高考数学一轮复习课件第二章 函数、导数及其应用 第11讲 第1课时(1)

合集下载

高考数学大一轮复习配套课时训练:第二篇 函数、导数及其应用 第11节 导数的简单应用(含答案)

高考数学大一轮复习配套课时训练:第二篇 函数、导数及其应用 第11节 导数的简单应用(含答案)

第11节导数的简单应用课时训练练题感提知能【选题明细表】A组一、选择题1.函数f(x)=4x3-3x2-6x+2的极小值为( B )(A)3 (B)-3 (C)(D)-解析:f′(x)=12x2-6x-6=6(x-1)(2x+1),因此f(x)在(-∞,-),(1,+∞)上为增函数,在(-,1)上为减函数,所以函数f(x)在x=1处取到极小值f(1)=-3.故选B.2.(2013广东省六校质检)已知y=x3+bx2+(b+2)x+3是R上的单调增函数,则b的取值范围是( D )(A)b<-1或b>2 (B)b≤-1或b≥2(C)-1<b<2 (D)-1≤b≤2解析:函数y=x3+bx2+(b+2)x+3是R上的增函数,即为其导函数y′=x2+2bx+b+2≥0,x∈R恒成立,所以Δ=4b2-4(b+2)≤0,解得-1≤b≤2,故选D.3.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于( C )(A)11或18 (B)11(C)18 (D)17或18解析:∵函数f(x)=x3+ax2+bx+a2在x=1处有极值10,∴f(1)=10,且f′(1)=0,即解得或而当时,函数在x=1处无极值,故舍去.∴f(x)=x3+4x2-11x+16,∴f(2)=18.故选C.4.函数f(x)=x+2cos x在[0,]上取得最大值时x的值为( B )(A)0 (B)(C)(D)解析:由于f′(x)=1-2sin x,令f′(x)=0得,sin x=,又x∈[0,],所以x=.且f()=+,又f(0)=2,f()=,所以f()为最大值.故选B.5.(2013济宁模拟)若函数h(x)=2x-+在(1,+∞)上是增函数,则实数k的取值范围是( A )(A)[-2,+∞) (B)[2,+∞)(C)(-∞,-2] (D)(-∞,2]解析:因为h′(x)=2+,若h(x)在(1,+∞)上是增函数,则h′(x)≥0在(1,+∞)上恒成立,故2+≥0恒成立,即k≥-2x2恒成立.又x>1,∴-2x2<-2,因此,需k≥-2,故选A.6.(2013湛江毕业班调研)已知函数y=x3-3x+c的图象与x轴恰有两个公共点,则c等于( A )(A)-2或2 (B)-9或3(C)-1或1 (D)-3或1解析:∵y′=3(x+1)(x-1),∴当x=-1或x=1时取得极值,由题意得f(1)=0或f(-1)=0,即c-2=0或c+2=0,解得c=2或c=-2.故选A.7.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为( D )(A)(B) (C)+1 (D)-1解析:f′(x)==,当x>时,f′(x)<0,f(x)单调递减,当-<x<时,f′(x)>0,f(x)单调递增,当x=时,令f(x)==,=<1,不合题意.∴f(x)max=f(1)==,a=-1,故选D.二、填空题8.已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为.解析:∵f′(x)=6x2-12x=6x(x-2),∴f(x)在(-2,0)上单调递增,在(0,2)上单调递减,因此,当x=0时,f(x)取得最大值,即f(0)=m=3,然而f(-2)=-37,f(2)=-5,因此f(x)min=f(-2)=-37.答案:-379.已知函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,函数g(x)=-x3+2x2+mx+5在(-∞,+∞)内单调递减,则实数m= . 解析:由已知得,m2-4=0,∴m=±2.若g(x)在(-∞,+∞)内单调递减,则g′(x)≤0恒成立,即-3x2+4x+m≤0恒成立,亦即3x2-4x-m≥0恒成立.∴Δ=16+12m≤0,解得m≤-,故m=-2.答案:-210.函数f(x)=x3+3ax2+3[(a+2)x+1]有极大值又有极小值,则a的取值范围是.解析:∵f′(x)=3x2+6ax+3(a+2),令f′(x)=0得,x2+2ax+a+2=0,若f(x)有极大值和极小值,则方程x2+2ax+a+2=0有两个不等实数根,∴Δ=4a2-4(a+2)>0.解得a>2或a<-1.答案:(-∞,-1)∪(2,+∞)11.做一个圆柱形锅炉,容积为V,两个底面的材料每单位面积的价格为a元,侧面的材料每单位面积的价格为b元,当造价最低时,锅炉的底面直径与高的比为.解析:设圆柱底面半径为R,高为h,则V=πR2h,则总造价y=2πR2a+2πRhb=2πR2a+2πRb·=2πaR2+,故y′=4πaR-,令y′=0得=.故当=时y取最小值.答案:三、解答题12.(2013浙江五校联考)已知函数f(x)=x3+ax2+bx+c(x∈[-1,2]),且函数f(x)在x=1和x=-处都取得极值.(1)求a,b的值;(2)求函数f(x)的单调递增区间.解:(1)由于f′(x)=3x2+2ax+b,依题意知,f′(1)=0且f′(-)=0,所以解得(2)由(1)知,f(x)=x3-x2-2x+c,f′(x)=3x2-x-2=(3x+2)(x-1).f′(x)>0得,x>1或x<-.又x∈[-1,2],所以f(x)的单调增区间为[-1,- ),(1,2].13.(2013汕头市金山中学第一学期期中考试)某种商品的成本为5元/ 件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:实际销售价x(元)每上涨1元每天销售量就减少10件;而降价后,日销售量Q(件)与实际销售价x(元)满足关系:Q=(1)求总利润(利润=销售额-成本)y(元)与实际销售价x(元)的函数关系式;(2)试问:当实际销售价为多少元时,总利润最大.解:(1)依题意得y==(2)由(1)得,当5<x<7时,y=39·(2x3-39x2+252x-535)y′=234(x2-13x+42)=234(x-6)(x-7),当5<x<6时,y′>0,y=f(x)为增函数,当6<x<7时,y′<0,y=f(x)为减函数,所以f(x)max=f(6)=195.当7≤x<8时,y=6(33-x)∈(150,156],当8≤x≤13时,y=-10(x-9)2+160,当x=9时,y max=160.综上知,当x=6时,总利润最大,最大值为195元.14.设函数f(x)=a2ln x-x2+ax,a>0.(1)求f(x)的单调区间;(2)求所有的实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立.(注:e为自然对数的底数)解:(1)因为f(x)=a2ln x-x2+ax,其中x>0,所以f′(x)=-2x+a=-.由于a>0,所以f(x)的单调增区间为(0,a),单调减区间为(a,+∞).(2)由题意得f(1)=a-1≥e-1,即a≥e.由(1)知f(x)在[1,e]内单调递增,要使e-1≤f(x)≤e2对x∈[1,e]恒成立.只要解得a=e.B组15.(2013潮州市质检)定义域为R的奇函数f(x),当x∈(-∞,0)时,f(x)+xf′(x)<0恒成立,若a=3f(3),b=(logπ3)·f(logπ3),c=-2f(-2),则( A )(A)a>c>b (B)c>b>a(C)c>a>b (D)a>b>c解析:设g(x)=xf(x),依题意得g(x)是偶函数.当x∈(-∞,0)时,f(x)+xf′(x)<0恒成立,即g′(x)<0恒成立,故g(x)在(-∞,0)上单调递减,则g(x)在(0,+∞)上单调递增,a=3f(3)=g(3),b=(logπ3)·f(logπ3)=g(logπ3),c=-2f(-2)=g(-2)=g(2).又logπ3<1<2<3,故a>c>b.故选A.16.(2013中山市期末统考)已知函数f(x)的导数f′(x)=a(x+1)(x-a), 若f(x)在x=a处取得极大值,则a的取值范围为.解析:若a>0时,则x∈(-1,a)时,f′(x)<0,f(x)单调递减;x∈(a,+∞)时,f′(x)>0,f(x)单调递增,所以f(x)在x=a处取得极小值,不适合题意,舍去.若-1<a<0时,则x∈(-1,a)时,f′(x)>0,f(x)单调递增;x∈(a,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)在x=a 处取得极大值,适合题意.若a=-1时,函数没有极值点,不适合题意.若a<-1时,则x∈(-∞,a)时,f′(x)<0,f(x)单调递减;x∈(a,-1)时,f′(x)>0,f(x)单调递增,所以f(x)在x=a处取得极小值,不适合题意.故适合题意的a的取值范围是-1<a<0.答案:(-1,0)。

