数有( ) ①12DG GB =;②AE ED AB BC =;③△EDG ∽△CBG ;④14EGDBGC S S =.A .1个B .2个C .3个D .4个 2.若3a b +=,2a b -=,则22a b -的值为( ) A .6 B .23 C .5 D .63.如图,O 是坐标原点,菱形OABC 顶点A 的坐标为()3,4-,顶点C 在x 轴的负半轴上,反比例函数k y x=的图象经过顶点B ,则k 的值为( )A .12-B .20-C .32-D .36-4.已知点()()121,,2,A y B y -都在双曲线3m y x +=上,且12y y >,则m 的取值范围是( ) A .m 0< B .0m > C .3m >-D .m 3<- 5.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( )A .1B .2C .0,1D .1,26.已知二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),当x≥2时,y 随x 的增大而增大,且-2≤x≤1时,y 的最大值为9,则a 的值为( )A .1或2-B .-2或2C .2D .1 7.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27 8.已知23x y =,则x y等于( ) A .2 B .3 C .23 D .329.二次三项式243x x -+配方的结果是( )A .2(2)7x -+B .2(2)1x --C .2(2)7x ++D .2(2)1x +-10.关于x 的一元二次方程2(3)(2)0x x p ---=的根的情况是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .不确定11.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A .30B .27C .14D .3212.四条线段a b c d ,,,成比例,其中a =3cm ,4d cm =,6c cm =,则b 等于( ) A .2㎝ B .29㎝ C .92cm D .8㎝二、填空题(每题4分,共24分)13.点P (﹣6,3)关于x 轴对称的点的坐标为______.14.已知正六边形ABCDEF 3,则正六边形的半径为________cm.15.一个圆锥的母线长为5cm,底面圆半径为3 cm,则这个圆锥的侧面积是____ cm².(结果保留).16.若两个相似三角形的周长比为2:3,则它们的面积比是_________.17.如图,是用卡钳测量容器内径的示意图.量得卡钳上A,D两端点的距离为4cm,25AO DOOC OB==,则容器的内径BC的长为_____cm.18.请写出一个开口向下,且与y轴的交点坐标为(0,4)的抛物线的表达式_____.三、解答题(共78分)19.(8分)如图,AB是⊙O的直径,AC BC=,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.20.(8分)如图,方格纸中有三个点A B C,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)21.(8分)已知二次函数y =2x 2+4x+3,当﹣2≤x≤﹣1时,求函数y 的最小值和最大值,如图是小明同学的解答过程.你认为他做得正确吗?如果正确,请说明解答依据,如果不正确,请写出你得解答过程.22.(10分)如图,一次函数y kx b =+与反比例函数m y x =的图象交于(4,3)A ,点(2,)B n -两点,交x 轴于点C . (1)求m 、n 的值.(2)请根据图象直接写出不等式m kx b x+>的解集. (3)x 轴上是否存在一点D ,使得以A 、C 、D 三点为顶点的三角形是AC 为腰的等腰三角形,若存在,请直接写出符合条件的点D 的坐标,若不存在,请说明理由.23.(10分)如图,AD 是⊙O 的弦,AC 是⊙O 直径,⊙O 的切线BD 交AC 的延长线于点B ,切点为D ,∠DAC =30°.(1)求证:△ADB 是等腰三角形;(2)若BC =3,求AD 的长.24.(10分)如图,在△ABC 中,D 为AB 边上一点,∠B =∠ACD .(1)求证:△ABC ∽△ACD ;(2)如果AC =6,AD =4,求DB 的长.25.(12分)如图是数值转换机的示意图,小明按照其对应关系画出了y 与x 的函数图象(如图):(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式:(2)求出所输出的y的值中最小一个数值;(3)写出当x满足什么范围时,输出的y的值满足3≤y≤1.26.