高考数学(文)一轮复习文档:第二章 基本初等函数、导数及其应用 第11讲导数与函数的单调性 Word版含答案

高考数学(文)一轮复习文档:第二章 基本初等函数、导数及其应用 第11讲导数与函数的单调性 Word版含答案

第11讲导数与函数的单调性,)函数的单调性在(a,b)内函数f(x)可导,f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.辨明导数与函数单调性的关系(1)f′(x)>0(或<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;(2)f′(x)≥0(或≤0)是f(x)在(a,b)内单调递增(或递减)的必要不充分条件.注意:由函数f(x)在区间内单调递增(或递减),可得f′(x)≥0(或≤0)在该区间恒成立,而不是f′(x)>0(或<0)恒成立,“=”不能少.1.教材习题改编函数f(x)的导函数f′(x)有下列信息:①f′(x)>0时,-1<x<2;②f′(x)<0时,x<-1或x>2;③f′(x)=0时,x=-1或x=2.则函数f(x)的大致图象是( )C 根据信息知,函数f(x)在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.2.教材习题改编函数f(x)=x3-3x+1的单调增区间是( )A.(-1,1) B.(-∞,1)C.(-1,+∞) D.(-∞,-1),(1,+∞)D f′(x)=3x2-3.由f′(x)>0得,x<-1或x>1.故单调增区间为(-∞,-1),(1,+∞),故选D.3.教材习题改编函数f(x)=cos x-x在(0,π)上的单调性是( )A.先增后减B.先减后增C.增函数D.减函数D 因为f ′(x )=-sin x -1<0. 所以f (x )在(0,π)上是减函数,故选D.4.教材习题改编函数f (x )=sin x +kx 在(0,π)上是增函数,则实数k 的取值范围为________.因为f ′(x )=cos x +k ≥0, 所以k ≥-cos x ,x ∈(0,π)恒成立. 当x ∈(0,π)时,-1<-cos x <1, 所以k ≥1.k ≥15.教材习题改编函数f (x )=x 2-ax -3在(1,+∞)上是增函数,则实数a 的取值范围是________.f ′(x )=2x -a ,因为f (x )在(1,+∞)上是增函数, 所以2x -a ≥0在(1,+∞)上恒成立. 即a ≤2x ,所以a ≤2.a ≤2利用导数判断或证明函数的单调性已知函数f (x )=ln x -ax 2+(2-a )x .讨论f (x )的单调性. 【解】 f (x )的定义域为(0,+∞).f ′(x )=1x-2ax +(2-a )=-(2x +1)(ax -1)x.①若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. ②若a >0,则由f ′(x )=0得x =1a,且当x ∈(0,1a)时,f ′(x )>0,当x >1a时,f ′(x )<0.所以f (x )在(0,1a )上单调递增,在(1a,+∞)上单调递减.已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0,即a =22时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:(a +a 2-82,+∞)上单调递增.求函数的单调区间求函数f (x )=ln x -12x 2+x -12的单调区间.【解】 因为f (x )=ln x -12x 2+x -12,且定义域为(0,+∞),所以f ′(x )=1x -x +1=-(x -1-52)(x -1+52)x.令f ′(x )=0,所以x 1=1+52,x 2=1-52(舍去).当x ∈(0,1+52)时,f ′(x )>0;当x ∈(1+52,+∞)时,f ′(x )<0,所以函数f (x )的单调递增区间为(0,1+52),单调递减区间为(1+52,+∞).已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调区间. (1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x. 令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )的单调递减区间为(-∞,-4),(-1,0),单调递增区间为(-4,-1),(0,+∞).函数单调性的应用(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.高考对函数单调性的考查主要有以下两个命题角度: (1)已知函数单调性求参数的取值范围; (2)比较大小或解不等式.(1)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2]B .(-∞,-1]C . 因为函数f (x )=kx -ln x ,所以f ′(x )=k -1x,函数在区间(1,+∞)上单调递减,则f ′(x )≤0在(1,+∞)上恒成立,即k -1x≤0在区间(1,+∞)上恒成立,故k ≤1x在区间(1,+∞)上恒成立,因为在区间(1,+∞)上0<1x<1,故k ≤0.(1)利用函数的单调性求参数的取值范围的解题思路①由函数在区间上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间上恒成立列出不等式.②利用分离参数法或函数的性质求解恒成立问题.③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别点处有f ′(x )=0,则参数可取这个值.(2)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.(1)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.(2)注意函数的单调区间与函数在某区间上具有单调性是不同的.角度一 已知函数单调性求参数的取值范围1.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. (2,3]角度二 比较大小或解不等式2.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .D .(0,8)B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f ≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9., )——分类讨论思想研究函数的单调性已知函数f (x )=(ax 2-x +a )e x,试讨论函数f (x )的单调性. 【解】 f ′(x )=(x +1)(ax +a -1)e x.当a =0时,f ′(x )在(-∞,-1)上时,f ′(x )>0,f (x )在(-∞,-1)上单调递增;f ′(x )在(-1,+∞)上时,f ′(x )<0,f (x )在(-1,+∞)上单调递减.当a >0时,因为-1+1a >-1,所以f (x )在(-∞,-1)和(-1+1a,+∞)上单调递增,在(-1,-1+1a)上单调递减;当a <0时,因为-1+1a <-1,所以f (x )在(-∞,-1+1a)和(-1,+∞)上单调递减,在(-1+1a,-1)上单调递增.(1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.(2)本题求解中分a >0,a =0,a <0三种情况讨论.已知函数f (x )=a ln x +12x 2-(1+a )x .求函数f (x )的单调区间.f ′(x )=a x +x -(1+a )=x 2-(1+a )x +a x =(x -1)(x -a )x.当a ≤0时,若0<x <1,则f ′(x )<0,若x >1,则f ′(x )>0,故此时函数f (x )的单调递减区间是(0,1),单调递增区间是(1,+∞);当0<a <1时,f ′(x ),f (x )的变化情况如下表:当a =1时,f ′(x )=(x -1)2x≥0,所以函数f (x )的单调递增区间是(0,+∞);当a >1时,同0<a <1时的解法,可得函数f (x )的单调递增区间是(0,1),(a ,+∞),单调递减区间是(1,a )., )1.函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)D 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D.2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )D 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.3.若函数f (x )=x 3-tx 2+3x 在区间上单调递减,则实数t 的取值范围是( ) A .(-∞,518]B .(-∞,3]C .[518,+∞)D . f ′(x )=3x 2-2tx +3,由于f (x )在区间上单调递减,则有f ′(x )≤0在上恒成立,即3x 2-2tx +3≤0在上恒成立,则t ≥32(x +1x )在上恒成立,因为y =32(x +1x )在上单调递增,所以t ≥32(4+14)=518,故选C.4.已知函数f (x )=x sin x ,x ∈R ,则f ⎝ ⎛⎭⎪⎫π5,f (1),f ⎝ ⎛⎭⎪⎫-π3的大小关系为( )A .f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5B .f (1)>f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5C .f ⎝ ⎛⎭⎪⎫π5>f (1)>f ⎝ ⎛⎭⎪⎫-π3D .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5>f (1) A 因为f (x )=x ·sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ).所以函数f (x )是偶函数,所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3. 又x ∈⎝⎛⎭⎪⎫0,π2时,得f ′(x )=sin x +x cos x >0,所以此时函数是增函数.所以f ⎝ ⎛⎭⎪⎫π5<f (1)<f ⎝ ⎛⎭⎪⎫π3. 所以f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5,故选A. 5.(2017·郑州第一次质量预测) 已知定义在R 上的函数f (x )满足f (-3)=f (5)=1,f ′(x )为f (x )的导函数,且导函数y =f ′(x )的图象如图所示,则不等式f (x )<1的解集是( )A .(-3,0)B .(-3,5)C .(0,5)D .(-∞,-3)∪(5,+∞)B 依题意得,当x >0时,f ′(x )>0,f (x )是增函数;当x <0时,f ′(x )<0,f (x )是减函数.又f (-3)=f (5)=1,因此不等式f (x )<1的解集是(-3,5).6.已知f (x )=ax 3,g (x )=9x 2+3x -1,当x ∈时,f (x )≥g (x )恒成立,则a 的取值范围为( )A .a ≥11B .a ≤11C .a ≥418D .a ≤418A f (x )≥g (x )恒成立,即ax 3≥9x 2+3x -1.因为x ∈,所以a ≥9x +3x 2-1x 3.令1x=t ,则当t ∈⎣⎢⎡⎦⎥⎤12,1时,a ≥9t +3t 2-t 3.令h (t )=9t +3t 2-t 3,h ′(t )=9+6t -3t 2=-3(t -1)2+12.所以h ′(t )在⎣⎢⎡⎦⎥⎤12,1上是增函数.所以h ′(t )min =h ′⎝ ⎛⎭⎪⎫12=-34+12>0. 所以h (t )在⎣⎢⎡⎦⎥⎤12,1上是增函数.所以a ≥h (1)=11,故选A.7.函数y =12x 2-ln x 的单调递减区间为________.对于函数y =12x 2-ln x ,易得其定义域为{x |x >0},y ′=x -1x =x 2-1x ,令x 2-1x<0,又x >0,所以x 2-1<0,解得0<x <1,即函数y =12x 2-ln x 的单调递减区间为(0,1).(0,1)8.若函数f (x )=13x 3-32x 2+ax +4恰在上单调递减,则实数a 的值为________.因为f (x )=13x 3-32x 2+ax +4,所以f ′(x )=x 2-3x +a ,又函数f (x )恰在上单调递减, 所以-1,4是f ′(x )=0的两根, 所以a =(-1)×4=-4. -49.(2017·石家庄二中开学考试)已知函数f (x )=ln x +2x,若f (x 2+2)<f (3x ),则实数x 的取值范围是________.由题可得函数定义域为(0,+∞),f ′(x )=1x+2xln 2,所以在定义域内f ′(x )>0,函数单调递增,所以由f (x 2+2)<f (3x )得x 2+2<3x ,所以1<x <2.(1,2)10.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).(-3,0)∪(0,+∞)11.设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)求函数f (x )的单调区间.(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0. (2)由(1)得,f ′(x )=x 2-ax =x (x -a ).①当a =0时,f ′(x )=x 2≥0恒成立,即函数f (x )在(-∞,+∞)内为单调增函数. ②当a >0时,由f ′(x )>0得,x >a 或x <0;由f ′(x )<0得0<x <a .即函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). ③当a <0时,由f ′(x )>0得,x >0或x <a ;由f ′(x )<0得,a <x <0.即函数f (x )的单调递增区间为(-∞,a ),(0,+∞),单调递减区间为(a ,0).12.(2017·河北省衡水中学模拟)已知函数f (x )=⎝ ⎛⎭⎪⎫x +a x e x,a ∈R . (1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a =-1时,求证:f (x )在(0,+∞)上为增函数.函数f (x )的定义域为{x |x ≠0},f ′(x )=x 3+x 2+ax -a x 2e x . (1)当a =0时,f (x )=x ·e x ,f ′(x )=(x +1)e x,所以f (1)=e ,f ′(1)=2e.所以曲线y =f (x )在点(1,f (1))处的切线方程是y -e =2e(x -1),即2e x -y -e =0. (2)证明:当a =-1时,f ′(x )=x 3+x 2-x +1x 2e x (x >0). 设g (x )=x 3+x 2-x +1,则g ′(x )=3x 2+2x -1=(3x -1)(x +1).令g ′(x )=(3x -1)(x +1)>0,得x >13. 令g ′(x )=(3x -1)(x +1)<0,得0<x <13. 所以函数g (x )在⎝ ⎛⎭⎪⎫0,13上是减函数,在⎝ ⎛⎭⎪⎫13,+∞上是增函数, 所以函数g (x )在x =13处取得最小值, 且g ⎝ ⎛⎭⎪⎫13=2227>0. 所以g (x )在(0,+∞)上恒大于零.于是,当x ∈(0,+∞)时,f ′(x )=x 3+x 2-x +1x 2e x >0恒成立.所以当a=-1时,函数f(x)在(0,+∞)上为增函数.13.已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)函数f(x)是否为R上的单调函数?若是,求出a的取值范围;若不是,请说明理由. (1)当a=2时,f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x<2,所以函数f(x)的单调递增区间是(-2,2).(2)若函数f(x)在R上单调递减,则f′(x)≤0对任意x∈R都成立.即e x≤0对任意x∈R都成立.因为e x>0,所以x2-(a-2)x-a≥0对任意x∈R都成立.所以Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.故函数f(x)不可能在R上单调递减.若函数f(x)在R上单调递增,则f′(x)≥0对任意x∈R都成立,即e x≥0对任意x∈R都成立.因为e x>0,所以x2-(a-2)x-a≤0对任意x∈R都成立.而Δ=(a-2)2+4a=a2+4>0,故函数f(x)不可能在R上单调递增.综上可知函数f(x)不是R上的单调函数.。