一个四位数,记千位数字与个位数字之和为x,十位数字与百位数字之和为y,如果x y=,那么称这个四位数为“对称数”()1最小的“对称数”为;四位数A与2020之和为最大的“对称数”,则A的值为;()2一个四位的“对称数”M,它的百位数字是千位数字a的3倍,个位数字与十位数字之和为8,且千位数字a使得不等式组34214251x xx a--⎧-≤⎪⎨⎪->⎩恰有4个整数解,求出所有满足条件的“对称数”M的值.参考答案一、选择题(每题4分,共48分)1、D【分析】根据三角形的重心的概念和性质得到AE,CD是△ABC的中线,根据三角形中位线定理得到DE∥BC,DE=12BC,根据相似三角形的性质定理判断即可.【题目详解】解:∵点G是△ABC的重心,∴AE,CD是△ABC的中线,∴DE ∥BC ,DE =12BC , ∴△DGE ∽△BGC , ∴DG GB =12,①正确; AE ED AB BC=,②正确; △EDG ∽△CBG ,③正确;DE 12BC 4EGD BGC SS ⎛⎫== ⎪⎝⎭,④正确, 故选D .【题目点拨】本题考查三角形的重心的概念和性质,相似三角形的判定和性质,三角形中位线定理,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题关键.2、D【分析】先利用平方差公式得到22a b -=(a+b )(a-b ),再把a b +=a b -=【题目详解】解:22a b -=(a+b )(a-b ).故答案为D .【题目点拨】本题考查了平方差公式,把a+b 和a-b 看成一个整体是解题的关键.3、C【分析】根据点C 的坐标以及菱形的性质求出点B 的坐标,然后利用待定系数法求出k 的值即可. 【题目详解】∵()34A -,,∴5OA ==,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为358--=-,故B 的坐标为:()84-,, 将点B 的坐标代入k y x =得,48k =-, 解得:32k =-.故选:C .【题目点拨】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B 的坐标. 4、D【分析】分别将A ,B 两点代入双曲线解析式,表示出1y 和2y ,然后根据12y y >列出不等式,求出m 的取值范围.【题目详解】解:将A (-1,y 1),B (2,y 2)两点分别代入双曲线3m y x+=,得 13y m =--,232m y +=, ∵y 1>y 2,332m m +∴-->, 解得3m <-,故选:D .【题目点拨】本题考查了反比例函数图象上点的坐标特征,解不等式.反比例函数图象上的点的坐标满足函数解析式.5、C【解题分析】分两种情况讨论,当m=0和m ≠0,函数分别为一次函数和二次函数,由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【题目详解】解:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点;②若m ≠0,则函数y=mx 2+2x+1,是二次函数.根据题意得:b 2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【题目点拨】本题考查了一次函数的性质与抛物线与x 轴的交点,抛物线与x 轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.6、D【解题分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a >0,然后由-2≤x≤1时,y 的最大值为9,可得x=1时,y=9,即可求出a .【题目详解】∵二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),∴对称轴是直线x=-22a a=-1, ∵当x≥2时,y 随x 的增大而增大,∴a >0,∵-2≤x≤1时,y 的最大值为9,∴x=1时,y=a+2a+3a 2+3=9,∴3a 2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D .【题目点拨】本题考查了二次函数的性质,二次函数y=ax 2+bx+c (a≠0)的顶点坐标是(-2b a ,244ac b a -),对称轴直线x=-2b a ,二次函数y=ax 2+bx+c (a≠0)的图象具有如下性质:①当a >0时,抛物线y=ax 2+bx+c (a≠0)的开口向上,x <-2b a时,y 随x 的增大而减小;x >-2b a 时,y 随x 的增大而增大;x=-2b a 时,y 取得最小值244ac b a-,即顶点是抛物线的最低点.