高考数学一轮总复习第二章函数概念与基本初等函数第11讲函数模型及其应用课件文

高考数学一轮总复习第二章函数概念与基本初等函数第11讲函数模型及其应用课件文

【解析】 (1)由图象可求得一次函数的解析式为 y=30x-570,令 30x-570 =0,解得 x=19. (2)设每个售价定为 x 元,则利润 y=(x-80)·[400-(x-90)·20]=-20[(x- 95)2-225]. 所以当 x=95 时,y 最大. 【答案】 (1)19 (2)95
利用函数图象刻画实际问题
(师生共研)
(2020·高考北京卷)为满足人民对美好
生活的向往,环保部门要求相关企业加强污
水治理,排放未达标的企业要限期整改.设
企业的污水排放量 W 与时间 t 的系为 W=f(t),用-f(b)b- -fa(a)的大小评价在a,b这段时间内企业污水治理能
力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图
【解析】 (1)设老师上课时声音强度,一般两人小声交谈时声音强度分别 为 x1 W/m2,x2 W/m2, 根据题意得 d(x1)=9lg1×x110-13=63, 解得 x1=10-6, d(x2)=9lg1×x120-13=54, 解得 x2=10-7,所以xx12=10, 所以老师上课时声音强度约为一般两人小声交谈时声音强度的 10 倍,故选 B.
√A.10 %
C.50 %
B.30 % D.100 %
解析:将信噪比NS从 1000 提升至 2000,C 大约增加了
Wlog2(1+2 000)-Wlog2(1+1 000) Wlog2(1+1 000)
=log22
001-log21 log21 001
001≈10.9697.9-679.967≈10%,故选
A.2 023 年
B.2 024 年
√C.2 025 年
D.2 026 年
【解析】 根据题意,知每年投入的研发资金增长的百分率相同,所以, 从 2 021 年起,每年投入的研发资金组成一个等比数列{an},其中,首项 a1 =130,公比 q=1+12%=1.12,所以 an=130×1.12n-1.由 130×1.12n-1>200, 两边同时取对数,得 n-1>lg l2g-1l.1g21.3,又lg l2g-1l.1g21.3≈0.300-.050.11=3.8, 则 n>4.8,即 a5 开始超过 200,所以 2 025 年投入的研发资金开始超过 200 万元,故选 C.

高考数学一轮复习 第2章 函数、导数及其应用 2.11 导数在研究函数中的应用(一)课后作业 文-人

高考数学一轮复习 第2章 函数、导数及其应用 2.11 导数在研究函数中的应用(一)课后作业 文-人

2.11 导数在研究函数中的应用(一)[重点保分 两级优选练]A 级一、选择题1.(2017·某某模拟)函数f (x )=axx 2+1(a >0)的单调递增区间是( )A .(-∞,-1)B .(-1,1)C .(1,+∞) D.(-∞,-1)∪(1,+∞) 答案 B解析 函数f (x )的定义域为R ,f ′(x )=a 1-x 2x 2+12=a 1-x 1+xx 2+12.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1).故选B.2.若函数f (x )=(x 2-2x )e x在(a ,b )上单调递减,则b -a 的最大值为( ) A .2 B. 2 C .4 D .2 2 答案 D解析 f ′(x )=(2x -2)e x +(x 2-2x )e x =(x 2-2)e x,令f ′(x )<0,∴-2<x <2, 即函数f (x )的单调递减区间为(-2,2). ∴b -a 的最大值为2 2.故选D.3.函数f (x )=(x -1)(x -2)2在[0,3]上的最小值为( ) A .-8 B .-4 C .0 D.427答案 B解析 f ′(x )=(x -2)2+2(x -1)(x -2)=(x -2)(3x -4).令f ′(x )=0⇒x 1=43,x 2=2,结合单调性,只要比较f (0)与f (2)即可.f (0)=-4,f (2)=0.故f (x )在[0,3]上的最小值为f (0)=-4.故选B.4.(2017·豫南九校联考)已知f ′(x )是定义在R 上的连续函数f (x )的导函数,满足f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞) 答案 A 解析 设g (x )=f xe2x,则g ′(x )=f ′x -2f xe2x<0在R 上恒成立,所以g (x )在R 上递减,又因为g (-1)=0,f (x )>0⇔g (x )>0,所以x <-1.故选A.5.(2017·某某某某一中期末)f (x )=x 2-a ln x 在(1,+∞)上单调递增,则实数a 的取值X 围为( )A .a <1B .a ≤1 C.a <2 D .a ≤2 答案 D解析 由f (x )=x 2-a ln x ,得f ′(x )=2x -a x, ∵f (x )在(1,+∞)上单调递增,∴2x -a x≥0在(1,+∞)上恒成立,即a ≤2x 2在(1,+∞)上恒成立, ∵x ∈(1,+∞)时,2x 2>2,∴a ≤2.故选D.6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( ) A .a <b <c B .c <a <b C .c <b <a D .b <c <a 答案 B解析 由f (x )=f (2-x )可得对称轴为x =1,故f (3)=f (1+2)=f (1-2)=f (-1). 又x ∈(-∞,1)时,(x -1)f ′(x )<0,可知f ′(x )>0.即f (x )在(-∞,1)上单调递增,f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12,即c <a <b .故选B. 7.若函数f (x )=e -x·x ,则( ) A .仅有极小值12eB .仅有极大值12eC .有极小值0,极大值12eD .以上皆不正确答案 B解析 f ′(x )=-e -x·x +12x·e -x=e -x⎝ ⎛⎭⎪⎫-x +12x =e -x ·1-2x 2x. 令f ′(x )=0,得x =12.当x >12时,f ′(x )<0;当x <12时,f ′(x )>0.∴x =12时取极大值,f ⎝ ⎛⎭⎪⎫12=1e·12=12e.故选B. 8.已知函数f (x )=ax-1+ln x ,若存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值X 围是( )A .a >2B .a <3C .a ≤1 D.a ≥3 答案 C解析 函数f (x )的定义域是(0,+∞),不等式a x-1+ln x ≤0有解,即a ≤x -x ln x 在(0,+∞)上有解,令h (x )=x -x ln x ,可得h ′(x )=1-(ln x +1)=-ln x ,令h ′(x )=0,可得x =1,当0<x <1时,h ′(x )>0,当x >1时,h ′(x )<0,可得当x =1时,函数h (x )=x -x ln x 取得最大值1,要使不等式a ≤x -x ln x 在(0,+∞)上有解,只要a 小于等于h (x )的最大值即可,即a ≤1.故选C.9.若函数f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则实数a 的取值X 围为( )A .[2,+∞) B.[4,+∞) C .{4} D .[2,4] 答案 C解析 f ′(x )=3ax 2-3,当a ≤0时,f (x )min =f (1)=a -2≥0,a ≥2,不合题意;当0<a ≤1时,f ′(x )=3ax 2-3=3a ⎝⎛⎭⎪⎫x +1a ⎝ ⎛⎭⎪⎫x -1a ,f (x )在[-1,1]上为减函数,f (x )min =f (1)=a -2≥0,a ≥2,不合题意;当a >1时,f (-1)=-a +4≥0,且 f ⎝ ⎛⎭⎪⎫1a =-2a+1≥0, 解得a =4.综上所述,a =4.故选C.10.(2018·某某一模)已知函数f (x )=m ⎝ ⎛⎭⎪⎫x -1x -2ln x (m ∈R ),g (x )=-m x,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值X 围是( )A.⎝⎛⎦⎥⎤-∞,2e B.⎝ ⎛⎭⎪⎫-∞,2eC .(-∞,0]D .(-∞,0) 答案 B解析 由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2ln x 在[1,e]上有解,即m 2<ln xx在[1,e]上有解,令h (x )=ln x x ,则h ′(x )=1-ln xx2,当1≤x ≤e 时,h ′(x )≥0,∴在[1,e]上,h (x )max =h (e)=1e ,∴m 2<1e ,∴m <2e .∴m 的取值X 围是⎝⎛⎭⎪⎫-∞,2e .故选B.二、填空题11.已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值X 围为________.答案 [1,+∞)解析 f ′(x )=mx +1x-2≥0对一切x >0恒成立.m ≥-⎝ ⎛⎭⎪⎫1x 2+2x ,令g (x )=-⎝ ⎛⎭⎪⎫1x 2+2x,则当1x =1时,函数g (x )取得最大值1,故m ≥1.12.(2017·西工大附中质检)已知f (x )是奇函数,且当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值是1,则a =________.答案 1解析 由题意,得x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12有最大值-1,f ′(x )=1x -a ,由f ′(x )=0,得x =1a ∈(0,2),且x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,f (x )单调递增,x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0,f (x )单调递减,则f (x )max =f ⎝ ⎛⎭⎪⎫1a =ln 1a -1=-1,解得a =1.13.