②当a <0时,抛物线y=ax 2+bx+c (a≠0)的开口向下,x <-2b a 时,y 随x 的增大而增大;x >-2b a时,y 随x 的增大而减小;x=-2b a 时,y 取得最大值244ac b a-,即顶点是抛物线的最高点. 7、D【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【题目详解】切线性质得到90BAO ∠=903654AOB ∴∠=-=OD OA =OAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠27ADC ADO ∴∠=∠=故选D【题目点拨】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键8、D【题目详解】∵2x=3y , ∴32x y =. 故选D .9、B【解题分析】试题分析:在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数-4的一半的平方;可将常数项3拆分为4和-1,然后再按完全平方公式进行计算.解:x 2-4x+3=x 2-4x+4-1=(x-2)2-1.故选B .考点:配方法的应用.10、A【分析】将方程化简,再根据24b ac ∆=-判断方程的根的情况.【题目详解】解:原方程可化为22560x x p -+-=, 222(5)4(6)10p p ∴∆=---=+>所以原方程有两个不相等的实数根.故选:A【题目点拨】本题考查了一元二次方程根的情况,灵活利用∆的正负进行判断是解题的关键.当>0∆时,方程有两个不相等的实数根;当0∆=时,方程有两个不相等的实数根;当∆<0时,方程没有实数根. 11、A【解题分析】∵四边形ABCD 是平行四边形,∴AB//CD ,AB=CD ,AD//BC ,∴△BEF ∽△CDF ,△BEF ∽△AED , ∴22BEF BEF CDF AED S S BE BE S CD S AE ∆∆∆∆⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, , ∵BE :AB=2:3,AE=AB+BE ,∴BE :CD=2:3,BE :AE=2:5, ∴44925BEF BEF CDF AED S S S S ∆∆∆∆==, ,∵S △BEF =4,∴S △CDF =9,S △AED =25,∴S 四边形ABFD =S △AED -S △BEF =25-4=21,∴S 平行四边形ABCD =S △CDF +S 四边形ABFD =9+21=30,故选A.【题目点拨】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.12、A【分析】四条线段a ,b ,c ,d 成比例,则a b =c d,代入即可求得b 的值. 【题目详解】解:∵四条线段a ,b ,c ,d 成比例, ∴a b =c d, ∴b=ad c =346⨯ =2(cm ). 故选A .【题目点拨】本题考查成比例线段,解题关键是正确理解四条线段a ,b ,c ,d 成比例的定义.二、填空题(每题4分,共24分)13、 (﹣6,﹣3).【分析】根据“在平面直角坐标系中,关于x 轴对称的两点的坐标横坐标相同、纵坐标互为相反数”,即可得解.【题目详解】()6,3P -关于x 轴对称的点的坐标为()6,3--故答案为:()6,3--【题目点拨】本题比较容易,考查平面直角坐标系中关于x 轴对称的两点的坐标之间的关系,是需要识记的内容.14、1【题目详解】解:如图所示,连接OA 、OB ,过O 作OD ⊥AB ,∵多边形ABCDEF 是正六边形,∴∠OAD=60°,∴OD=OA•sin ∠ 解得:AO=1.故答案为1.【题目点拨】本题考查正多边形和圆,掌握解直角三角形的计算是解题关键.15、15π【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【题目详解】解:圆锥的侧面积=π×3×5=15πcm2故答案为:15π.【题目点拨】本题考查圆锥侧面积公式的运用,掌握公式是关键.16、4∶1【解题分析】试题解析:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:1.考点:相似三角形的性质.17、1【分析】依题意得:△AOD∽△BOC,则其对应边成比例,由此求得BC的长度.【题目详解】解:如图,连接AD,BC,∵25AO DOOC OB==,∠AOD=∠BOC,∴△AOD∽△BOC,∴25 AD AOBC CO==,又AD=4cm,∴BC=52AD=1cm.故答案是:1.