(2018·东北三校联考)已知定义在R 上的奇函数f (x )的图象为一条连续不断的曲线,f (1+x )=f (1-x ),f (1)=a ,且当0<x <1时,f (x )的导函数f ′(x )满足f ′(x )<f (x ),则f (x )在[2017,2018]上的最小值为________.答案 a解析 由f (1+x )=f (1-x )可得函数f (x )的图象关于直线x =1对称.又f (x )是定义在R 上的奇函数,则f (0)=0,且f (x )的图象关于点(0,0)对称,所以f (x )是以4为周期的周期函数,则f (x )在[2017,2018]上的图象与[1,2]上的图象形状完全相同.令g (x )=f xex,则g ′(x )=f ′x -f xex<0,函数g (x )在(0,1)上递减,则g (x )<g (0)=0,所以f ′(x )<f (x )<0,则函数f (x )在(0,1)上单调递减.又由函数的对称性质可得f (x )在(1,2)上单调递增,则f (x )在[2017,2018]上的最小值为f (2017)=f (1)=a .14.(2018·启东中学调研)已知函数f (x )=e x+a ln x 的定义域是D ,关于函数f (x )给出下列命题:①对于任意a ∈(0,+∞),函数f (x )是D 上的减函数; ②对于任意a ∈(-∞,0),函数f (x )存在最小值;③存在a ∈(0,+∞),使得对于任意的x ∈D ,都有f (x )>0成立; ④存在a ∈(-∞,0),使得函数f (x )有两个零点.其中正确命题的序号是________.(写出所有正确命题的序号) 答案 ②④解析 由f (x )=e x+a ln x ,可得f ′(x )=e x +a x,若a >0,则f ′(x )>0,得函数f (x )是D 上的增函数,存在x ∈(0,1),使得f (x )<0即得命题①③不正确;若a <0,设e x+a x=0的根为m ,则在(0,m )上f ′(x )<0,在(m ,+∞)上f ′(x )>0,所以函数f (x )存在最小值f (m ),即命题②正确;若f (m )<0,则函数f (x )有两个零点,即命题④正确.综上可得,正确命题的序号为②④.B 级三、解答题15.已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )的单调增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1a.当0<x <1a 时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎥⎤0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a,+∞.综上得,当a ≤0时,f (x )的单调递增区间为(0,+∞),无递减区间;当a >0时,f (x )的单调递增区间为⎝⎛⎦⎥⎤0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞. (2)①当1a≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,∴f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,∴f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,∴当12<a <ln 2时,f (x )的最小值是f (1)=-a ;当ln 2≤a <1时,f (x )的最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a . 16.(2017·某某某某联考)已知函数f (x )=e x-ax ,a >0. (1)记f (x )的极小值为g (a ),求g (a )的最大值; (2)若对任意实数x 恒有f (x )≥0,求a 的取值X 围.解 (1)函数f (x )的定义域是(-∞,+∞),f ′(x )=e x-a ,令f ′(x )>0,得x >ln a , 所以f (x )的单调递增区间是(ln a ,+∞); 令f ′(x )<0,得x <ln a ,所以f (x )的单调递减区间是(-∞,ln a ), 函数f (x )在x =ln a 处取极小值,g (a )=f (x )极小值=f (ln a )=e ln a -a ln a =a -a ln a . g ′(a )=1-(1+ln a )=-ln a ,当0<a <1时,g ′(a )>0,g (a )在(0,1)上单调递增; 当a >1时,g ′(a )<0,g (a )在(1,+∞)上单调递减,所以a =1是函数g (a )在(0,+∞)上唯一的极大值点,也是最大值点,所以g (a )max =g (1)=1.(2)当x ≤0时,a >0,e x-ax ≥0恒成立, 当x >0时,f (x )≥0,即e x-ax ≥0,即a ≤e xx.令h (x )=e x x ,x ∈(0,+∞),h ′(x )=e x x -e x x2=exx -1x 2, 当0<x <1时,h ′(x )<0,当x >1时,h ′(x )>0,故h (x )的最小值为h (1)=e , 所以a ≤e,故实数a 的取值X 围是(0,e].17.(2017·某某湘中名校联考)设函数f (x )=x -1x-a ln x (a ∈R ).(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1和x 2,记过点A (x 1,f (x 1)),B (x 2,f (x 2))的直线的斜率为k ,问:是否存在a ,使得k =2-a ?若存在,求出a 的值;若不存在,请说明理由.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1+1x 2-a x =x 2-ax +1x 2.令g (x )=x 2-ax +1,则方程x 2-ax +1=0的判别式Δ=a 2-4. ①当|a |≤2时,Δ≤0,f ′(x )≥0,故f (x )在(0,+∞)上单调递增.②当a <-2时,Δ>0,g (x )=0的两根都小于0,在(0,+∞)上恒有f ′(x )>0,故f (x )在(0,+∞)上单调递增.③当a >2时,Δ>0,g (x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42,当0<x <x 1时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0, 故f (x )在(0,x 1),(x 2,+∞)上单调递增,在(x 1,x 2)上单调递减. (2)由(1)知,a >2.因为f (x 1)-f (x 2)=(x 1-x 2)+x 1-x 2x 1x 2-a (ln x 1-ln x 2), 所以k =f x 1-f x 2x 1-x 2=1+1x 1x 2-a ·ln x 1-ln x 2x 1-x 2.又由(1)知,x 1x 2=1.于是k =2-a ·ln x 1-ln x 2x 1-x 2.若存在a ,使得k =2-a .则ln x 1-ln x 2x 1-x 2=1.即ln x1-ln x2=x1-x2.亦即x2-1x2-2ln x2=0(x2>1).(*)再由(1)知,函数h(t)=t-1t-2ln t在(0,+∞)上单调递增,而x2>1,所以x2-1x2-2ln x2>1-11-2ln 1=0.这与(*)式矛盾.故不存在a,使得k=2-a.。

高考数学一轮复习第二章函数导数及其应用2111导数的应用课件理新人教A版

高考数学一轮复习第二章函数导数及其应用2111导数的应用课件理新人教A版
答案 -32 3
解法一:因为 f(x)=2sinx+sin2x=2sinx(1+cosx),所以[f(x)]2=4sin2x(1 +cosx)2=4(1-cosx)(1+cosx)3,设 cosx=t,则 y=4(1-t)(1+t)3(-1≤t≤1), 所以 y′=4[-(1+t)3+3(1-t)(1+t)2]=4(1+t)2(2-4t),所以当-1<t<21时, y′>0;当21<t<1 时,y′<0。所以函数 y=4(1-t)(1+t)3(-1≤t≤1)在-1,21 上单调递增,在12,1上单调递减,所以当 t=12时,ymax=247;当 t=±1 时, ymin=0。所以 0≤y≤247,即 0≤[f(x)]2≤247,所以-32 3≤f(x)≤32 3,所以 f(x)的最小值为-32 3。
(ⅱ)当 0<2a<1,即 0<a<2 时,由 f′(x)>0,得 0<x<a2或 x>1; 由 f′(x)<0,得a2<x<1。 则函数 f(x)的单调递增区间为0,a2,(1,+∞), 函数 f(x)的单调递减区间为a2,1。 (ⅲ)当2a=1,即 a=2 时,f′(x)≥0 恒成立,则函数 f(x)的单调递增区 间为(0,+∞)。
2.函数的极值与导数
(1)函数的极小值
若函数 y=f(x)在点 x=a 处的函数值 f(a)比它在点 x=a 附近其他点的函数
值 都小
,且 f′(a)=0,而且在点 x=a 附近的左侧 f′(x)<0 ,右
侧 f′(x)>0 ,则 x=a 叫做函数的极小值点,f(a)叫做函数的极小值。
(2)函数的极大值
1.函数 f(x)在区间(a,b)上递增,则 f′(x)≥0,“f′(x)>0 在(a,b)上成 立”是“f(x)在(a,b)上单调递增”的充分不必要条件。

高考数学一轮复习课件第二章 函数、导数及其应用 第11讲

高考数学一轮复习课件第二章 函数、导数及其应用 第11讲
精准高考
数学
文理(合订)
第二章
函数、导数及其应用
第十一讲 利用导数研究函数的单调性、极值、
1 考纲解 2 知识梳
第二章 函数、导数及其应用

理 ( 合
考纲解读


第二章 函数、导数及其应用
考点展示 考查频率
考纲要求

了解函数的单调性和导数的关
函数的单 ★★★★☆ 系:能利用导数研究函数单调 1.内容
第二章 函数、导数及其应用
1.下列结论正确的个数为 导学号 30070516 ( C )
(1)若函数 f(x)在(a,b)内恒有 f′(x)>0,那么 f(x)在(a,b)上单
若函数 f(x)在(a,b)内单调递增,那么一定有 f′(x)>0.
文 理 (
(2)函数 y=12x2-lnx 的单调减区间为(-1,1).

订 )
(3)在函数 y=f(x)中,若 f′(x0)=0,则 x=x0 一定是函数 y=
(4)函数的极大值不一定比极小值大.
(5)函数的最大值不一定是极大值,函数的最小值也不一定是
A.0
B.1
C.2
[解析] (1)(2)(3)不正确,(4)(5)正确,故选C.
D.3
第二章 函数、导数及其应用
2 . (2016·苏 中 八 校 学 情 调 查 ) 函 数 f(x) = x - lnx 的 单
导,求f(x)在[a,b]上的最大值与最小值的步骤如下:


(1)求f(x)在(a,b)内的__极__值;
(2)将f(x)的各__极__值与____f(_a_)_,__f(_b_)__比较,其中最大的一
小的一个是最小值.

高考数学一轮复习 第二章 函数、导数及其应用 2.1 函数及其表示课件

高考数学一轮复习 第二章 函数、导数及其应用 2.1 函数及其表示课件

12/11/2021
第二十九页,共四十六页。
考点三 分段函数
命题方向 1 分段函数求值问题
x+1,x≥0,
【例 5】 (1)设函数 f(x)=21x,x<0,
则 f(f(-1))=( D )
A.32
B. 2+1
C.1
D.3
(2)已知函数 f(x)=2fxx,-x1<2,,x≥2,
7 则 f(log27)=____2____.
12/11/2021
第三十页,共四十六页。
【解析】 (1)由题意可得 f(-1)=21-1=2,∴f(f(-1))=f(2) =3,故选 D.
(2)因为 2<log27<3,所以 1<log27-1<2, 所以 f(log27)=f(log27-1)=2log27-1 =2log27 ÷2=72.
12/11/2021
第九页,共四十六页。
解析:(1)错误.函数 y=1 的定义域为 R,而 y=x0 的定义 域为{x|x≠0},其定义域不同,故不是同一函数.
(2)错误.值域 C⊆B,不一定有 C=B.
(3)错误.f(x)= x-3+ 2-x中 x 不存在. (4)错误.当两个函数的定义域、对应法则均对应相同时, 才是相等函数.
函数的性质有很重要的作用.
12/11/2021
第三页,共四十六页。
01知识梳理(shūlǐ)·诊断自测 03微突破·提升素养
02考点(kǎo diǎn)探究·明晰 规律
课时(kèshí)作业
12/11/2021
第四页,共四十六页。
01 知识梳理 诊断自测
课前热身 稳固根基
12/11/2021
第五页,共四十六页。

高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件

高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件

结合具体函数,了解函数奇偶性的含义. 奇偶性
知识点
指数与指 数函 数
对数与对 数函 数
考纲下载
1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运
算.
3.理解指数函数的概念,理解指数函数的单调性与指数函数图象通 过的特殊点.
4.知道指数函数是一类重要的函数模型.
• 4.函数的表示法: 解析法 、
图象法 、 列表法 .
• 5.分段函数 • 若函数在其定义域的不同子集上,因 对应关系不 同 而 分 别 用 几 个 不
同的式子来表示.这种函数称为分段函数.分段函数虽由几个部分组 成,但它表示的是 一个 函数.
1.函数y= x-1+ln(2-x)的定义域是( )
• 1.求函数定义域的步骤
• 对于给出具体解析式的函数而言,函数的定义域就是使函数解析式有
意义的自变量x取值的集合,求解时一般是先寻找解析式中的限制条 件,建立不等式,再解不等式求得函数定义域,当函数y=f(x)由实际 问题给出时,注意自变量x的实际意义.
• 2.求抽象函数的定义域时:
• (1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不 等式a≤g(x)≤b求出.
(3)在f(x)=2f1x x-1中,用1x代替x, 得f1x=2f(x) 1x-1, 将f1x=2fxx-1代入f(x)=2f1x x-1中, 可求得f(x)=23 x+13.
• 【变式训练】 2.(1)已知f(1-cos x)=sin2x,求f(x); • (2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的
知识点
考纲下载
1.了解构成函数的要素;了解映射的概念.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 函数、导数及其应用
考点3 由参数的单调性求参数的取值范围
已知函数 f(x)=e2x-e1x-ax(a∈R). 导学号 30070737
文 理
(1)当 a=32时,求函数 f(x)的单调区间;

合 订 )
(2)若函数 f(x)在[-1,1]上为单调函数,求实数 a 的取值范围
第二章 函数、导数及其应用
精准高考
数学
文理(合订)
第二章
函数、导数及其应用
第十一讲 利用导数研究函数的单调性、极值、
第一课时 利用导数研究函数的单调
1 考点突 2 思想方 3 复习练
第二章 函数、导数及其应用

考点突破





第二章 函数、导数及其应用
考点1 求函数的单调区间
求下列函数的单调区间. 导学号 30070733
为[2-a2a,0].
第二章 函数、导数及其应用
规律方法 ☞
(1)研究含参数的函数的单调性,要依据参数对不等式解集的
讨论.