【题目点拨】本题考查相似三角形的判定与性质的实际应用及分析问题、解决问题的能力.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.18、y=﹣x 2+4.【解题分析】试题解析:开口向下,则0.a <y 轴的交点坐标为()04,,4.c = 这个抛物线可以是2 4.y x =-+故答案为2 4.y x =-+三、解答题(共78分)19、(1)证明见解析;(2)BD=5. 【分析】(1)连接OC ,由已知可得∠BOC=90°,根据SAS 证明△OCE ≌△BFE ,根据全等三角形的对应角相等可得∠OBF=∠COE=90°,继而可证明直线BF 是⊙O 的切线;(2)由(1)的全等可知BF=OC=2,利用勾股定理求出AF 的长,然后由S △ABF =11··22AB BF AF BD =,即可求出BD=5. 【题目详解】解:(1)连接OC ,∵AB 是⊙O 的直径,AC BC =,∴∠BOC=90°,∵E 是OB 的中点,∴OE=BE ,在△OCE 和△BFE 中,OE BE OEC BEF CE EF =⎧⎪∠=∠⎨⎪=⎩,∴△OCE ≌△BFE (SAS ),∴∠OBF=∠COE=90°,∴直线BF 是⊙O 的切线;(2)∵OB=OC=2,由(1)得:△OCE ≌△BFE ,∴BF=OC=2,∴=∴S△ABF=11··22AB BF AF BD,即4×2=25BD,∴BD=455.【题目点拨】本题考查了切线的判定、全等三角形的判定与性质、勾股定理、三角形面积的不同表示方法,熟练掌握相关的性质与定理是解题的关键.20、(1)见解析;(2)见解析;(3)见解析.【分析】可以从特殊四边形着手考虑,平行四边形是中心对称图形但不是轴对称图形,等腰梯形是轴对称图形但不是中心对称图形,正方形既是轴对称图形又是中心对称图形【题目详解】解:如图:21、错误,见解析【分析】根据二次函数的性质和小明的做法,可以判断小明的做法是否正确,然后根据二次函数的性质即可解答本题.【题目详解】解:小明的做法是错误的,正确的做法如下:∵二次函数y=2x2+4x+1=2(x+1)2+1,∴该函数图象开口向上,该函数的对称轴是直线x=﹣1,当x=﹣1时取得最小值,最小值是1,∵﹣2≤x≤﹣1,∴当x=﹣2时取得最大值,此时y=1,当x=﹣1时取得最小值,最小值是y=1,由上可得,当﹣2≤x≤﹣1时,函数y的最小值是1,最大值是1.【题目点拨】本题考查二次函数的性质,关键在于熟记性质.22、 (1)12m =,6n =-;(2)4x >或20x -<<;(3)存在,点D 的坐标是(6,0)或(2或(2.【分析】(1)先把点A(4,3)代入m y x=求出m 的值,再把A(-2,n)代入求出n 即可; (2)利用图象法即可解决问题,写出直线的图象在反比例函数的图象上方的自变量的取值范围即可;(3)先求出直线AB 的解析式,然后分两种情况求解即可:①当AC=AD 时,②当CD=CA 时,其中又分为点D 在点C 的左边和右边两种情况.【题目详解】解:(1)∵反比例函数m y x =过点点A(4,3), ∴43m =, ∴12m =,12y x=, 把2x =-代入12y x =得6y =-, ∴6n =-;(2)由图像可知,不等式m kx b x+>的解集为4x >或20x -<<; (3)设直线AB 的解析式为y=kx+b ,把A(4,3),B(-2,-6),代入得4326k b k b +=⎧⎨-+=-⎩, 解得323k b ⎧=⎪⎨⎪=-⎩, ∴332y x =-, 当y=0时,3032x =-, 解得x=2,∴C(2,0),当AC=AD 时,作AH ⊥x 轴于点H ,则CH=4-2=2,∴CD 1=2CH=4,∴OD 1=2+4=6,∴D 1(6,0),当CD=CA 时,∵AC=()22423-+=13, ∴D 2(2+13,0),D 3(2-13,0),综上可知,点D 的坐标是(6,0)或(2+13,0)或(2-13,0).【题目点拨】本题考查了待定系数法求反比例函数和一次函数解析式,利用函数图象解不等式,等腰三角形的性质,坐标与图形的性质,勾股定理,以及分类讨论的数学思想.熟练掌握待定系数法和分类讨论的数学思想是解答本题的关键.23、(1)见解析;(2)AD =1.【分析】(1)根据切线的性质和等腰三角形的判定证明即可;(2)根据含10°角的直角三角形的性质解答即可.【题目详解】(1)证明:连接OD ,∵∠DAC =10°,AO=OD∴∠ADO =∠DAC =10°,∠DOC =60°∵BD 是⊙O 的切线,∴OD ⊥BD ,即∠ODB =90°,∴∠B =10°,∴∠DAC =∠B ,∴DA =DB ,即△ADB 是等腰三角形.