(2)划分函数的单调区间时,要在函数定义域内讨论,还要确

( 合
和函数的间断点.


(3)个别导数为0的点不影响在区间的单调性,如f(x)=x3,f′
=0在x=0时取到),f(x)在R上是函数.
(4) 所 求 函 数 的 单 调 区 间 不 止 一 个 , 这 些 区 间 之 间 不 能 用
“或”连接,只能用“,”“和”字隔开.
(5)研究函数的单调性一定要关注定义域.
第二章 函数、导数及其应用
考点2 讨论函数的单调性
(改编题)已知函数 f(x)=(a-1)lnx+ax2+1. 导学号
讨论函数 f(x)的单调性.
∵函数 f(x)在[-1,1]上为单调函数,若函数在[-1,1]上单调递

理 ( 合 订
t∈[1e,e]恒成立,所以 a≤ 2;若函数 f(x)在[-1,1]上单调递减,
(1)(2015·高考广东卷改编)f(x)=(1+x2)ex-a;
文 理 ( 合
(2)(2014·高考湖北卷改编)f(x)=lnxx.


[解析] (1)f′(x)=ex(1+x2+2x)=ex(x+1)2≥0 恒成立,
因此 f(x)的单调增区间为(-∞,+∞).
第二章 函数、导数及其应用
(2)f′(x)=1-x2lnx,
规律方法 ☞
利用导数求函数单调性的方法
(1)当导函数不等式可解时,解不等式f′(x)>0或f′(x)<0求出单
(2)当方程f′(x)=0可解时,解出方程的实根,按实根把函数
间,确定各区间f′(x)的符号,从而确定单调区间.

理 ( 合
(3)若导函数的方程、不等式都不可解,根据f′(x)结构特征

) 质确定f′(x)的符号,从而确定单调区间.
[解析] (1)当 a=32时,f(x)=e2x-e1x-32x,
f′(x)=21ex[(ex)2-3ex+2]=21ex(ex-1)(ex-2),
文 理
令 f′(x)=0,得 ex=1 或 ex=2,即 x=0 或 x=ln2;

合 订
令 f′(x)>0,得 x<0 或 x>ln2;

令 f′(x)<0,则 0<x<ln2.
第二章 函数、导数及其应用
(2)令 f′(x)=0,解得 x1=0,x2=2-a2a.
①当 0<a<1 时,f(x)的单调递增区间为(-∞,0]和[2-a2a,
文 区间为[0,2-a2a];

( 合
②当 a=1 时,f(x)在(-∞,+∞)内单调递增;


③当 a>1 时,f(x)的单调递增区间为(-∞,2-a2a]和[0,+∞
∴f(x)在(-∞,0],[ln2,+∞)上单调递增,在(0,ln2)上单
第二章 函数、导数及其应用
(2)f′(x)=e2x+e1x-a,
令 ex=t,由于 x∈[-1,1],∴t∈[1e,e].
令 h(t)=2t +1t (t∈[1e,e]),
文 理 ( 合
h′(t)=12-t12=t22-t22,
(1)若曲线 y=f(x)在 x=2 处的切线与直线 x-e2y+1=0 垂直
(2)讨论 f(x)的单调性.
文 理 (
[答案] (1)38 (2)见解析

订 )
[解析] 由题意得 f′(x)=ex[ax2+(2a-2)x](a>0).
(1)由题意,得 f′(2)·e12=-1,
即 e2(8a-4)·e12=-1,解得 a=38.
第二章 函数、导数及其应用
﹝探究训练 1﹞
(2016·雅安模拟)函数 f(x)=3+xlnx 的单调递减区间是 导学号
A.(1e,e)
B.(0,1e)

理 ( 合 订
C.(-∞,1e)

D.(1e,+∞)
[解析] f′(x)=lnx+1,解 f′(x)<0,得 0<x<1e.故选 B.
第二章 函数、导数及其应用


∴当 t∈[1e, 2)时,h′(t)<0,函数 h(t)为单调减函数;
当 t∈( 2,e)时,h′(t)>0,函数 h(t)为单调增函数.
故 h(t)在[1e,e]上的极小值点为 t= 2且 h( 2)= 2.
第二章 函数、导数及其应用
又 h(e)=2e+1e<h(1e)=21e+e, ∴ 2≤h(t)≤e+21e.
f′(x)<0;当 x∈( 1- 2aa,+∞)时,f′(x)>0,故 f(x)在(0, 1文 理在[ Nhomakorabea(
1- 2aa,+∞)上单调递增.



[答案] (0, 1- 2aa]上单调递减,在[
1- 2aa,+∞)上单调
第二章 函数、导数及其应用
﹝探究训练 2﹞
已知函数 f(x)=ex(ax2-2x+2),其中 a>0. 导学号 30070736
文 理
[解析] f(x)的定义域为(0,+∞),f′(x)=a-x 1+2ax=2ax2

合 订
①当 a≥1 时,f′(x)>0,故 f(x)在(0,+∞)上单调递增;

②当 a≤0 时,f′(x)<0,故 f(x)在(0,+∞)上单调递减;
第二章 函数、导数及其应用
③当 0<a<1 时,令 f′(x)=0,解得 x= 1- 2aa,则当 x∈
令 f′(x)=0,得 x=e.
所以当 x∈(0,e)时,f′(x)>0,函数 f(x)为增函数,

理 (
当 x∈(e,+∞)时,f′(x)<0,函数 f(x)为减函数.

订 )
所以函数 f(x)的单调增区间为(0,e),单调减区间为(e,+∞
[答案] (1)(-∞,+∞) (2)(0,e) (e,+∞)
相关文档
最新文档