(2)解:连接DC∵∠DAC =∠B =10°,∴∠DOC =60°,∵OD =OC ,∴△DOC 是等边三角形∵⊙O 的切线BD 交AC 的延长线于点B ,切点为D ,∴BC =DC =OC =3, ∴AD =2222(23)(3)3AC DC =-=-.【题目点拨】本题考查切线的判定和性质,解题的关键是根据切线的性质和等腰三角形的判定,以及勾股定理进行解题.24、(1)见解析;(2)DB =5.【分析】(1)根据两角相等的两个三角形相似即可证得结论;(2)根据相似三角形的对应边成比例即可求得AB 的长,进而可得结果. 【题目详解】解:(1)∵∠B =∠ACD ,∠A =∠A ,∴△ABC ∽△ACD ;(2)∵△ABC ∽△ACD ,∴AB AC AC AD =,即664AB =,解得AB =9,∴DB =AB -AD =5. 【题目点拨】本题考查了相似三角形的判定和性质,属于基础题型,熟练掌握相似三角形的判定和性质是解题关键.25、(1)当时,y=34x+3; 当时 y=(x-1)2+2(2)最小值2 (3) 0≤x≤5或7≤x≤2【解题分析】(1)当0≤x≤4时,函数关系式为y=34x+3;当x >4时,函数关系式为y=(x ﹣1)2+2; (2)根据一次函数与二次函数的性质,分别求出自变量在其取值范围内的最小值,然后比较即可;(3)由题意,可得不等式33343364x x ⎧+≥⎪⎪⎨⎪+≤⎪⎩和22(6)23(6)26x x ⎧-+≥⎨-+≤⎩,解答出x 的值即可. 【题目详解】解:(1)由图可知,当0≤x≤4时,y=34x+3; 当x >4时,y=(x ﹣1)2+2;(2)当0≤x≤4时,y=34x+3,此时y 随x 的增大而增大,∴当x=0时,y=34x+3有最小值,为y=3; 当x >4时,y=(x ﹣1)2+2,y 在顶点处取最小值,即当x=1时,y=(x ﹣1)2+2的最小值为y=2;∴所输出的y 的值中最小一个数值为2;(3)由题意得,当0≤x≤4时33343364x x ⎧+≥⎪⎪⎨⎪+≤⎪⎩, 解得,0≤x≤4;当x >4时,22(6)23(6)26x x ⎧-+≥⎨-+≤⎩, 解得,4≤x≤5或7≤x≤2;综上,x 的取值范围是:0≤x≤5或7≤x≤2.26、(1)1010;7979;(2)133526263917,, 【分析】(1)根据最小的“对称数”1001,最大的“对称数”9999即可解答;(2)先解不等式组34214251x x x a--⎧-≤⎪⎨⎪->⎩确定a 的值,然后根据a 和题意确定B ,即可确定M.【题目详解】解:()11010;9999-2020=7979()2由34214251x x x a--⎧-≤⎪⎨⎪->⎩得142a x +<≤,由x 有四个整数解, 得14a -≤<,又a 为千位数字,所以1,2,3a =.设个位数字为b ,由题意可得,十位数字为8b -,故()38a b a b +=+-,4b a =+.故满足题设条件的M 为133526263917,, 【题目点拨】本题考查新定义的概念,读懂题意,掌握据数的特点,确定字母a 取值范围是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 24 页 2019-2020学年山东省枣庄市薛城区九年级上学期期末考试
数学试卷
一.选择题(共12小题,每小题3分,共36分)
1.方程(x +1)2=4的解是( )
A .x 1=﹣3,x 2=3
B .x 1=﹣3,x 2=1
C .x 1=﹣1,x 2=1
D .x 1=1,x 2=3 2.已知a 为锐角,且sin (a ﹣10°)=√32,则a 等于( )
A .50°
B .60°
C .70°
D .80° 3.已知反比例函数y =2x ﹣1,下列结论中,不正确的是( )
A .点(﹣2,﹣1)在它的图象上
B .y 随x 的增大而减小
C .图象在第一、三象限
D .若x <0时,y 随x 的增大而减小
4.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意
摸取一只,恰好两只手套凑成同一双的概率为( )
A .14
B .13
C .12
D .1
5.某药品原价为100元,连续两次降价a %后,售价为64元,则a 的值为( )
A .10
B .20
C .23
D .36
6.将二次函数y =x 2的图象向右平移一个单位长度,再向下平移3个单位长度所得的图象
解析式为( )
A .y =(x ﹣1)2+3
B .y =(x +1)2+3
C .y =(x ﹣1)2﹣3
D .y =(x +1)2﹣3
7.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上且A (﹣3,0),B
(2,b ),则正方形ABCD 的面积是( )
A .20
B .16
C .34
D .25。

相关文档
最新文档